2013年第二十四届希望杯8年级第2试(含答案)

合集下载

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+. 7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( ) A .0.B .1.C .2.D .4.把f 1990化简后,等于 ( ) A .1-x x . B.1-x. C.x1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度. 6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______. 8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个. 9.x ,y ,z 适合方程组826532113533451x y z x z x yx y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120° 所以∠ADC 的度数是120度. 5.∠COD 度数的一半是30度.8.∵Δ=p 2-4q >p 2.9.方程组可化简为:解得: x=1,y=-1,z=0. ∴1989x-y+25z=1990.10.∵6x 4+11x 3-7x 2-3x-7=(3x 2+4x-7)(2x 2+x+1)而3x 2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A .7.5B .12.C .4.D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ] A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ] A .M >P >N 且M >Q >N. B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ] A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种 二、填空题:(每题1分,共5分)1. △ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA的延长线交于N .已知CL=3,则CN=______. 2. 21(2)0a ab -+-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____.3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ]A.2; B.3; C.4; D.52.方程x2-5x+6=0的两个根是[ ]A.1,6 ; B.2,3; C.2,3; D.1,63.已知△ABC是等腰三角形,则[ ]A.AB=AC;B.AB=BC;C.AB=AC或AB=BC;D.AB=AC或AB=BC或AC=BC344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角 [ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.18512.1,>+等于[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ]A.两负根;B.一正根、一负根且负根的绝对值大(1)BOC .一正根、一负根且负根的绝对值小;D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则[ ]到达N 地. A . 二人同时; B .甲先;C .乙先;D .若a >b 时,甲先到达,若a <b 时,乙先 二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度. 2.有理化分母=______________.3.0x =的解是x=________. 4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 2-9)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2-y 2=1991有______个整数解.8.当m______时,方程(m-1)x 2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.CBAFFEDCBA(2) (3) (4)10.如图3,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出__条. 11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于__度. 12.如图4,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______.14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时,3x y-等于( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( ) A .a <b <c. B .(a-b)2+(b-c)2=0. C .c <a <b. D .a=b ≠c 5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( ) A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 2 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为x 2、y 2的值是( )A.x 2,y 22y 2;C. x 2,y 2; D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( ) A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 2+1234567890a+3=0,3b 2+1234567890b+2=0,则ab=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

希望杯真题13年第二十四届-高一-第1试

希望杯真题13年第二十四届-高一-第1试

第二十四届 希望杯 全国数学邀请赛高一㊀第1试试题一、选择题(每小题4分,共40分.)1.给出以下五个函数:①y =|x |;②y =l o g 2|x |;③y =3|x |;④y =x 12;⑤y =3x.其中,值域是一切实数的是()(A )②,④.(B )①,②.(C )③.(D )②.2.已知p ,q ,a ,b ,c ɪR ,并且2a =p +q ,b c =p q ʂ0,则关于x 的方程b x 2-2a x +c =0的根的情况是()(A )无实根.(B )有两个相等实根.(C )有两个不等实根.(D )有两个实根.3.I f p o l y n o m i a l 2x 3-5x 2+1w a s d i v i d e db y x -2,t h e r e m a i n d e rw i l lb e ()(A )3.(B )-3.(C )5.(D )-5.4.在平面直角坐标系x O y 中,半径为2的圆的圆心从原点O 连续地向右平移到点A (1,0),在这过程中,圆面内(含边界)包含的整点(横㊁纵坐标都是整数的点)的个数不可能是()(A )6.(B )7.(C )8.(D )9.5.当0<a <1时,不等式l o g a (4-3x )>-l o g 1a(2+x )的解是()(A )x >12.(B )-2<x <43.(C )12<x <43.(D )-2<x <12.6.要想得到函数y =3s i n (2x -π3)的图象,只需将函数y =3c o s (2x +π6)的图象()(A )向左平移π3个单位.(B )向右平移π2个单位.(C )向左平移π4个单位.(D )向右平移π4个单位.7.I n t h e t r i a n g l e A B C ,i f t h e i n t e r i o ra n g l e ss a t i s f y si n (A -B )=35s i n C ,t h e n t a n At a n B=()(A )2.(B )4.(C )1.(D )5.8.函数y =x 3-3x 2+3x +1的图象关于()(A )点(1,2)成中心对称.(B )点(-1,2)成中心对称.(C )直线x =1成轴对称.(D )直线x =-1成轴对称.9.在锐角әA B C 中,下列结论中一定成立的是()(A )l o g s i n Cs i n Ac o s B >0.(B )l o g s i n Cs i n As i n B >0.(C )l o g c o s Cc o s Ac o s B >0.(D )l o g c o s Cc o s As i n B >0.图110.如图1,A B C D G H E F 是棱长为a 的正方体,点M 和N 分别是әB E H 和әH E G 的内心,则线段MN 的长是()(A )12a .(B )25a .(C )(2-1)a .(D )(2-2)a .二㊁A 组填空题(每小题4分,共40分.)11.设a =14,b =l o g 953,c =l o g 83,用 > 连结a ,b ,c ,则是.12.函数y =2x -1与y =21-x 的图象关于直线对称.13.若M ㊁N ㊁P ㊁Q 分别是正方体A B C D A 1B 1C 1D 1的棱D 1C 1㊁B C ㊁A 1D 1㊁D C 的中点,则MN 与P Q 所成角的正弦值是.14.若函数f (1x )=1x 2+1,则f (12013)+f (12012)+f (12011)+ +f (12)+f (1)+f (2)+ +f (2011)+f (2012)+f (2013)的值是.15.已知s i n θ=m 2+14|m |,则c o s (θ+π6)的取值范围是.16.已知f (x )=33x +3,则f (-1)+f (0)+f (1)+f (2)+f (l g 2)+f (l g5)=.17.G i v e n s e t A ={x |x 2+2x +3+a 2=0,x ɪR },s e t B ={x |2x 2+2x +3ȡa ,x ɪR }.I f A ɣB =R ,t h e n t h e v a l u e r a n ge of t h e r e a l n u m b e r a i s .18.已知点C (3,1),点A 在直线y =x 上,点B 在x 轴上,则әA B C 的周长的最小值是.19.在әA B C 中,a ,b ,c 分别是角A ㊁B ㊁C 的对边,若a +c =2b ,B =30ʎ,并且әA B C 的面积图2为32,则әA B C 的外接圆半径的长是.20.若不等式4x -1-m ㊃2x+m >0对一切x ɪ[2,4]都成立,则实数m 的取值范围是.三㊁B 组填空题(每小题8分,共40分.)21.如图2所示,圆O 的直径A B =6,C 为圆周上一点,B C =3,过C 作圆O 的切线l ,从A 作l 的垂线A D ,垂足为D ,交圆O 于E ,则A E =,C D =.22.函数f (x )=(s i n x +c o s x )2+2(s i n x +c o s x )的最小值是,最大值是.23.已知函数f (x )=-(12)|x -1|,g (x )=x 2-6x +7,则这两个函数的值域的交集是.若在集合A 中,对任意a ɪA ,总存在b 使得g (a )=f (b )成立,则A =.24.已知x O y 坐标平面内的点A (1,1)㊁B ㊁C ㊁D ㊁E ,若B 在曲线y =x 上,C ㊁D ㊁E 在正x 轴上,并且O C <O D <O E ,әA D C 和әB E D 都是正三角形,则直线D B 的方程是,点B 的横坐标是.25.侧棱长都是6的三棱锥P A B C 中,P A ʅP B ,P A ʅP C ,øB P C =60ʎ,M ㊁N 分别是P A ㊁B C 的中点,则MN =,三棱锥A B MN 的体积是.附加题(每小题10分,共20分.)1.若点P (-3,1),Q (3,4)是某正方形的两个顶点,点R (x ,y )是这个正方形的另一个顶点并且在直线P Q 的下方,则点R 的坐标是.2.设x ,y ,z ɪR +,且x +y +z =1,若x 2+y 2+z 2+λx yz ɤ1恒成立,则实数λ的最大值为.高一第1试答案。

希望杯第1-8届五年级数学试题及答案(WORD版)

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

2024第28届希望杯初一年级试题以及答案-2试(word版)

2024第28届希望杯初一年级试题以及答案-2试(word版)

2024第28届希望杯初一年级试题以及答案一、选择题(每小题4分,共40):1.计算:(-1)2024+(-2)16+1=()(A)-2 (B)0 (C)2 (D)2162.如图,线段AB所在的直线与线段CD所在的直线相互垂直,∠A=30°,∠D=50°,则∠E+∠F=()(A)190° (B)180° (C)170° (D)160°3.有理数α,-b,c在数轴上的位置如下图所示,则1ab ,1b-,ac,21b中最大的是()(A) 1ab (B) 1b- (C) ac (D)21b4.已知m,n都是质数,若关于x的方程mx+5n=97的解是3,则m-4n=(). (A)0 (B)3 (C)5 (D)135.Define new calculation rule ※ as x※y=ax+by+c.So we have 1※2=3,(-1) ※2=5,and (-1) ※(-2)=-7,then 2※3=().(A)5 (B)7 (C)-3 (D)136.如图、点A和B在直线MN的同侧,点A到MN的距离AC=6.点B到MN的距离BD=9,CD=4.当点P在直线MN上运动时. PA PB-的最大值等于().(A)3 (B)4 (C)5 (D)67. 若有理数a 满意2016a -+2017a -=a ,则这样的a 有( )个. (A )1 (B )2 (C )3 (D )无穷多8. 若正整数x,y 满意x 2+y 2=2024,则这样的数对(x ,y )有(A )1 (B )2 (C )4 (D )无穷多 9. 如图,等腰直角三角形ABC 的腰长3厘米,将三角形ABC 逆时针旋转90°,则线段AB 扫过的面积( )平方厘米.(A )2π(B )32π (C )94π (D )3π10.已知正数a 、b 、c 满意3410538{a b c a b c b c a b c a+=++++=+++则( ). (A )a<b<c (B )a<c<b (C )b<c<a (D )c<a<b二、 选择题(每小题4分,共40):11.若肯定值不小于2024且不大于202424的全部整数的和等于a,则2017a -= .12.Suppose a,b,and c are the three side length of a trsingle a with perimeteras 15,then a b c +++a b c --+a b c -++a b c +-= .13.某展厅的150盏电灯都是亮着的,每个灯都单独设有开关.现将开关按1~150编号.某同学先按下编号为3的倍数的开关,然后按下编号为5的倍数的开关.这时展厅中亮着的灯有 盏.14.某工人制作1个A 零件,1个B 零件,1个C零件所用的时间之比为1∶2∶3,他制作2个A 零件.3个B 零件和4个C 零件共用10工时,若他要制作14个A 零件和12个C零件,则需用 工时。

2013年希望杯四-六年级数学试卷真题和答案

2013年希望杯四-六年级数学试卷真题和答案

2013年希望杯四年级真题1.计算:4×37×25= 2.某种速印机每小时可以印3600张纸,那么印240张纸需要 分钟。

3.若三个连续奇数的和是111,则其中最小的奇数是 4.一个数除以3余2,除以4余3,除以5余4,则这样的数中最小的是 5. 图1是一个5×5的网格,每个小方格的面积都是1,阴影部分是类似数字“2”的图形,那么阴影部分的面积是6. 将两个长4厘米宽2厘米的长方形拼在一起,组成一个新的四边形,则新四边形的周长是 厘米,或 厘米。

7. 今年,小明12岁,爸爸40岁,在小明 岁的时候,爸爸年龄是他的5倍。

8.商店按每个60元的价格购进50个足球,全部出售后获利1950元,每个足球的售价是 元。

9. 如图2将数字4,5,6填入正方体的展开图,使正方体对应两面的数字和都相等,则A 处为 ,B 处为 ,C 处为 。

10.从九位数798056132中任意划去4个数字,使其余5个数顺次成为五位数,则得到的五位数最大是 ,最小是 。

11.如图3,在一大一小两个正方形拼成的图形中,阴影部分的面积是50平方厘米,则小正方形的面积是 平方厘米。

12.2013的质因数中,最大的质因数与最小的质因数的乘积是13.从边长为5的正方形纸片的四个角处剪掉四个小长方形后得图4,得到的新图形的周长是14.如图5,喜羊羊打开一本书,发现左右两页的页码数(相邻整数)的乘积是420,则这两页的页码数的和是15.将1到16这16个自然数排成如图6的形状,如果每条斜线上的4个数的和相等,那么a-b-c+d+e+f-g=16、行驶在索马里海域的商船发现在它北偏西60○方向50海里处有一海盗船,于是商船在它南偏西60○方向50海里处的护航舰呼救,此时,护航舰在海盗船的正 (填:东、南、西、北)方向 海里处。

17、ABCD 四个点从左向右依次排在一条直线上,以这四个点为端点,可以组成6条线段,已知这6条线段的长度分别是12、18、30、32、44、62(单位:厘米),那么线段BC 的长度是 厘米。

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)

2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题1.(3分)请在横线上方填入一个数,使等式成立:5×4÷_________=0.8.2.(3分)两个自然数的和与差的积是37,那么,这两个自然数的积是_________.3.(3分)180的因数共有_________个.4.(3分)数字1~9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次),组成一个九位数,例如,123654789,按此取法取得的数中,最小的是_________最大的是_________.5.(3分)若32只兔子可换4只羊,9只羊可换3头猪,6头猪可换2头牛,那么5头牛可换_________只兔子.6.(3分)包含数字0的四位自然数共有_________个.7.(3分)养殖场将一批鸡蛋装入包装盒,每盒30枚,恰好全部装完,后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒,则这批鸡蛋有_________枚.8.(3分)一只蜘蛛有8条腿,一只蜻蜓有6条腿,如果蜘蛛、蜻蜓共有腿450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有_________只.9.(3分)甲乙两桶中共装有26升水,先将乙桶中的一半倒入甲桶,再将甲桶中一半倒入乙桶,然后,从乙桶中取5升水倒入甲桶,整个过程中无水溢出.这时,甲桶中的水比乙桶中的水多2升,则最初甲桶中有水_________升.10.(3分)如图,若△ABC的面积是24,D、E、F分别是BC、AD、AB的中点,则△BEF的面积是_________.11.(3分)数一堆贝壳,若4个4个地数,则剩1个;若5个5个地数,则剩2个;若6个6个地数,则剩3个,由以上情况可推知,这堆贝壳至少有_________个.12.(3分)一个长方形形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米,高20厘米,缸内水深12厘米,将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米,则石块的体积是_________立方厘米.二、解答题:每题都要写出推算过程.13.小明绕操场跑一圈5分钟,妈妈绕操场跑一圈用3分钟.(1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明?(3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?14.有一批货物,用28辆货车一次运走,货车有载重8吨的和载重5吨的两种,若所有货车都满载,且载重8吨的货车运送货物的总重量比载重5吨的货车运送货物的总重量多3吨.则这批货物共有多少吨?15.图是一块宅基地的平面图,其中相邻的两条线段都互相垂直.求:(1)这块宅基地的周长;(2)这块宅基地的面积.16.两个不同的三位自然数和除以7都余3,求和的和.2013年第11届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题1.(3分)请在横线上方填入一个数,使等式成立:5×4÷25=0.8.2.(3分)两个自然数的和与差的积是37,那么,这两个自然数的积是342.3.(3分)180的因数共有18个.4.(3分)数字1~9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次),组成一个九位数,例如,123654789,按此取法取得的数中,最小的是123547896最大的是987563214.5.(3分)若32只兔子可换4只羊,9只羊可换3头猪,6头猪可换2头牛,那么5头牛可换360只兔子.6.(3分)包含数字0的四位自然数共有2439个.7.(3分)养殖场将一批鸡蛋装入包装盒,每盒30枚,恰好全部装完,后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒,则这批鸡蛋有4320枚.8.(3分)一只蜘蛛有8条腿,一只蜻蜓有6条腿,如果蜘蛛、蜻蜓共有腿450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有45只.9.(3分)甲乙两桶中共装有26升水,先将乙桶中的一半倒入甲桶,再将甲桶中一半倒入乙桶,然后,从乙桶中取5升水倒入甲桶,整个过程中无水溢出.这时,甲桶中的水比乙桶中的水多2升,则最初甲桶中有水10升.10.(3分)如图,若△ABC的面积是24,D、E、F分别是BC、AD、AB的中点,则△BEF的面积是3.三角形三角形=××三角形三角形三角形××=11.(3分)数一堆贝壳,若4个4个地数,则剩1个;若5个5个地数,则剩2个;若6个6个地数,则剩3个,由以上情况可推知,这堆贝壳至少有57个.12.(3分)一个长方形形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米,高20厘米,缸内水深12厘米,将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米,则石块的体积是5832立方厘米.二、解答题:每题都要写出推算过程.13.小明绕操场跑一圈5分钟,妈妈绕操场跑一圈用3分钟.(1)如果小明和妈妈从同一起点同时同向出发,几分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈从同一起点同时同向出发,几分钟后妈妈第一次追上小明?(3)如果小明和妈妈从同一起点同时反向出发,几分钟后两人第四次相遇?,,妈妈每分钟比小明多跑一周的﹣(﹣,则第四相遇时两人共行了()(﹣(+14.有一批货物,用28辆货车一次运走,货车有载重8吨的和载重5吨的两种,若所有货车都满载,且载重8吨的货车运送货物的总重量比载重5吨的货车运送货物的总重量多3吨.则这批货物共有多少吨?15.图是一块宅基地的平面图,其中相邻的两条线段都互相垂直.求:(1)这块宅基地的周长;(2)这块宅基地的面积.16.两个不同的三位自然数和除以7都余3,求和的和.是数符合,然后再求它们的和即可.+=108+801=909。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档