中考复习——动态几何题
2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
数学中考新宠——动态几何三例

中考新宠——动态几何三例李印数学因运动不再枯燥,数学因运动而充满活力。
课改后,中考数学卷中运动类题目精彩纷呈:点动、线动、图形动,呈现方式丰富多彩。
下面分类探析,供参考。
1. 点动例1. 已知⊙O 的半径为1,以O 为原点,建立如图1所示的直角坐标系。
有一个正方形ABCD ,顶点B 的坐标为()-130,,顶点A 在x 轴上方,顶点D 在⊙O 上运动。
图1(1)当点D 运动到与点A 、O 在一条直线上时,CD 与⊙O 相切吗?如果相切,请说明理由,并求出OC 所在直线对应的函数表达式;如果不相切,也请说明理由;(2)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求出S 与x 的函数关系式,并求出S 的最大值和最小值。
分析:注意,动中求静,静中思变。
正确画出当点D 运动到与点A 、O 在一条直线上时的示意图(注意两解)。
求OD 所在直线对应的函数表达式,关键在于求出点D 的坐标。
显然,作DE ⊥OB ,只要求出OE 与DE 之长,利用勾股定理求出正方形边长,从而利用相似三角形的知识求出OD 与DE 之长。
解:(1)CD 与⊙O 相切,因为A 、D 、O 在一条直线上,∠ADC =90°, 故∠CDO =90°,所以 CD 是⊙O 的切线。
CD 与⊙O 相切时,有两种情况:①切点在第二象限时(如图2),设正方形ABCD 的边长为a ,图2则a a 22113++=()解得a a ==-23或(舍去), 过点D 作DE ⊥OB 于E , 则Rt ODE Rt OBA △∽△, 所以OD OB DE BA ==OEOA,所以DE OD BA OB ==·21313,OE OD OA OB ==·31313,所以D 13131321313()-,, 所以 OD 所在直线对应的函数表达式为y x =-23; ②切点在第四象限时,(如图3),设正方形ABCD 的边长为b ,则b b 22113+-=(),解得b =-2(舍去),或b =3。
中考数学:几何动态综合题(含答案解析)

题型六几何动态综合题类型一点动型探究题针对演练1. (2016赤峰12分)如图,正方形ABCD的边长为3 cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1 cm/秒,Q点的运动速度是2 cm/秒,连接AP,并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时间t表示△QEA的面积y.(不要求考虑t的取值范围)(提示:解答(2)(3)时可不分先后)第1题图2. (2015省卷25,9分) 如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC 和Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4 cm.(1)填空:AD=________(cm),DC=________(cm);(2)点M、N分别从A点,C点同时以每秒1 cm的速度等速出发,且分别在AD,CB 上沿A→D,C→B方向运动,当N点运动到B点时,M、N两点同时停止运动,连接MN.求当M、N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连接MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出y的最大值.(参考数据:sin75°=6+2 4,sin15°=6-24)第2题图3. (2016梅州10分)如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.第3题图4. 如图,在▱ABCD中,BC=8 cm,CD=4 cm,∠B=60°,点M从点D出发,沿DA方向匀速运动,速度为2 cm/s,点N从点B出发,沿BC方向匀速运动,速度为1 cm/s,过点M作MF⊥CD,垂足为F,延长FM交BA的延长线于点E,连接EN,交AD于点O,设运动时间为t (s )(0<t <4).(1)连接AN ,MN ,设四边形ANME 的面积为y (cm 2),求y 与t 之间的函数关系式; (2)是否存在某一时刻t ,使得四边形ANME 的面积是 ▱ABCD 面积的2132?若存在,求出相应的t 值,若不存在,请说明理由;(3)连接AC ,交EN 于点P ,当EN ⊥AD 时,求线段OP 的长度.第4题图 备用图5. 如图,在矩形ABCD 中,AB =6 cm ,BC =8 cm ,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为每秒2 cm 和1 cm ,FQ ⊥BC ,分别交AC 、BC 于点P 和Q ,设运动时间为t 秒(0<t <4).(1)连接EF,若运动时间t=23秒时,求证:△EQF是等腰直角三角形;(2)连接EP,设△EPC的面积为y cm2,求y与t的函数关系式,并求y的最大值;(3)若△EPQ与△ADC相似,求t的值.6. (2015郴州)如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4 cm,DC=5 cm,AB=8 cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB 方向向点B匀速运动,它们的速度均为1 cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.第6题图【答案】1.(1)证明:∵四边形ABCD是正方形,QE⊥AP,∴∠QEA=∠B=90°.∵AD∥BC,∴∠QAE=∠APB,∴△ABP∽△QEA;…………………………………………(3分)(2)解:由题意得:BP=t cm,AQ=2t cm,要使△ABP≌△QEA,则AQ=AP=2t cm,在Rt △ABP 中,由勾股定理得:32+t 2=(2t)2, 解得t =±3(负值舍去),即当t =3时,△ABP ≌△QEA ;…………………………(7分)(3)解:在Rt △ABP 中,由勾股定理得:AP =32+t 2,∵△ABP ∽△QEA , ∴AB QE =BPAE =APAQ ,∴3QE =tAE=32+t 22t , ∴QE =6t32+t 2,AE =2t 232+t 2,∴y =12QE ·AE =12·6t32+t 2·2t 232+t 2=6t 3t 2+9.……………(12分)2.解:(1)26,22;【解法提示】在Rt △ABC 中,根据勾股定理,得AC =AB 2+BC 2=42+42=4 2 cm ,在Rt △ACD 中,AD =AC ·co s 30°=42×32=2 6 cm ,DC =AC ·sin30°=42×12=2 2 cm.(2)如解图,过点N 作NE ⊥AD 于点E ,作NF ⊥DC 交DC 延长线于点F ,则NE =DF . ∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,在Rt △NFC 中, 第2题解图 ∵sin ∠FNC =FCNC,∴sin15°=FCNC,又∵NC=x cm,∴FC=NC·sin15°=6-24x cm,∴NE=DF=DC+FC=(22+6-24x)cm,∴点N到AD的距离为(22+6-24x)cm;(3)如解图,在Rt△NFC中,∵sin75°=NFNC,∴NF=NC·sin75°=6+24x cm,∵P为DC中点,DC=2 2 cm,∴DP=CP= 2 cm,∴PF=DF-DP=22+6-24x-2=(6-24x+2) cm,∵S△PMN=S四边形DFNM-S△DPM-S△PFN,即S△PMN=12(NF+MD)·NE-12MD·DP-12PF·NF,∴y=12×(6+24x+26-x)×(22+6-24x)-12×(26-x)×2-12×(6-24x+2)×6+24x,即y=2-68x2+7-3-224x+23,∵12-68<0, ∴当x =-7-3-2242×2-68=36-23+22-22秒时,y 取得最大值为4×2-68×23-(7-3-224)24×2-68=236+83+92-1616cm 2.3.解:(1)根据题意BM =2t cm ,BC =5×tan60°=5 3 cm ,BN =BC -3t =(53-3t)cm ,∴当BM =BN 时,2t =53-3t ,解得t =103-15;…………………………………………(2分)(2)分两种情况讨论:①当∠BMN =∠ACB =90°时,如解图①, △NBM ∽△ABC ,cosB =cos30°=BM BN,∴2t 53-3t=32,解得t =157;(4分)第3题解图②当∠MNB =∠ACB =90°时,如解图②,△MBN ∽△ABC ,cosB =cos30°=BNBM,∴53-3t2t=32,解得t =52,故若△MBN 与△ABC 相似,则t 的值为157秒或52秒;……(6分)(3)如解图③,过点M 作MD ⊥BC 于点D ,则MD ∥AC , ∴△BMD ∽△BAC , ∴BM BA=MD AC,又∵BA =cos 60AC=10, 第3题解图③∴2t10=5MD,解得MD =t. 设四边形ACNM 的面积为y ,则 y =S △ABC -S △BMN =12AC ×BC - 12BN ·MD=12×5×53- 12(53-3t)·t=32t 2-532t + 2532 =32(t -52)2+7538,…………………………………………(8分) ∴当t =52秒时,四边形ACNM 的面积最小,最小值为7538cm 2.…………………………………………………………………(10分)4.解:(1)如解图①,过点A 作AG ⊥BC ,垂足为点G .第4题解图①∵∠AGB =90°,∠B =60°, ∴AG =32AB =2 3 cm.由题可知,MD =2t cm ,则AM =(8-2t ) cm , ∵AB ∥CD ,MF ⊥CD , ∴ME ⊥AB ,∴∠MEA =∠MFD =90°, ∵AD ∥BC ,∴∠EAM =∠B =60°, ∴AE =12AM =(4-t) cm , ME =3(4-t) cm ,∴y =S △ANM +S △AEM =12×(8-2t)×23+12×(4-t)×3×(4-t) =32t 2-63t +163(0<t <4);(2)存在.由四边形ANME 的面积是▱ABCD 面积的2132可得:32t 2-63t +163=2132×8×23,整理得:t 2-12t +11=0, 解得t =1或t =11(舍去),所以当t =1s 时,四边形ANME 的面积是▱ABCD 面积的2132;(3)如解图②,第4题解图②由(1)可知AE =(4-t ) cm , ∴BE =AB +AE =(8-t ) cm. ∵∠B =60°,EN ⊥BC ,AG ⊥BC ,∴BN =12BE =(4-12t ) cm ,BG =12AB =2 cm.又∵BN =t ,∴4-12t =t ,解得t =83,∴BN =83cm ,∴GN =BN -BG =23cm ,∴AO =23 cm ,NC =BC -BN =163 cm.设PO =x cm ,则PN =(23-x ) cm.∵AO ∥NC , ∴△AOP ∽△CNP ,∴AO NC =POPN,即23163=x23-x,解得x =239,∴当EN ⊥AD 时,线段OP 的长度为239cm.5.(1)证明:若运动时间t =23秒,则BE =2×23=43 cm ,DF =23 cm ,∵四边形ABCD 是矩形,∴AD =BC =8 cm ,AB =DC =6 cm ,∠D =∠BCD =90°, ∵FQ ⊥BC ,∴∠FQC =∠D =∠QCD =90°, ∴四边形CDFQ 是矩形,∴CQ =DF =23 cm ,CD =QF =6 cm ,∴EQ =BC -BE -CQ =8-43-23=6 cm ,∴EQ =QF =6 cm ,∴△EQF 是等腰直角三角形; (2)解:∵∠FQC =90°,∠B =90°, ∴∠FQC =∠B , ∴PQ ∥AB , ∴△CPQ ∽△CAB ,∴PQ AB =QC BC ,即6PQ =t 8, ∴PQ =34 t cm ,∵BE =2t ,∴EC =BC -BE =8-2t , ∵S △EPC =12EC ·PQ ,∴y =12(8-2t )·34t =-34t 2+3t =-34(t -2)2+3(0<t <4).∵-34<0,∴当t =2秒时,y 有最大值,y 的最大值为3 cm 2; (3)解:分两种情况讨论:(ⅰ)如解图①,点E 在Q 的左侧,①当△EPQ ∽△ACD 时, 第5题解图①可得PQ CD =EQAD ,即348t =8-3t 8,解得t =2;②当△EPQ ∽△CAD 时,可得PQ AD =EQCD ,即348t =8-3t 6,解得t =12857;(ⅱ)如解图②,点E 在Q 的右侧, ∵0<t <4,∴点E 不能与点C 重合, ∴只存在△EPQ ∽△CAD ,可得PQ AD =EQCD ,即348t =3t -86,解得t =12839, 第5题解图②故若△EPQ 与△ADC 相似,则t 的值为2秒或12857秒或12839秒.6.解:(1)如解图,过点C 作CE ⊥AB 于点E , ∵DC ∥AB ,DA ⊥AB ,CE ⊥AB , ∴四边形AECD 是矩形,∴AE =DC =5,CE =AD =4, 第6题解图 ∴BE =AB -AE =8-5=3, ∴由勾股定理得:BC =22+BE CE =32+42=5,∴BC <AB ,∵当点P 运动到点C 时,P 、Q 同时停止运动, ∴t =51=5 s ,即t =5 s 时,P 、Q 两点同时停止运动; (2)由题意知,AQ =BP =t , ∴QB =8-t.如解图,过点P 作PF ⊥QB 于点F ,则△BPF ∽△BCE , ∴PF CE =BP BC ,即PF 4=t5,∴PF =4t 5,∴S =12QB ·PF =12×(8-t)×4t 5=-252t +16t5=-25(t -4)2+325(0<t ≤5).∵-25<0,∴当t =4 s 时,S 有最大值,最大值为3252CM ;(3)∵cos B =BE BC =35,∴BF =PB ·cos B =t ·cos B =3t5,∴QF =AB -AQ -BF =8-8t5,∴QP =当△PQB 为等腰三角形时,分以下三种情况:①当PQ =PB 时,即t , 解得:1t =4011,2t=8,∵t2=8>5,不合题意, ∴t =4011;②当PQ =BQ 时,即8-t ,解得:1t =0(舍去),2t =4811;③当QB =BP 时,即8-t =t , 解得t =4;综上所述,当△PQB 为等腰三角形时,则t 的值为4011 s 或4811 s 或4 s.类型二 线动型探究题针对演练1. 如图,已知矩形ABCD ,AB =3,BC =3,在BC 上取两点E ,F (E 在F 左边),以EF 为边作等边三角形PEF ,使顶点P 在AD 上,PE ,PF 分别交AC 于点G ,H .(1)求△PEF 的边长;(2)若△PEF 的边EF 在射线BC 上移动,(点E 的移动范围在B 、C 之间,不与B 、C 两点重合),设BE =x ,PH =y .①求y与x的函数关系式;②连接BG,设△BEG面积为S,求S与x的函数关系式,判断x为何值时S最大,并求最大值S.第1题图2. 已知,如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=12 cm,BD =16 cm,点P从点A出发,沿AB方向匀速运动,速度为1 cm/s;过点P作直线PF∥AD,PF交CD于点F,过点F作EF⊥BD,且与AD、BD分别交于点E、Q;连接PE,设点P 的运动时间为t(s)(0<t<10).(1)填空:AB=________cm;(2)当t为何值时,PE∥BD;(3)设四边形APFE的面积为y(cm2).①求y与t之间的函数关系式;②若用S表示图形的面积,则是否存在某一时刻t,使得S四边形APFE=825S菱形ABCD?若存在,求出t的值;若不存在,请说明理由.第2题图3. (2014省卷25,9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm.点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB、AC、AD于点E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此刻t的值;若不存在,请说明理由.4. (2016镇江改编)如图①,在菱形ABCD中,AB=65,tan∠ABC=2,点E从点D 出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒).将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)如图②,连接BD、EF,BD交EC、EF于点P、Q.当t为何值时,△EPQ是直角三角形?(3)如图③,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.第4题图【答案】1.解:(1)如解图①,过点P作PQ⊥BC于点Q,∵在矩形ABCD中,∠B=90°,∴AB⊥BC,又∵AD∥BC,∴PQ=AB=3,∵△PEF是等边三角形,∴∠PFQ=60°,在Rt△PQF中,sin∠PFQ=PQ PF,∴PF=3÷32=2,第1题解图①∴△PEF 的边长为2;(2)①在Rt △ABC 中,AB =3,BC =3,由勾股定理得,AC =23,∴∠ACB =30°,又∵△PEF 是等边三角形,∴∠PFE =60°,∴∠FHC =30°,∴FH =FC ,∵HF =2-PH =2-y ,∴FC =2-y ,又∵BE +EF +FC =BC ,∴x +2+2-y =3,即y =x +1(0<x <3);②如解图②,过点G 作GM ⊥BC 于点M ,∵△PEF 为等边三角形,∴∠PEF =60°,∵Rt △ABC 中,AB =3,BC =3,第1题解图②∴∠ACB =30°,∴∠EGC =180°-30°-60°=90°,∵BE =x ,∴EC =3-x ,∴EG =3-x2,∵∠GEM =60°,sin ∠GEM =GM GE ,∴GM =EG ·sin60°=32×3-x 2=33-3x 4, ∴S =12x ×33-3x 4 =-38x 2+338x =-38(x -32)2+9332, ∵-38<0, ∴当x =32时,S 最大=9332. 2.解:(1)10;【解法提示】如解图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12 cm ,BD =16 cm ,∴ BO =DO =8 cm ,AO =CO =6 cm ,∴ AB =82+62=10 cm.(2)∵四边形ABCD 是菱形,∴AB ∥CD ,∠ADB =∠CDB ,又∵PF ∥AD ,∴四边形APFD 为平行四边形,∴DF =AP =t cm ,又∵EF ⊥BD 于点Q ,且∠ADB =∠CDB ,∴∠DEF =∠DFE ,∴DE =DF =t cm ,∴AE =(10-t ) cm ,当PE ∥BD 时,△APE ∽△ABD , ∴AP AB =AE AD , ∴t 10=10-t10,∴t =5,∴当t =5 s 时,PE ∥BD ;(3)①∵∠FDQ =∠CDO ,∠FQD =∠COD =90°,∴△DFQ ∽△DCO ,∴QF OC =DFDC ,即QF6=t10,∴QF =3t5 cm ,∴EF =2QF =6t5 cm ,同理,QD =4t5 cm ,如解图,过点C 作CG ⊥AB 于点G ,∵S 菱形ABCD =AB ·CG =12AC ·BD ,即10CG =12×12×16,第2题解图∴CG =485 cm ,∴S ▱APFD =DF ·CG =485t cm 2,∴S △EFD =12EF ·QD =12×6t 5×4t 5=1225t 2 cm 2, ∴y =485t -1225t 2. ②存在.当S 四边形APFE =825S 菱形ABCD 时,则485t -1225t 2=825×12×16×12, 整理得,t 2-20t +64=0,解得t 1=4,t 2=16>10(舍去),∴当t =4s 时,S 四边形APFE =825S 菱形ABCD .3.(1)证明:如解图①,连接DE ,DF ,当t =2时,DH =AH =4,则H 为AD 的中点,∵EF ⊥AD ,∴EF 为AD 的垂直平分线,∴AE =DE ,AF =DF .∵AB =AC ,∴∠B =∠C ,又∵AD ⊥BC ,∴EF ∥BC ,∴∠AEF =∠B ,∠AFE =∠C ,∴∠AEF =∠AFE ,∴AE =AF ,∴AE =AF =DE =DF ,∴四边形AEDF 为菱形;第3题解图(2)解:如解图②,连接PE ,PF ,由(1)知EF ∥BC ,∴△AEF ∽△ABC ,∴EF BC =AH AD ,即EF 10=8-2t 8,解得EF =10-52t , ∴S △PEF =12EF ·DH =12(10-52t)·2t =-52t 2+10t =-52(t -2)2+10(0<t ≤103), ∴当t =2秒时,S △PEF 存在最大值,最大值为10 cm 2,此时BP =3t =6 cm ;(3)解:存在.(ⅰ)若点E 为直角顶点,如解图③,连接PE ,PF ,此时PE ∥AD ,PE =DH =2t ,BP =3t.∵PE ∥AD ,∴△BEP ∽△BAD ,∴PE AD =BP BD ,即2t 8=3t 5,此比例式不成立,故此种情形不存在;第3题解图(ⅱ)若点F 为直角顶点,如解图④,连接PE ,PF ,此时PF ∥AD ,PF =DH =2t ,BP =3t ,CP =10-3t.∵PF ∥AD ,∴△CFP ∽△CAD ,∴PF AD =CP CD ,即2t 8=10-3t 5, 解得t =4017; (ⅲ)若点P 为直角顶点,如解图⑤,连接PE ,PF ,过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM =FN =DH =2t ,EM ∥FN ∥AD .∵EM ∥AD ,∴△BEM ∽△BAD ,∴EM AD =BM BD ,即2t 8=BM 5, 解得BM =54t , ∴PM =BP -BM =3t -54t =74t. 在Rt △EMP 中,由勾股定理得, 222PE EM PM =+=(2t)2+(74t)2=11316t 2.∴△CFN ∽△CAD ,∴FN AD =CN CD ,即2t 8=CN 5, 解得CN =54t , ∴PN =BC -BP -CN =10-3t -54t =10-174t. 在Rt △FNP 中,由勾股定理得, 222PF FN PN =+=(2t)2+(10-174t)2=35316t 2-85t +100. 又∵EF =MN =BC -BM -CN =10-52t , 在Rt △PEF 中,由勾股定理得,222EF PE PF =+,即(10-52t)2=11316t 2+(35316t 2-85t +100), 化简得183t 2-280t =0,解得t =280183或t =0(舍去), ∴t =280183. 综上所述,当t =4017秒或t =280183秒时,△PEF 为直角三角形.(9分) 4.(1)证明:∵∠ECF =∠BCD =α,∴∠ECF -∠ECD =∠BCD -∠ECD ,即∠DCF =∠BCE .∵四边形ABCD 是菱形,在△DCF 与△BCE 中,CF CEDCF BCEDC BC=⎧⎪∠=∠⎨⎪=⎩,∴△DCF ≌△BCE (SAS),∴BE =DF ;(2)解:∵CE =CF ,∴∠CEQ <90°.①当∠EQP =90°时,如解图①,∵∠ECF =∠BCD ,BC =DC ,EC =FC ,∴△BCD ∽△ECF ,∴∠CBD =∠CEF .∵∠BPC =∠EPQ , 第4题解图①∴∠BCP =∠EQP =90°,∴∠CED =90°,在Rt △CDE 中,∠CED =90°,∵CD =AB =65,tan ∠ABC =tan ∠ADC =2,∴ECDE =2,即EC =2DE ,∵222CD EC DE =+,即CD =5DE ,∴DE =5CD =655=6,∴t =6;②当∠EPQ =90°时,如解图②,∵菱形ABCD 的对角线AC ⊥BD ,∴EC 和AC 重合, 第4题解图②∴DE =65, ∴t =6 5.综上所述,当t =6秒或65秒时,△EPQ 为直角三角形; (3)解:y =255t -12- 2455. 【解法提示】点G 即为t =0时点E 的对应点.当点F 在直线AD 上方时,如解图③,连接GF ,分别交直线AD 、BC 的延长线于点M 、N ,过F 点作FH ⊥AD ,垂足为H ,由(1)得∠1=∠2.易证△DCE ≌△GCF (SAS),∴∠3=∠4,∵DE ∥BC ,∴∠1=∠3,∴∠2=∠4,∴GF ∥CD ,∴四边形DCNM 为平行四边形,易得MN =6 5.∵∠BCD =∠DCG ,∠DCN +∠BCD =∠DCG +∠CGN =180°,∴∠CGN =∠DCN =∠CNG ,∴CN =CG =CD =6 5.∵tan ∠ABC =2, ∴tan ∠CGN =2, ∴GN =12, ∴GM =65+12. 第4题解图③∵GF =DE =t ×1=t , ∴FM =t -65-12.∵tan ∠FMH =tan ∠ABC =2, ∴FH =255(t -65-12),即y =255t -12-2455.类型三 形动型探究题针对演练1. 在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)求证:△ABE ∽△DCA ;(2)求m 与n 的函数关系式,并直接写出自变量n 的取值范围; (3)在旋转过程中,试判断等式222BD CE DE +=是否始终成立?若成立,请证明;若不成立,请说明理由.第1题图2. (2015吉林)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF =90°,∠ABC=∠F=30°,AC=DE=6 cm.现固定三角板DEF,将三角板ABC沿射线DE 方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________ cm;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M 与点N之间距离的最小值.第2题图3. 如图,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H .(1)求证:AHAD =EFBC;(2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;(3)当矩形EFPQ 的面积最大时,该矩形以每秒1个单位的速度沿射线DA 匀速向上运动(当矩形的边PQ 到达A 点时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围.第3题图4. 如图,在▱ABCD中,AD⊥BD,AB=10,AD=6,以AD为斜边在▱ABCD的内部作Rt△AED,使∠EAD=∠DBA,点A′、E′、D′分别与点A、E、D重合,△A′E′D′以每秒5个单位长度的速度沿DC方向平移,当点E′落在BC边上时停止移动,线段BD交边A′D′于点M,交边A′E′或D′E′于点N,设平移的时间为t(秒).(1)DM的长为________(用含t的代数式表示);(2)当E′落在BD上时,求t的值;(3)若△A′E′D′与△BDC重叠部分图形的面积为S(平方单位),求S与t之间的函数关系式;(4)在不添加辅助线的情况下,直接写出平移过程中,出现与△DMD′全等的三角形时t 的取值范围.第4题图5. (2016益阳14分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB 的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.第5题图6. (2015青岛)已知:如图①,在▱ABCD中,AB=3 cm,BC=5 cm,AC⊥AB.△ACD 沿AC的方向匀速平移得到△PNM,速度为1 cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1 cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4),连接PQ,MQ,MC.解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;若不存在,请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.第6题图【答案】1.(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∵∠B=∠C=45°,∴△ABE∽△DCA;(2)解:∵△ABE∽△DCA,∴BECA=BACD,依题可知CA=BA=2,∴m2=2n,∴m=2n,自变量n的取值范围为1<n<2;(3)解:成立.理由如下:如解图,将△ACE绕点A顺时针旋转90°至△ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°,连接HD,在△EAD和△HAD中,∵AE=AH,∠HAD =∠EAH-∠FAG=45°=∠EAD,AD=AD,∴△EAD≌△HAD(SAS),∴DH=DE,又∠HBD=∠ABH+∠ABD=90°,∴BD2+HB2=DH2,即BD2+CE2=DE2.2.解:(1)15;【解法提示】如解图①,作CG⊥AB于G点,CH⊥CE于点H,第2题解图①在Rt △ABC 中,由AC =6,∠ABC =30°,得BC =tan 30?AC=6 3 cm.在Rt △BCG 中,BG =BC ·cos30°=9 cm. ∵四边形CGEH 是矩形,∴CH =GE =BG +BE =9+6=15 cm. (2)①当0≤x <6时,如解图②,由∠GDB =60°,∠GBD =30°,DB =x ,得DG =12x ,BG =32x ,重叠部分的面积y =12DG ·BG =12×12x ×32x =38x 2;第2题解图②②当6≤x <12时,如解图③,BD =x ,DG =12x ,BG =32x ,BE =x -6,EH =33(x -6),重叠部分的面积y =S △BDG -S △BEH =12DG ·BG -12BE ·EH ,即y =12×12x ×32x -12(x -6)×33(x -6),第2题解图③化简得y =-324x 2+23x -63;③当12≤x ≤15时,如解图④,AC =6,BC =63,BD =x ,BE =x -6,EG =33(x -6),重叠部分的面积y =S △ABC -S △BEG =12AC ·BC -12BE ·EG ,即y =12×6×63-12(x -6)×33(x -6),化简得y =-36x 2+23x +123;第2题解图④综上所述,y =2223(0683-233(624323315x x x x x x x x ⎧⎪⎪⎪⎪+-⎨⎪⎪++⎪⎪⎩≤<)<<)(≤≤)12 (3)如解图⑤所示,作NG ⊥DE 于点G , 点M 在NG 上时MN 最短,NG 是△DEF 的中位线,NG =12EF =33,∵MB =12CB =33,∠B =30°,∴MG =12MB =332,则MN min =NG -MG =33-332=332.第2题解图⑤3.(1)证明:∵四边形EFPQ 是矩形, ∴EF ∥BC , ∴△AEF ∽△ABC ,∵AD 是△ABC 的高,AH 是△AEF 的高, ∴AHAD =EFBC;(2)解:∵AHAD =EFBC,EF =x ,AD =4,BC =5,∴AH 4=5x , ∴AH =4x 5,∴HD =4-4x 5,∴S 矩形EFPQ =EF ·HD =x (4-4x5)=-45x 2+4x=-45(x -52)2+5.∵-45<0,∴当x =52时,矩形EFPQ 的面积最大,最大面积为5;(3)解:由(2)可知,当矩形EFPQ 的面积最大时,矩形的长EF 为52,宽HD =4-45x =2,在矩形EFPQ 沿射线AD 的运动过程中:(ⅰ)当0≤t ≤2时,如解图①所示.第3题解图①设矩形与AB 、AC 分别交于点K 、N ,与AD 分别交于点H 1、D 1.此时DD 1=t ,H 1D 1=2,∴HD 1=HD -DD 1=2-t ,HH 1=H 1D 1-HD 1=t ,AH 1=AH -HH 1=2-t , ∵KN ∥EF , ∴KN EF=AH 1AH,即KN 52=2-t 2,解得KN =54(2-t ),∴S =S 梯形KNFE +11EFPQ S 矩形 =12(KN +EF )·HH 1+EF ·EQ 1=12[54(2-t )+52]×t +52(2-t )=-58t 2+5; (ⅱ)当2<t ≤4时,如解图②所示.第3题解图②设矩形与AB 、AC 分别交于点K 、N ,与AD 交于点D 2,此时DD 2=t ,AD 2=AD -DD 2=4-t ,∵K ′N ′∥EF , ∴K ′N ′EF=AD 2AH,即K ′N ′52=4-t 2,解得K ′N ′=5-54t ,∴S =S △AKN =12 K ′N ′·AD 2=12×(5-54t )×(4-t )=58t 2-5t +10.综上所述,S 与t 的函数关系式为:S =2255(028551048t t t t t ⎧-+⎪⎪⎨⎪-+⎪⎩≤≤)(2<≤).4.解:(1)4t ;【解法提示】∵AD ⊥BD , ∴∠ADB =90°, ∴BD=102-62=8,∵AD ∥A ′D ′, ∴A ′D ′⊥BD ,∴∠DMD ′=∠ADB =90°, ∵CD ∥AB , ∴∠D ′DM =∠ABD , ∴△DMD ′∽△BDA ,∴DM BD='DD AB ='MD AD, ∴8DM =510t ='6MD , ∴DM =4t ,MD ′=3t .(2)如解图①,当E ′在BD 上时,第4题解图①∵∠ D ′E ′M +∠A ′E ′M =90°,∠MA ′E ′+∠A ′E ′M =90°, ∴∠ D ′E ′M =∠MA ′E ′, ∵CD ∥AB , ∴∠CDB =∠ABD , ∵∠ MA ′E ′=∠ABD , ∴∠D ′DE ′=∠D ′E ′D , ∴DD ′=D ′E ′,由△ADE ∽△BAD 得到,DE =185,AE =245,∴5t =185,∴t =1825;(3)①当0<t ≤1825时,如解图②,重叠部分是△D ′MK ,S =12D ′M ×MK =12×3t ×4t =6t 2;图②图③第4题解图②当1825<t ≤3225时,如解图③,重叠部分是四边形D ′E ′KM ,S =S △A ′D ′E ′-S △A ′MK =12×185×245-12(6-3t )×34(6-3t )=-278t 2+272t -24350.综上所述,S =2218602527272431832+82502525t t t t t ⎧⎪⎪⎨⎪-⎪⎩(<≤)—(<≤);(4)平移过程中,当0<t ≤1825或t =1或t =65 s 时,出现与△DMD ′全等的三角形.【解法提示】①当0<t ≤1825时,如解图②,△DMD ′≌△KMD ′,②当DD ′=D ′C 时,△DMD ′≌△BMA ′,此时t =1, ③当DD ′=AD 时,△DMD ′≌△AED ,此时5t =6,t =65,综上所述,当0<t ≤1825或t =1或t =65s 时,出现与△DMD ′全等的三角形.5.解:(1)在Rt △ACB 中,∠B =30°,AC =1, ∴AB =2AC =2, ∵点D 是AB 的中点, ∴AD =12AB =1=CD ,∵EF 是△ACD 的中位线, ∴EF =DF =12=12CD ,在△ACD 中,AD =CD ,∠A =60°, ∴△ACD 是等边三角形, ∴∠ADC =60°,在Rt △FGD 中,GF =DF ·sin60°=34,∴矩形EFGH 的面积=EF ·FG =12×34=38;………………(3分)(2)根据第(1)问,易得GD =12DF =14,设矩形移动的距离为x ,则0<x ≤12,如解图①,当矩形与△CBD 重叠部分为三角形时,0<x ≤14,第5题解图①则此时重叠部分三角形的高为3x , ∴重叠部分的面积S =12x ·3x =316,解得x =24>14(舍去);如解图②,当矩形与△CBD 重叠部分为直角梯形时,14<x ≤12,则此时重叠部分直角梯形的高为34,上底边长为x ,下底边长为x -14,第5题解图②∴重叠部分的面积S =12[x +(x -14)]·34=316,解得x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316;(8分)(3)如解图③,过H 2作H 2K ⊥AB 于点K . 在Rt △F 1G 1B 中,∠B =30°,F 1G 1=34,第5题解图③∴BG 1=34,∴DG 1=BD -BG 1=1-34=14,设KD =a ,则H 2K =3a ,在Rt △H 2G 1K 中,有H 2K 2+G 1K 2=H 2G 21, 即(3a )2+(a +14)2=(12)2,解得,a 1=-1+1316,a 2=-1-1316(舍去),∴cos α=cos ∠H 2G 1K =KG 1H 2G 1=13-116+1412=13+38.……(14分) 6.解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD .∵AB =3 cm ,BC =5 cm ,AC ⊥AB , 由勾股定理得:AC =BC 2-AB 2=4 cm.∴cos ∠ACB =AC BC =45.∵△ACD 沿AC 方向平移得到△PNM ,平移的速度为1 cm/s , ∴MN ∥AB ,PC =(4-t ) cm.∵点Q 在BC 上运动,运动的速度为1 cm/s ,第6题解图①∴QC =t cm.如解图①,当PQ ∥MN 时, 则PQ ∥AB , ∴PQ ⊥AC , ∴cos ∠ACB =PCQC =45, 即4-t t =45,解得t =209.∴当t =209s 时,PQ ∥MN ;第6题解图②(2)如解图②,过点P 作PH ⊥BC ,垂足为点H , 则PH =PC ·sin ∠PCQ =35(4-t ),∴y =12·QC ·PH =12t ·35(4-t )=-310t 2+65t ,即y 与t 之间的函数关系式为y =-310t 2+65t (0<t <4);(3)存在.∵△PMN 是由△ACD 沿AC 平移得到的, ∴PM ∥BC , ∴S △PCQ =S △QMC , 由(2)得S △QCP =S △QMC , ∵S △QMC ∶S 四边形ABQP =1∶4, ∴S △QCP ∶S 四边形ABQP =1∶4, ∴S △QCP ∶S △ACB =1∶5.∵S △ACB =12AB ×AC =12×3×4=6 cm 2,∴S △QCP =15S △ABC =65cm 2,即-310t 2+65t =65,整理得:t 2-4t +4=0, 解得t =2,∴t =2 s 时,使得S △QMC ∶S 四边形ABQP =1∶4; (4)存在.如解图③,过点P 作PH ⊥BC 于H ,过点M 作MG ⊥HC ,交HC 的延长线于点G ,第6题解图③∴MG =PH =35(4-t ),tan ∠PCH =PH HC =AB AC =34,∴HC =45(4-t ),又∵QC =t ,HG =PM =BC =5, ∴HQ =HC -QC =45(4-t )-t =165-95t ,∴QG =HG -HQ =5-(165-95t )=95t +95.∵∠PQM =90°,∴∠PQH +∠MQG =90°, 又∵∠HPQ +∠PQH =90°, ∴∠HPQ =∠GQM , ∴△PHQ ∽△QGM , ∴PHHQ =QGGM,。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
九年级中考数学复习专题十 几何动态探究题

专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。
中考数学总复习训练 动态几何型问题

动态几何型问题一、选择题(第1题)1.如图,已知在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是(C)A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关【解析】连结AR,则EF=12AR,AR不变,∴EF不变.2.如图①,在Rt△ABC中,∠ACB=90°,点P以1 cm/s的速度从点A出发,沿折线AC-CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)关于点P 的运动时间x(s)的函数图象如图②所示.当点P运动5 s时,PD的长是(A)(第2题)A.1.2 cm B.1.5 cmC.1.8 cm D.2 cm(第2题解)【解析】 由图②可得,AC =3,BC =4,∴AB =5.当t =5时,如解图所示.此时AC +CP =5,∴BP =AC +BC -AC -CP =2.∵sin B =AC AB =35, ∴PD =BP ·sin B =2×35=65=1.2(cm).故选A.(第3题)3.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在OM ,ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1.运动过程中,点D 到点O 的最大距离为(A )A.2+1B. 5C.1455D.52(第3题解)【解析】 如解图,取AB 的中点E ,连结OE ,DE .∵OD <OE +DE ,∴当O ,E ,D 三点共线时,点D 与点O 的距离最大.此时,∵AB =2,∴OE =AE =12AB =1.∵BC=1,∴AD=1,∴DE=AD2+AE2=12+12=2,∴DE+OE=2+1.∴OD的最大值为2+1.4.如图①,从矩形纸片AMEF中剪去矩形BCDM后,动点P从点B出发,沿BC,CD,DE,EF运动到点F停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②所示,则图形ABCDEF的面积是(C)(第4题)A.32 B.34C.36 D.48【解析】结合函数图象可得BC=4,CD=3,DE=2,EF=8,∴AF=BC+DE=6,∴六边形ABCDEF的面积为6×8-4×3=36.(第5题)5.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是(C)A.一直增大B.一直减小C.先减小后增大D.先增大后减少【解析】如解图,连结CM.(第5题解)∵M 是AB 的中点,∴S △ACM =S △BCM =12S △ABC . 开始时,S △MPQ =S △ACM =12S △ABC ; 点P 到达AC 的中点时,点Q 到达BC 的中点,此时S △MPQ =14S △ABC ; 结束时,S △MPQ =S △BCM =12S △ABC . ∴△MPQ 的面积大小变化情况是先减小后增大.6.如图,水平地面上有一面积为152π cm 2的扇形AOB ,半径OA =3 cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动大半圈至与三角形石块BDE 接触为止,此时,扇形与地面的接触点为C ,已知∠BCD =30°,则点O 移动的距离为(B )(第6题)A .2π cmB .4π cmC.92π cm D .52π cm 【解析】 ∵S 扇形=12lR =12l ×3=152π,∴l =5π,即AmB ︵的长lAmB ︵=n πR 180=n π×3180=5π,∴n =300.连结OC .∵∠BCD =30°,∴∠BOC =2∠BCD =60°.∴AmB ︵所对圆心角的度数为300°-60°=240°.点O 移动的距离即AmC ︵的长,lAmC ︵=240π×3180=4π.(第7题)7.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心,半径为1的圆在△ABC 部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是(C ) A.563 B .25 C.1123D .56 【解析】 △ABC 的切圆半径r =12×(24+7-25)=3,则点P 经过的路径△ABC 的周长=3-13.∵△ABC 的周长=24+25+252-242=56,∴点P 经过的路径=1123. 8.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数y 1和过P ,A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与AC 交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于(A )(第8题)A. 5B.435 C .3 D .4【解析】 连结BP ,CP ,根据抛物线的对称性,得OB =PB ,PC =AC ,从而易得PB ∥AD ,PC ∥OD ,∴△OBP ∽△ODA ,△APC ∽△AOD ,分别作△OBP ,△PCA ,△ODA的高BE,CF,DG,则有BEDG=OPOA,CFDG=APOA,∴BEDG+CFDG=1,由DG=AD2-⎝⎛⎭⎪⎫12OA2=32-22=5,得BE+CF=5,即两个二次函数的最大值之和为 5.二、填空题(第9题)9.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为2或143s时,以P,Q,E,D为顶点的四边形是平行四边形.【解析】①当点Q运动到点E和点B之间时,设运动时间为t(s),则2t-162=6-t,解得t=14 3;②当点Q运动到点E和点C之间时,设运动时间为t(s),则162-2t=6-t,解得t=2.(第10题)10.动手操作:在矩形纸片ABCD中,AB=3,AD=5.按如图所示的方法折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q 也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为2.【解析】当点P与点B重合时,BA′=3;当点Q与点D重合时,DA′=DA=5,∴CA′=DA′2-CD2=52-32=4,BA′=1.∴点A′可移动的最大距离为2.(第11题)11.如图,在等腰梯形ABCD 中,AD ∥BC ,BC =4AD =42,∠B =45°.直角三角尺含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若△ABE为等腰三角形,则CF 的长等于52或2或42-3. 【解析】 若AE =BE ,则CF =52;若AB =AE ,则CF =2;若AB =BE ,则CF =42-3.(第12题)12.已知线段AB =6,C ,D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,点G 移动的路径长度为2.【解析】 ∵∠EPA =∠B =60°,∴EP ∥FB .取FP 的中点M ,PB 的中点N ,连结GM ,MN ,知GM ∥EP ,MN ∥FB ,∴G ,M ,N 三点共线,且GN =12(EP +FB )=12(AP +PB )=12AB =3.∴在移动的过程中,GN 始终与EP 平行且GN =3.∴GN 是向右平移,且点G 的移动长度等于点N 的移动长度,N 的起点为CB 的中点,终点为DB 的中点,∴点G 移动的路径长度为12(CB -DB )=2.(第13题)13. 如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(2,4),(3,4)或(8,4).【解析】由题意知,当△ODP是腰长为5的等腰三角形时,有三种情况:①如解图①所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理,得DE=PD2-PE2=52-42=3,∴OE=OD-DE=5-3=2,此时点P的坐标为(2,4).,(第13题解①)) ,(第13题解②))②如解图②所示,OP=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理,得OE=OP2-PE2=52-42=3,此时点P的坐标为(3,4).③如解图③所示,PD=OD=5,点P在点D的右侧.(第13题解③)过点P 作PE ⊥x 轴于点E ,则PE =4.在Rt △PDE 中,由勾股定理,得DE =PD 2-PE 2=52-42=3,∴OE =OD +DE =5+3=8,此时点P 的坐标为(8,4).综上所述,点P 的坐标为(2,4)或(3,4)或(8,4).(第14题)14.如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2 cm ,QM =4 cm.动点P 从点Q 出发,沿射线QN 以1 cm/s 的速度向右移动,经过t (s),以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值:t =2或3≤t ≤7或t =8(单位:s).【解析] ∵△ABC 是等边三角形,∴AB =AC =BC =AM +MB =4 cm ,∠A =∠C =∠B =60°.∵QN ∥AC ,AM =BM ,∴N 为BC 的中点,∴MN =12AC =2 cm ,∠BMN =∠BNM =∠C =∠A =60°. 分三种情况讨论:①如解图①,(第14题解①)当⊙P 切AB 于点M ′时,连结PM ′,则PM ′=3cm ,∠PM ′M =90°.∵∠PMM′=∠BMN=60°,∴M′M=1 cm,PM=2MM′=2 cm,∴QP=4-2=2 (cm),即t=2.②∵△ABC是正三角形,边长为4 cm,∴点B到AC的距离为23cm,∴MN到AC的距离为 3 cm. 如解图②,(第14题解②)当⊙P与AC切于点A时,连结PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP= 3 cm,∴PM=1 cm,∴QP=4-1=3 (cm),即t=3.当⊙P与AC切于点C时,连结PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′= 3 cm,∴P′N=1 cm,∴QP′=4+2+1=7 (cm),即t=7.∴当3≤t≤7时,⊙P和AC边相切.③如解图③,(第14题解③)当⊙P切BC于点N′时,连结PN′,则PN′= 3 cm,∠PN′N=90°.∵∠PNN ′=∠BNM =60°, ∴N ′N =1 cm ,PN =2NN ′=2 cm , ∴QP =4+2+2=8 (cm),即t =8. 综上所述,t =2或3≤t ≤7或t =8.三、解答题(第15题)15.如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以2 cm/s 的速度向点B 做匀速运动,Q 在边BC 上沿BC 方向以1 cm/s 的速度向点C 做匀速运动.设运动时间为x (s),△PBQ 的面积为y (cm 2).(1)求y 关于x 的函数表达式,并写出x 的取值围. (2)求△PBQ 的面积的最大值. 【解析】 (1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x , ∴y =12(18-2x )x ,即y =-x 2+9x (0<x ≤4). (2)由(1)知y =-x 2+9x , ∴y =-⎝ ⎛⎭⎪⎫x -922+814.∴当0<x ≤92时,y 随x 的增大而增大.∵0<x ≤4,∴当x =4时,y 最大值=20, 即△PBQ 的最大面积是20 cm 2.(第16题)16.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由点A向点C 匀速运动(点P不与点A,C重合),Q是CB延长线上一点,与点P同时以相同的速度由点B向CB延长线方向匀速运动(点Q不与点B重合),过点P作PE⊥AB于点E,连结PQ交AB于点D.(1)当∠BQD=30°时,求AP的长.(2)运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化,请说明理由.【解析】(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,AC=BC=6.∵∠BQD=30°,∴∠QPC=90°.设AP=x,则PC=6-x,QB=x,QC=QB+BC=6+x.∵在Rt△QCP中,∠BQD=30°,∴PC=12QC,即6-x=12(6+x),解得x=2.∴AP=2.(2)当点P,Q运动时,线段DE的长度不会改变.理由如下:过点Q作QF⊥AB,交AB的延长线于点F,连结QE,PF. ∵PE⊥AB于点E,∴∠DFQ=∠AEP=90°.∵点P,Q做匀速运动且速度相同,∴AP=BQ.∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,∴△APE≌△BQF,∴AE=BF,PE=QF.易得PE∥QF,∴四边形PEQF是平行四边形,∴DE =12EF .∵EF =BE +BF =BE +AE =AB ,∴DE =12AB .又∵等边△ABC 的边长为6,∴DE =3,∴当点P ,Q 运动时,线段DE 的长度不会改变,始终为3.17.在平面直角坐标系中,已知点A (-2,0),点B (0,4),点E 在OB 上,且∠OAE =∠OBA .(1)如图①,求点E 的坐标.(2)如图②,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连结A ′B ,BE ′.①设AA ′=m ,其中0<m <2,试用含m 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标.②当A ′B +BE ′取得最小值时,求点E ′的坐标(直接写出结果即可).(第17题)【解析】 (1)∵点A (-2,0),点B (0,4), ∴OA =2,OB =4.∵∠OAE =∠OBA ,∠EOA =∠AOB =90°, ∴△OAE ∽△OBA ,∴OA OB =OE OA ,即24=OE 2, 解得OE =1,∴点E 的坐标为(0,1).(第17题解)(2)①如解图,连结EE ′.由题设知AA ′=m (0<m <2),则A ′O =2-m .在Rt △A ′BO 中,由A ′B 2=A ′O 2+BO 2,得A ′B 2=(2-m )2+42=m 2-4m +20. ∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的, ∴EE ′∥AA ′,且EE ′=AA ′. ∴∠BEE ′=90°,EE ′=m . 又∵BE =OB -OE =3,∴在Rt △BE ′E 中,BE ′2=E ′E 2+BE 2=m 2+9.∴A ′B 2+BE ′2=m 2-4m +20+m 2+9=2m 2-4m +29=2(m -1)2+27. 当m =1时,A ′B 2+BE ′2可以取得最小值,此时,点E ′的坐标是(1,1).②如解图,过点A 作AB ′⊥x 轴,并使AB ′=BE =3,连结A ′B ′.易证△AB ′A ′≌△EBE ′,∴B ′A ′=BE ′,∴A ′B +BE ′=A ′B +B ′A ′.当点B ,A ′,B ′在同一条直线上时,A ′B +B ′A ′最小,即此时A ′B +BE ′取得最小值. 此时有△AB ′A ′∽△OBA ′,∴AA ′OA ′=AB ′OB =34,∴AA ′=37AO =37×2=67,∴EE ′=AA ′=67,即点E ′的坐标为⎝ ⎛⎭⎪⎫67,1.18.如图,在平面直角坐标系中,抛物线y =ax 2+bx -3(a ≠0)与x 轴交于A (-2,0),B (4,0)两点,与y 轴交于点C .(1)求抛物线的表达式.(2)点P 从点A 出发,在线段AB 上以每秒3个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒时△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK ∶S △PBQ =5∶2,求点K 的坐标.(第18题)【解析】 (1)将A (-2,0),B (4,0)两点的坐标分别代入y =ax 2+bx -3(a ≠0), 得⎩⎨⎧4a -2b -3=0,16a +4b -3=0,解得⎩⎪⎨⎪⎧a =38,b =-34. ∴抛物线的表达式为y =38x 2-34x -3.(2)设运动时间为t (s),由题意可知:0<t <2. 如解图①,过点Q 作QD ⊥AB ,垂足为D .(第18题解①)易证△OCB ∽△DQB ,∴OC DQ =BC BQ. ∵OC =3,OB =4,BC =OC 2+OB 2=5,AP =3t ,PB =6-3t ,BQ =t , ∴3DQ=5t,∴DQ =35t .∴S △PBQ =12PB ·DQ =12(6-3t )·35t =-910t 2+95t =-910(t -1)2+910.∴当运动1 s 时,△PBQ 的面积最大,最大面积为910. (3)如解图②,设点K ⎝ ⎛⎭⎪⎫m ,38m 2-34m -3,连结CK ,BK ,过点K 作KL ∥y 轴交BC 于点L .(第18题解②)由(2)知,S △PBQ =910.∵S △CBK ∶S △PBQ =5∶2,∴S △CBK =94.设直线BC 的表达式为y =kx +n . ∵直线BC 过点B (4,0),C (0,-3), ∴⎩⎨⎧4k +n =0,n =-3,解得⎩⎨⎧k =34,n =-3.∴直线BC 的表达式为y =34x -3,∴L ⎝ ⎛⎭⎪⎫m ,34m -3,∴KL =⎝ ⎛⎭⎪⎫34m -3-⎝ ⎛⎭⎪⎫38m 2-34m -3=32m -38m 2.∴S △CBK =S △KLC +S △KLB =12·⎝ ⎛⎭⎪⎫32m -38m 2·m +12·⎝ ⎛⎭⎪⎫32m -38m 2·(4-m )=12·4· ⎝ ⎛⎭⎪⎫32m -38m 2,∴2⎝ ⎛⎭⎪⎫32m -38m 2=94, 解得m 1=1,m 2=3.∴点K 的坐标为⎝⎛⎭⎪⎫1,-278或⎝ ⎛⎭⎪⎫3,-158.(第19题)19.如图,在平面直角坐标系中,直角三角形AOB 的顶点A ,B 分别落在坐标轴上,O 为原点,点A 的坐标为(6,0),点B 的坐标为(0,8).动点M 从点O 出发,沿OA 向终点A 以每秒1个单位的速度运动,同时动点N 从点A 出发,沿AB 向终点B 以每秒53个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M ,N 运动的时间为t (s).(1)当t =3时,直接写出点N 的坐标,并求出经过O ,A ,N 三点的抛物线的表达式.(2)在此运动过程中,△MNA 的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.(3)当t 为何值时,△MNA 是一个等腰三角形?【解析】 (1)由题意,得A (6,0),B (0,8),则OA =6,OB =8,AB =10. 当t =3时,AN =53t =5=12AB ,即N 是线段AB 的中点,∴点N (3,4).设抛物线的表达式为y =ax (x -6),则4=3a (3-6),∴a =-49.∴抛物线的表达式为y =-49x (x -6)=-49x 2+83x .(2)过点N 作NC ⊥OA 于点C .由题意,得AN =53t ,AM =OA -OM =6-t ,∴NC =NA ·sin ∠BAO =53t ·45=43t ,∴S △MNA =12AM ·NC =12×(6-t )×43t =-23(t -3)2+6(0<t <6),∴当t =3时,△MNA 的面积有最大值,最大值为6. (3)在Rt △NCA 中,AN =53t ,NC =43t ,∴AC =AN ·cos ∠BAO =t ,∴OC =OA -AC =6-t ,∴点N ⎝ ⎛⎭⎪⎫6-t ,43t .∴MN =(6-t -t )2+⎝ ⎛⎭⎪⎫43t 2=529t 2-24t +36. 又∵AM =6-t ,AN =53t (0<t <6),∴当MN =AN 时,529t 2-24t +36=53t ,即t 2-8t +12=0,解得t 1=2,t 2=6(舍去);当MN=MA时,529t2-24t+36=6-t,即439t2-12t=0,解得t1=0(舍去),t2=10843;当AM=AN时,6-t=53t,解得t=94.综上所述,当t=2或94或10843时,△MAN是等腰三角形.20.如图①,已知在△ABC中,AB=10 cm,AC=8 cm,BC=6 cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为2 cm/s.连结PQ,设运动时间为t(s)(0≤t≤4),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为S(cm2),当t为何值时,S取得最大值?并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.(4)如图②,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.(第20题)【解析】(1)∵AB=10 cm,AC=8 cm,BC=6 cm,∴由勾股定理逆定理,得△ABC为直角三角形,∠C为直角.∵BP=2t,∴AP=10-2t.∵PQ∥BC,∴APAB=AQAC,即10-2t10=2t8,解得t=209.∴当t=209时,PQ∥BC.(2)过点P 作PD ⊥AC 于点D ,则PD ∥BC ,∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t . ∴S =12AQ ·PD =12×2t ×⎝ ⎛⎭⎪⎫6-65t =-65t 2+6t =-65⎝ ⎛⎭⎪⎫t -522+152,∴当t =52时,S 取得最大值 ,最大值为152cm 2.(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24 cm 2,∴此时S △AQP =12 cm 2.由(2)可知,S △AQP =-65t 2+6t ,∴-65t 2+6t =12,化简,得t 2-5t +10=0.∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(4)假设存在某时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t . 过点P 作PD ⊥AC 于点D ,则有PD ∥BC , ∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8,解得PD =6-65t ,AD =8-85t , ∴QD =AD -AQ =8-85t -2t =8-185t .在Rt △PQD 中,由勾股定理,得QD 2+PD 2=PQ 2,即⎝ ⎛⎭⎪⎫8-185t 2+⎝⎛⎭⎪⎫6-65t 2=(2t )2,化简,得13t 2-90t +125=0,解得t 1=5(舍去),t 2=2513,∴t =2513... . …. word. … 由(2)可知,S △AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×⎝ ⎛⎭⎪⎫-65t 2+6t =2×⎣⎢⎡⎦⎥⎤-65×⎝ ⎛⎭⎪⎫25132+6×2513=2400169(cm 2). ∴存在时刻t =2513,使四边形AQPQ ′为菱形,此时菱形的面积为2400169 cm 2.。
中考数学-几何图形的动态问题(含答案)
中考数学-几何图形的动态问题(含答案)一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④2.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s 的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.3.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN 所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD 与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.4.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 25.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.二、填空题6.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= ________时,△APE的面积等于5 .7.如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.8.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为________9.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)10.如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________三、综合题11.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E、F分别从B、C 两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).(1)求x为何值时,△EFC和△ACD相似;(2)是否存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5,若存在,求出x 的值,若不存在,请说明理由;(3)若以EF为直径的圆与线段AC只有一个公共点,求出相应x的取值范围.12.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AG∶BE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2 ,则BC=________.13.如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?14.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.15.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?16.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE= .将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA 与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F 运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.17.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,(1)如果P、Q同时出发,几秒后,可使△PBQ的面积为8平方厘米?(2)线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.18.如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.19.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.20.如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 cm?(2)当t为何值时,△PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?答案解析部分一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④【答案】C【考点】分段函数,圆的认识,几何图形的动态问题,动点问题的函数图像【解析】【解答】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③.故答案为:C.【分析】由题意知PB的最短距离为0,最长距离是圆的直径;而点P从A点沿顺时针旋转和逆时针旋转后与点B的距离有区别,当点P从A点沿顺时针旋转时,弦BP的长度y的变化是:从AB的长度增大到直径的长,然后渐次较小至点B为0,再从点B运动到点A,则弦BP的长度y由0增大到AB的长;当点P从A点沿逆时针旋转时,弦BP的长度y的变化是:从AB的长度减小到0,再由0增大到直径的长,最后由直径的长减小到AB的长。
中考数学总复习《二次函数的动态几何问题》专项测试卷-含参考答案
中考数学总复习《二次函数的动态几何问题》专项测试卷-含参考答案一、单选题(共12题;共24分)1.如图,在四边形ABCD中,AB∥CD,∥B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设∥APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A.B.C.D.2.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,则点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.−14≤b≤1B.−54≤b≤1C.−94≤b≤12D.−94≤b≤13.如图所示,∥ABC为等腰直角三角形,∥ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC 与DE在同一直线上,∥ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,∥ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.4.二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)5.如图,等腰Rt∥ABC(∥ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让∥ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,∥ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.6.如图,矩形ABCD中,AB=4cm,AD=5cm,点E在AD上,且AE=3cm,点P、Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒,∥BPQ的面积为y cm2.则y与t的函数关系图象大致是()A.B.C.D.7.如图,∥ABC是边长为4cm的等边三角形,动点P从点A出发,以2cm/s的速度沿A→C→B运动,到达B点即停止运动,过点P作PD∥AB于点D,设运动时间为x(s),∥ADP的面积为y (cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.8.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.9.如图1,在四边形ABCD中,AD∥BC,∥B=∥C=60°,P、Q同时从B出发,以每秒1单位长度分别沿B﹣A﹣D﹣C和B﹣C﹣D方向运动至相遇时停止,设运动时间为t(秒),∥BPQ的面积为S (平方单位),S与t的函数图象如图2所示,则下列结论错误的个数()①当t=4秒时,则S=4 √3②AD=4③当4≤t≤8时,则S=2 √3t ④当t=9秒时,则BP平分四边形ABCD的面积.A.1个B.2个C.3个D.4个10.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.11.如图,在菱形ABCD中,∠ABC=120°,AB=2.动点P从点A出发,以每秒2个单位的速度沿折线AD→DC运动到点C,同时动点Q也从点A出发,以每秒√3个单位的速度沿AC 运动到点C,当一个点停止运动时,则另一个点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()A.B.C.D.12.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,则S最小B.当C是AB的中点时,则S最大C.当C为AB的三等分点时,则S最小D.当C是AB的三等分点时,则S最大二、填空题(共6题;共7分)13.如图,抛物线y = 13x2−23x−83的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆上的一动点,连接EP,N是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.14.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,则∥PAB的面积S的取值范围是.15.如图,抛物线y=(x-1)2-1与直线y=x交于点O,点B为线段OA上的动点,过点B作BC∥y 轴,交交抛物线于点C,则线段BC长度的最大值为16.如图,在∥ABC中,∥B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.17.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,则四个点同时停止运动,在运动过程中,当运动时间为s时,则四边形EFGH的面积最小,其最小值是cm2.18.如图,抛物线y=13x2+83x−3与x轴交于点A和点B两点,与y轴交于点C,D点为拋物线上第三象限内一动点,当∠ACD+2∠ABC=180∘时,则点D的坐标为.三、综合题(共6题;共73分)19.如图,抛物线y =ax 2+bx +3与x 轴交于A(−2,0),B(6,0)两点,与y 轴交于点C 直线l :y =12x +n 与抛物线交于A ,D 两点,与y 轴交于点E .(1)求抛物线的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA ,PD ,求当△PAD 面积最大时点P 的坐标及该面积的最大值;(3)y 轴上是否存在点Q ,使∠ADQ =45°,若存在请求点Q 的坐标;若不存在说明理由. 20.在平面直角坐标系中,已知抛物线y =ax 2+bx ﹣4经过A (﹣4,0),C (2,0)两点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,∥AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.21.如图,抛物线y=﹣x 2+6x 与x 轴交于点O ,A ,顶点为B ,动点E 在抛物线对称轴上,点F 在对称轴右侧抛物线上,点C 在x 轴正半轴上,且EF =//OC ,连接OE ,CF 得四边形OCFE .(1)求B点坐标;(2)当tan∥EOC= 43时,则显然满足条件的四边形有两个,求出相应的点F的坐标;(3)当0<tan∥EOC<3时,则对于每一个确定的tan∥EOC值,满足条件的四边形OCFE有两个,当这两个四边形的面积之比为1:2时,则求tan∥EOC.22.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从A点开始沿AB边向点B以1cm/秒的速度移动,同时点Q从B点开始沿BC边向点C以2cm/秒的速度移动,且当其中一点到达终点时,则另一个点随之停止移动.设P,Q两点移动的时间为t秒,△PBQ的面积为Scm2.(1)BP=cm;(2)求S与t的函数关系式,并求出△PBQ面积的最大值.23.如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)、动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动、其中,点M沿OA向终点A运动,点N沿BC向终点C运动、过点N作NP∥BC,交AC于P,连结MP、已知动点运动了t秒、(1)P点的坐标为(,)(用含t的代数式表示);(2)试求∥MPA面积的最大值,并求此时t的值;(3)请你探索:当t为何值时,则∥MPA是一个等腰三角形?24.已知抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0),与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在直线BC上方抛物线上取一点P,过点P作PQ⊥x轴交BC边于点Q,求PQ的最大值;(3)在直线BC上方抛物线上取一点D,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,则求点D的坐标.参考答案1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】B8.【答案】B9.【答案】C10.【答案】C11.【答案】A12.【答案】A13.【答案】1.5π14.【答案】3≤S≤1515.【答案】9416.【答案】317.【答案】3;1818.【答案】(−7,−163) 19.【答案】(1)解:将A (-2,0)、B (6,0)代入y=ax 2+bx+3得:{4a −2b +3=036a +6b +3=0解得{a =−14b =1∴抛物线的解析式为y=-14x 2+x+3 (2)解:∵y =12x +n 过点于A(−2,0),所以n =1 ∴点D 的坐标为(4,3).如图1中,过点P 作PK ∥y 轴交AD 于点K .设P(m ,−14m 2+m +3),则K(m ,12m +1). ∵S △PAD =12⋅(x D −x A )⋅PK =3PK ∴PK 的值最大值时,则△PAD 的面积最大PK =−14m 2+m +3−12m −1=−14m 2+12m +2=−14(m −1)2+94∵−14<0∴m =1时,则PK 的值最大,最大值为94此时△PAD 的面积的最大值为274,P(1,154). (3)解:存在如图2中,将线段AD 绕点A 逆时针旋转90°得到AT ,则T(−5,6)设DT 交y 轴于点Q ,则∥∠ADQ =45°∵D(4,3)∴直线DT 的解析式为y =−13x +133∴Q(0,133) 作点T 关于AD 的对称点T ′(1,−6)则直线DT ′的解析式为y =3x −9设DQ ′交y 轴于点Q ′,则∠ADQ ′=45°∴Q ′(0,−9)综上所述,满足条件的点Q 的坐标为(0,133)或(0,−9). 20.【答案】(1)解:将A (﹣4,0),C (2,0)代入y =ax 2+bx ﹣4,得:{16a −4b −4=04a +2b −4=0 ,解得:{a =12b =1∴抛物线解析式为:y =12x 2+x −4 (2)解:如图,过点M 作MN∥AC 于点N∵抛物线y =12x 2+x −4与y 轴交于点B 当x =0 时,则y =−4∴B(0,−4) ,即OB=4∵点M 为第三象限内抛物线上一动点,点M 的横坐标为m∴M(m ,12m 2+m −4) ∴ON =−m ,MN =−(12m 2+m −4)=−12m 2−m +4 ∴AN =m −(−4)=m +4∴S △ABM =S △ANM +S 梯形MNOB −S △AOB =12(4+m)(−12m 2−m +4)+12(−12m 2−m +4+4)(−m)−12×4 =−m 2−4m =−(m +2)2+4(−4<m <0)∴当m =−2 时,则S 有最大值,最大值为4∴S 关于m 的函数关系式为S =−m 2−4m , S 的最大值为4.21.【答案】(1)解:∵y=﹣x 2+6x=﹣(x ﹣3)2+9∴B (3,9)(2)解:抛物线的对称轴为直线x=3,直线x=3交x 轴于H ,如图∵tan∥EOC= 43 ,即tan∥EOH= 43∴EH OH = 43∴EH=4∴E 点坐标为(3,4)或(3,﹣4)当y=4时,则﹣(x ﹣3)2+9=4,解得x 1=3﹣ √5 (舍去),x 2=3+ √5当y=﹣4时,则﹣(x ﹣3)2+9=﹣4,解得x 1=3﹣ √13 (舍去),x 2=3+ √13∴F 点坐标为(3+ √5 )或(3+ √13 ,﹣4)(3)解:如图,∵平行四边形OEFC 和平行四边形OE′F′C′等高∴这两个四边形的面积之比为1:2时,则OC′=2OC 设OC=t,则OC′=2t∴F点的横坐标为3+t,F′点的横坐标为3+2t而点F和F′的纵坐标互为相反数∴﹣(3+t﹣3)2+9+[﹣(3+2t﹣3)2+9]=0,解得t1= 3√105,t2=﹣3√105(舍去)∴F点坐标为(3+ 3√105,275)∴E(3,27 5)∴tan∥EOC= 2753= 95.22.【答案】(1)(6-t)(2)解:经过t秒后∴S=12×PB×BQ=12×(6-t)×2t=-t2+6t=−(t−3)2+9∴在移动过程中,△PBQ的最大面积是9cm2.23.【答案】(1)解:6-t;43t(2)解:延长NP交x轴于Q,则有PQ∥QA.设∥MPA的面积为SS=12MA·PQ=12(6—t)43t=— 23t2+4t (0≤t≤6)∴当t =3时,则S的最大值为6(3)解:①若MP=PA ∵PQ∥MA ∴ MQ=QA=t ∴3t=6 即t=2②若MP=MA 则MQ=6—2t PQ=43t PM=MA=6—t在Rt∥PMQ 中∵PM2=MQ2+PQ2 ∴(6—t)2=(6—2t)2+(43t)2∴t =10843③若PA=AM ∵PA=t AM=6—t ∴t=6—t ∴t=94综上所述, t =2或t = 10843 或t = 9424.【答案】(1)解:∵抛物线y =ax 2+bx +3经过点A(−1,0)、B(3,0)∴{a −b +3=09a +3b +3=0解得{a =−1b =2∴抛物线的解析式为:y =−x 2+2x +3(2)解:∵抛物线的解析式为:y =−x 2+2x +3 令x =0,则y =3∴C(0,3)∵B(3,0)设直线BC 的解析式为y =kx +b则{b =33k +b =0解得{k =−1b =3直线BC 的解析式为:y =−x +3过点P 作PQ∥x 轴交BC 于点Q ,设P 点坐标为(x ,−x 2+2x +3)则Q 点坐标为(x ,−x +3)则PQ =(−x 2+2x +3)−(−x +3)=−x 2+3x=−(x −32)2+94∴PQ 的最大值是94. (3)解:∵∆COF 与∆CDF 共高,面积比转化为底边比 OF :DF=S∥COF :S∥CDF =3:2过点D 作BC 的平行线交x 轴于G ,交y 轴于E根据平行线分线段成比例OF:FD=OC:CE=3:2∵OC=3∴OE=5∴E(0,5)∴直线EG解析式为:y= -x+5联立方程,得:−x2+2x+3=−x+5解得:x1=1则点D的坐标为(1,4)或(2,3);。
初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)
初中数学中考复习动态型问题(动点动线动面)专项练习及答案解析(50道)一、选择题1、如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm22、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定3、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC 上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C. D.4、数轴上一动点A向左移动3个单位长度到达点B,再向右移动4个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.1 C.0 D.﹣15、如图,正方形ABCD边长为4个单位,两动点P、Q分别从点A、B处,以1单位/s、2单位/s的速度逆时针沿边移动.记移动的时间为x(s),△PBQ面积为y(平方单位),当点Q移动一周又回到点B终止,则y与x的函数关系图象为()A. B.C. D.6、如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a2﹣πB.(4﹣π)a2C.πD.4﹣π8、如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD的延长线上移动时,则△PBD的外接圆的半径的最小值为()A.1 B.C.D.9、如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度向点C移动(到达点C后停止运动),同时点Q从点A出发,以1cm/s的速度沿AB﹣BC的方向向点C移动(到达点C后停止),若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t (s)之间函数关系的大致图象是图2()A.B.C.D.10、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11、如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定12、如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.13、如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.14、已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()二、填空题15、如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s, V Q=1cm/s,当点P到达点B时, P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.16、如图,AO OM,OA=4,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF.等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,则PB的长度为_________.17、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.18、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.19、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.20、如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点(0,1),(1,1),(1,0),(1,-1),(2,-1),(2,0),…,则点的坐标是.21、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,动点M、N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A、B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,MN,设移动时间为t(单位:秒,0<t<2.5).(1)当时间为t秒时,点P到BC的距离为cm.(2)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(3)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.22、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.23、如图,直线AB、CD相交于点O,∠AOC=30°,⊙P的半径为1cm,且OP=4cm,如果⊙P 以1cm/s的速度沿由A向B的方向移动,那么秒后⊙P与直线CD相切.三、解答题24、如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动。
九年级数学中考专题:动态几何综合压轴题
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知:如图四边形ABCD 是正方形,C 点坐标是(0),动点P 、Q ,同时从O 出发,P 沿折线OACB 运动,Q 沿折线OBCA 运动,当P 、Q 相遇时,它们停止运动,P 点运动速度为1个单位/秒,Q 点运动速度为2个单位/秒。
⑴求A 、B 两点坐标;
⑵连结PQ 交AB 于R ,当AR=时,求直线PQ 解析式;
⑶设△OPQ 的面积为S ,运动时间为t 秒,求S 与t 之间的函数关系式,并求S 的最大值;
⑷若△PQC 为等腰三角形,这样的P 点有几个,直接写出P 的坐标;
2.已知:如图△ABC 是边长为4的等边三角形,点P 、Q 分别从A 、C 两点同时出发,作匀速直线运动,且速度为每秒1个单位长度,C 点坐标为(4,0),B 与原点重合,过P 作PE ⊥AC 于E ,PQ 交AC 于D 。
⑴求A 的坐标;
⑵当△DCQ 为等腰三角形时,求t 的值;
⑶若△DCQ 的面积为S ,P 、Q 运动的时间为t 秒,求S 与t 的函数关系式,并求S 的最大值; ⑷过Q 作OF ⊥PE 交延长线于F ,求OF 长及四边形DEFQ 的面积,S 与时间t 的函数关系;
3.在平面直角坐标中,A 为x 轴上一点,过A 点的直线L 的解析式为y kx k =-(其中k 为常数,且k ≠0),B (3,m )为直线L 上的另一点,C 是y 轴上一动点,过C 点作直线L 的平行线L′,连结AC ,过B 点BD ∥AC 交于L′于D 点。
⑴填空:A ( )m= (用含k 的代数式表示); ⑵若16
k =,C (0,6),试猜想四边形ABDC 的形状,并说明。
⑶上下平移直线L′,能否使四边形ABDC 为正方形?若能,求出正方形面积及L′的解析式,若不能,请说明理由。
⑷在⑶的条件下,若D 在第一象限,在坐标轴上是否存在点P ,使△APD 是以AD 为腰的等腰三角形?若存在,试直接写出所有满足条件的P 点坐标,若不存在,说明理由。
4.如图,矩形ABCD 的两条边在坐标上,点D 与原点重合,对角线BD 所在直线的函数关系式为34
Y X
,AD=8,点P 从点A 出发做匀速运动,沿矩形ABCD 的边经过点B 到达点C 用了14S 。
⑴求矩形ABCD 的周长。
⑵若矩形ABCD 绕点D 按逆时旋转90°,这时在点P 运动的同时,矩形ABCD 沿OB 方向以每秒1个单位长度运动,求运动到第5S 时,点P 的坐标。
⑶在⑵条件下,设矩形运动的时间为t ,当O ≤t ≤6时,点P 所经过的路线是一条线段,请求出线段所在直线的函数关系式。
⑷在⑵条件下,当点P 在线段AB 或BC 上运动时,过P 作X 轴、Y 轴的垂线。
垂足分别为E 、F ,则矩形PEOF 是否能与矩形ABCD 相似,若能,请求出t 的值,若不能,说明理由。
5.如图,正方形OABC 长为2cm ,点A 、C 分别在y 轴、x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B ,且12a +5c =0。
动点P 由A 开始沿AB 边以2cm/s 的速度向点B 运动。
同时,点Q 由点B 开始沿BC 边以1cm/s 的速度向点C 移动,设运动时间为ts 。
⑴求抛物线的解析式。
⑵t 为何值时,PQ ∥AC ?
⑶设S=PQ 2,试写出S 与t 的函数关系式,并写出t 的取值范围。
⑷在⑶中,当S 取最小值时,在抛物线上是各存在点R ,使得以P 、B 、Q 、R 为顶点的四边形是平行四边形?若存在,求出点R 坐标,若不存在,说明理由。
6.如图,在直角坐标系中,梯形ABCD 的位置如图,AD ∥BC ,AB=CD=AD=a ,BC=2a ,C 为原点,
点B 在X 轴的负半轴上,直线OE ∥AB ,现梯形ABCD 以每秒
10
a 的速度匀速沿X 轴的正方向平行移动,设运动时间为t 秒,梯形被直线OE 所截得的右侧部分的面积为S 。
⑴求A 、B 、D 三点的坐标(用含a 的式子表示)及直线DE 的解析式。
⑵当O ≤t ≤20时,写出S 与t 的函数关系式。
⑶在梯形的平行移动中当t 为何值时,梯形被直线OE 所分左右两侧部分的面积相等。
⑷在⑶的条件下,延长BA 交轴点于点F ,请探究△FBO 与△BCD 是否相似?若相似请加以证明并求出此时△FBO 与△BCD 的相似比,若不相似,请说明理由。
7.如图,在直角坐标系XOY 中,矩形ABCD 的位置如图所示,AB=10cm 、BC=20cm ,P 、Q 两点同时从A 点出发,分别以1cm/s 的速度沿A →B →C →D →A 运动,当Q 点回到A 点时,P 、Q 两点即停止运动,设点P 、Q 运动时间为ts 。
⑴当P 、Q 分别在AB 边和BC 边上运动时,设以P 、B 、Q 为顶点的三角形的面积为S ,请写出S 关于t 的函数解析式及t 的取值范围。
⑵在⑴的条件下,当S 取最大值时,求经过P 、Q 、D 三点的抛物线的解析式。
⑶在整个运动过程中,t 取何值时,PQ 与BD 垂直。
(PQ ⊥BD )
8.如图,已知抛物线Y=X 2-ax +a -1与X 轴交于A 、B 两点,与Y 轴交于点D (0,3),直线DC 平行于X 轴,交抛物线于另一点C ,动点P 以每秒2个单位长度的速度从点C 出发,沿C →D 运动,同时,点Q 以每秒1个单位长度的速度从点A 出发,沿A →B 运动,连接PQ 、CB ,设点P 的运动时间为ts 。
⑴求a的值和抛物线的顶点坐标。
⑵当t为何值时,四边形PQBC是等腰梯形。
⑶若E为抛物线上位于对称轴右侧的一点,若△ADE被直线分成1:3的两部分,求E点坐标。
⑷设F(1,0),过P作PH⊥CD交抛物线于点H,问是否存在点P,使得以P、C、H为顶点的三角形与△CDF相似?如果存在,请求出t的值,若不存在,请说明理由。
9.如图,梯形ABCD在平面直角坐标系中,上底AD平行于X轴,下底BC交Y轴于E,点C(4,
-2),点D(1,2),BC=9,
4
sin
5
ABC
∠=,请解答:
⑴求过A、E、D的抛物线的解析式。
⑵若H(-1,-1),动点G从B出发,以1个单位/秒的速度沿BC向C运动(C可与B或C点重合)。
求△HE的面积S(S≠0),随动点G的运动时间t秒变化的函数关系,并写出自变量t的取值范围。
⑶在⑵的条件下,当
7
2
t=秒时,点G停止运动,此时直线GH与Y轴交于点N,另一动点P开始
从B出发,以1个单位/秒速度沿梯形的各边运动一周,即由B→A→D→C→B(点P可以与梯形各顶点重合)。
设P的运动时间为t秒,点M为直线HE上任意一点(M与H不重合),在P的整个运动过程
中,求出所有能使∠PHM=∠HNE的t的值。
10.已知矩形ABCD,以顶点B为坐标原点,边BC、AD所在直线为X轴、Y轴建立平面直角坐标系,AB=1,P是对角线交点,M为PC中点,直线L过点M且与AC垂直,与BC交于点E。
⑴若M点坐标。
⑵若直线L与AD交于点H,且把矩形ABCD分成的两部分的面积之比为4:1,求AD的长。
⑶若直线L分别与边BC、CD交于点E、G,△ECG有无可能是等腰三角形?若有,求BC的长,若不能,请说明理由,并指出BC长X的取值范围。