函数与导数压轴题题型方法总结(二)

函数与导数压轴题题型方法总结(二)
函数与导数压轴题题型方法总结(二)

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y 在0x x 处的切线方程。方法: )(0x f 为在0x x 处的切线的斜率。 题型2 过点),(b a 的直线与曲线 )(x f y 的相切问题。 方法:设曲线 )(x f y 的切点))(,(00x f x ,由b x f x f a x )()()(000 求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169y x ) (2)若过点A )2)(,1(m m A 可作曲线)(x f y 的三条切线,求实数 m 的取值范围、 (提示:设曲线 )(x f y 上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于 m x ,0的方 程有三个不同实数根问题。(答案: m 的范围是2,3) 题型3 求两个曲线)(x f y 、)(x g y 的公切线。方法:设曲线)(x f y 、)(x g y 的切点分别为( )(,11x f x )。()(,22x f x ); 建立 21,x x 的等式关系,12112)()(y y x f x x ,12 212 )()(y y x f x x ;求出21,x x ,进而求出 切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线 2 x y 与曲线x e y ln 2的公切线方程。(答案02e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与 0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与 0的 关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。例 已知函数x a x x a x f )1(2 1ln ) (2 (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)(2)若 e x ,2,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为 0) (0) (' ' x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。 注意:“函数)(x f 在 n m,上是减函数”与“函数)(x f 的单调减区间是b a,”的区别是前者是后者的子集。 例已知函数2 () ln f x x a x + x 2在 , 1上是单调函数,求实数 a 的取值范围. (答案 , 0) 题型 3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例 设函数 1) (2 3 x ax x x f ,R a 在区间 1,2 1内不单调,求实数 a 的取值范围。 (答案: 3, 2a ) )三.极值、最值问题。 题型1 求函数极值、最值。基本思路:定义域 → 疑似极值点 → 单调区间 → 极值→ 最值。 例 已知函数12 1)1() (2 kx x e k x e x f x x ,求在2,1x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型 2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。 例 函数1)1(2 1)1(3 14 1) (2 3 4 x p p px x p x x f 。0是函数)(x f 的极值点。求实数 p 值。(答案:1)

导数题型方法总结绝对经典

第一章 导数及其应用 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a> 0,函数g(x)= (a A2 + 14)e A x + 4?若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.

二、交点与根的分布 三、不等式证明 (一)做差证明不等式 LL期嗨敕门划=1扣 M】求的单调逼减区创! <2)^7 I >-1 r求证1 I ----- + x+ 1 W;的宦义域为(一4 +—=—-1 = ■―? x + 1 T t 4-1 I ■丈0 山厂w" 阳=」耳+ 1?二的中说逆减区簡为①,车呵一 ⑵国小由⑴得_虫(一1, ?时” /r Ct)>O f *庄曰① #8)时./'(XXO ?II /+(0) = 0 z.t>- 1 时.f骑)Wf(Qh ?〔耳口仇in(.T + h t T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -| r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T ?A0时., JJ x F?h = <) 」?T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQ X + 1 ;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j. (二)变形构造函数证明不等式

Ehl&£ /I U li 故)白 )替换构造不等式证明不等式 >=/U ) “川理k C 1;/< <6 N 实出氓I:的崗散丿I + 20> I 沟申求齡./i (2JfiF(x) = /(.r)r-g(x> nt,护订} > 0 3r hH(f > [}). I J J //(:>- 2/0-^ . ft Injr". tl 中 i 堆fiU |他①5)的必人饥为hie' * = m 叫z ?削灯育公共恵?且在谆戍坯的也皱丹匸, %、b 、曲求占的E 大fh /(X) K (r K ). v = /Ol 存佥共C <^ r ()i 牡的岗绥翎同 ;In u J - 3

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t ,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()2 22 12110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -= ==-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 21 10 Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()() 20Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <. 【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

导数题型方法总结(绝对经典)

第一章导数及其应用 一.导数的概念 1..已知的值是() A. B. 2 C. D. -2 变式1:() A.-1B.-2C.-3D.1 变式2:() A.B.C.D. 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于

导数各种题型方法总结

导数各种题型方法总结
请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2 变更主元;3 根分布;4 判别式法 5、二次函数区间最值求法: (1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次, 分析每种题型的本质, 你会发现大部分都在解决 “不等式恒成立问题” 以及“充分应用数形结合思想” ,创建不等关系求出取值范围。b5E2RGbCAP 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决: 第一步:令 f ' ( x) ? 0 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元) ;
(请同学们参看 2012 省统测 2) 例 1: 设函数 y ? f ( x) 在区间 D 上的导数为 f ?( x ) , f ?( x ) 在区间 D 上的导数为 g ( x) , 若在区间 D 上,
g ( x) ? 0 恒 成 立 , 则 称 函 数 y ? f ( x ) 在 区 间 D 上 为 “ 凸 函 数 ” ,已知实数 m 是常数,
f ( x) ?
x 4 mx3 3x 2 ? ? p1EanqFDPw 12 6 2 (1)若 y ? f ( x) 在区间 ? 0,3? 上为“凸函数” ,求 m 的取值范围;
(2)若对满足 m ? 2 的任何一个实数 m ,函数 f ( x ) 在区间 ? a, b ? 上都为“凸函数” ,求 b ? a 的最大
值.
x 4 mx3 3x 2 x3 mx 2 ? ? ? ? 3x 解:由函数 f ( x) ? 得 f ?( x) ? 12 6 2 3 2 ? g ( x) ? x2 ? mx ? 3
(1)
y ? f ( x) 在区间 ?0,3? 上为“凸函数” ,
2
则 ? g ( x) ? x ? mx ? 3 ? 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 gmax ( x) ? 0
1 / 19

高三导数压轴题题型归纳

高三导数压轴题题型归 纳 This model paper was revised by LINDA on December 15, 2012.

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )f ′(x )=e x -1x +m f ′(0)=e 0 -10+m =0m =1, 定义域为{x |x >-1},f ′(x )=e x -1x +m =e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x - 1 x +2 (x >-2). h (x )=g ′(x )=e x - 1x +2(x >-2)h ′(x )=e x +1x +2?2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间? ?? ?? -12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t - 1t +2=0? ?? ??-12

所以,e t =1 t +2 t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2 t +2 >0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 12 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)1211 ()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 得:()f x 的解析式为21 ()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

导数各类题型方法总结

导数题型总结(解析版) 题型一: 关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数” ,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =--得32 ()332x mx f x x '=-- 2()3g x x mx ∴=--(1) ()y f x =在区间[]0,3上为“凸函数”,

帮你总结导数题型(共12类)

导数题型目录 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y=f(x)在点x=x0处的导数f′(x0)(3)根据直线点斜式方程,得切线方程:y-y0=f′(x0)(x-x0). ②点(x0,y0)不是切点求切线:(1)设曲线上的切点为(x1,y1);(2)根据切点写出切线方程y-y1=f′(x1)(x-x1) (3)利用点(x0,y0)在切线上求出(x1,y1);(4)把(x1,y1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f′(x0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t = ,即证12ln 0t t t -+>. 令()()1 2ln 01h t t t t t =-+<<,则()()2 22 121 10t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 2 21 10Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()()2 0Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <.

相关文档
最新文档