2013年数学建模第一题方法总结禁忌搜索算法
第2章 禁忌搜索算法

2 . 2 禁忌搜索
• 是局部搜索算法的扩展 • 它的一个重要思想是标记已得到的局部最 优解或求解的过程,并在进一步的迭代中 避开这些局部最优解或过程.
例2 . 2 . 1四城市非对称TSP
距离矩阵
例2 . 2 . 1
• 假设初始解x0 =(ABCD ),目标值为f (x0)=4 • 邻域映射为两个城市顺序对换的2-opt • 始、终点都为A 城市,所以候选集中最多 有两两城市对换对3 个 • 分别对换城市顺序并按目标值由小到大排 列,三个评价值都劣于原值4 .此时已达到 局部最优解.
问题
( 6 )如何利用更多的信息? • 通过记录其他一些信息,如当前最好解, 一个被禁对象(交换)被禁的次数,评价 值的大小等,来提高算法的效率 • BC 或CB 出现的高频率反映出这对顺序交 换对目标值影响较大,在现有的禁忌条件 下对BC 的禁忌长度应该增加 ( 7 )终止原则怎样给出?
Hale Waihona Puke 禁忌搜索算法的特征上次
所有候选对换被禁
问题
( 1 )选择什么为禁忌的对象? 例2 . 2 .1禁忌的是城市顺序对换,是否会造成 求全局最优解的困难? ( 2 )禁忌的长度如何选取? • 禁忌长度短会造成循环,也就可能在一个局部最 优解附近循环 • 禁忌长度长会造成算法的记忆存储量增加,使得 算法计算时间增加,同时可能造成算法无法继续 计算下去 • 因此,必须权衡这对矛盾,确定禁忌长度
例2 . 3 . 4 第3 步
• xnow = ( ACBED ) , f ( xnow ) = 43 • H = { ( ABCDE ; 45 ) , ( ACBDE ; 43 ) , ( ACBED ; 43 ) } • Can_N ( xnow ) = { ( ACBED ; 43 ) , ( ACBDE ; 43 ) , ( ABCED ; 44 ) , ( AEBCD ; 45 ) , ( ADBEC ; 58 ) } • xnext= ( ABCED; 44 )
禁忌搜索

禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
禁忌算法心得体会

禁忌算法心得体会禁忌算法是一种常用的优化算法,它通过维护一个禁忌表来避免搜索过程中陷入局部最优解。
在实际应用中,禁忌算法常常能够取得很好的效果。
在我使用禁忌算法的过程中,我总结了一些心得体会,希望能够对大家有所帮助。
禁忌表的设计禁忌表是禁忌算法的核心,它记录了搜索过程中已经搜索过的解,以及这些解的一些属性。
禁忌表的设计对禁忌算法的性能有着很大的影响。
在我的实践中,我总结了以下几点:禁忌表的大小禁忌表的大小是禁忌算法性能的一个重要参数。
如果禁忌表太小,那么搜索过程中可能会出现重复搜索已经搜索过的解的情况,从而浪费时间。
如果禁忌表太大,那么搜索过程中可能会出现搜索空间过大的情况,从而导致搜索时间过长。
因此,禁忌表的大小需要根据具体问题进行调整。
禁忌表的属性禁忌表的属性是指禁忌表记录的解的一些属性,例如解的质量、解的结构等。
禁忌表的属性需要根据具体问题进行选择。
在我的实践中,我发现,如果禁忌表的属性能够反映出问题的特点,那么禁忌算法的性能会更好。
禁忌表的更新策略禁忌表的更新策略是指禁忌表中记录的解的禁忌期限如何更新。
禁忌表的更新策略需要根据具体问题进行选择。
在我的实践中,我发现,如果禁忌表的更新策略能够反映出问题的特点,那么禁忌算法的性能会更好。
禁忌算法的参数禁忌算法有很多参数,例如禁忌表的大小、禁忌期限、邻域结构等。
这些参数对禁忌算法的性能有着很大的影响。
在我的实践中,我总结了以下几点:禁忌期限禁忌期限是指禁忌表中记录的解的禁忌期限。
禁忌期限需要根据具体问题进行选择。
在我的实践中,我发现,如果禁忌期限能够反映出问题的特点,那么禁忌算法的性能会更好。
邻域结构邻域结构是指禁忌算法中用于生成邻域解的方法。
邻域结构需要根据具体问题进行选择。
在我的实践中,我发现,如果邻域结构能够反映出问题的特点,那么禁忌算法的性能会更好。
禁忌表的大小禁忌表的大小是禁忌算法性能的一个重要参数。
禁忌表的大小需要根据具体问题进行调整。
禁忌搜索课件

五.TS举例(8)
迭代5 编码:5-2-1-7-4-6-3
cx= =C20x
结论: 迭代已到5次,得到最优解
5-2-7-1-4-6-3和5-2-1-7-4-6-3
cx = Cx =20
第26页,共46页。
六.TS的中、长期表的使用(1)
引入中长期表的目的 改善TS的广域搜索能力,TS的局域搜索能力很 好,邻域选优快,但广域搜索能力较差。搜索 能力是TS的关键,采用中长期表可改善TS的广 域搜索能力。
数组元加上Tabu-Size;
T表的下半部分,用来记频数,每次(i,j)交换 (i<j),对应的((j,i)+1)来记忆频数。
第30页,共46页。
六.TS的中、长期表的使用(5) 频数表的优点:同一数组作为T表和频数表共同 使用,方便操作又节省了时间。
第31页,共46页。
六.TS的中、长期表的使用(6)
5,4 7,4 3,6 2,3 4,1
cx
6 4 2 0 -1
……
结论:交换4和5
……
T表
1 2 3
第21页,共46页。
五.TS举例(4)
迭代1 编码:2-4-7-3-5-6-1
cx= Cx =16
移动 Sx
3,1 2,3 3,4 7,1 6,1
……
结论:交换1和3
cx
2 1 -1 -2 -4 ……
若
S x T
停止,否则令
k
k
,若
1 k
NG
(其中NG为最大迭代数)停止;
注:邻S域x小 T,T表表长示。非正正常常设终置止为,(T造表成长的度原<邻因域:
大小)。步骤②的作用是设置循环体出口。
禁忌搜索算法

禁忌搜索算法作者:季敏惠来源:《电脑知识与技术》2009年第27期摘要:随着网络应用不断广泛,网络数据也呈几何级增长。
基于内容的图像搜索算法成为一个很好的解决方案。
该文为图像提取方法提供了一个新的高效的框架,该算法框架相对于以前所使用的基于流形的方法具有明显的优势:本方法框架可以直接对图像数据评定相关性并返回相关性最高的图像数据,而以往的基于流形的方法必须要从特征空间到一个不清晰的语义流形空间做一个映射,并对这个映射进行学习。
关键词:图像;CUDA;熵;流形中图分类号:TP391.41文献标识码:A 文章编号:1009-3044(2009)27-7748-03Active Tabu SearchJI Min-hui(College of Software Engineering, Southeast University, Nanjing 210096, China)Abstract:With the extensive of network applications, network-level data is growing geometrically. Content-based image search algorithm is a good solution. A novel framework is proposed for image retrieval in this paper. Our framework has an clear advantage over pervious manifold based methods: our method can directly rank and return relevant images and does not need to learn a mapping from the feature space to the unclear semantic manifold space, further avoiding the unnecessary exploration on the dimensionality of the semantic space.Key words: image; CUDA; manifold随着信息技术的日益发展,有一样东西以无可遏制的速度增长着,这就是数据。
禁忌搜索算法浅析

禁忌搜索算法浅析摘要:本文介绍了禁忌搜索算法的基本思想、算法流程及其实现的伪代码。
禁忌搜索算法(Tabu Search或Taboo Search,简称TS算法)是一种全局性邻域搜索算法,可以有效地解决组合优化问题,引导算法跳出局部最优解,转向全局最优解的功能。
关键词:禁忌搜索算法;组合优化;近似算法;邻域搜索1禁忌搜索算法概述禁忌搜索算法(Tabu Search)是由美国科罗拉多州大学的Fred Glover教授在1986年左右提出来的,是一个用来跳出局部最优的搜寻方法。
在解决最优问题上,一般区分为两种方式:一种是传统的方法,另一种方法则是一些启发式搜索算法。
使用传统的方法,我们必须对每一个问题都去设计一套算法,相当不方便,缺乏广泛性,优点在于我们可以证明算法的正确性,我们可以保证找到的答案是最优的;而对于启发式算法,针对不同的问题,我们可以套用同一个架构来寻找答案,在这个过程中,我们只需要设计评价函数以及如何找到下一个可能解的函数等,所以启发式算法的广泛性比较高,但相对在准确度上就不一定能够达到最优,但是在实际问题中启发式算法那有着更广泛的应用。
禁忌搜索是一种亚启发式随机搜索算法,它从一个初始可行解出发,选择一系列的特定搜索方向(移动)作为试探,选择实现让特定的目标函数值变化最多的移动。
为了避免陷入局部最优解,TS搜索中采用了一种灵活的“记忆”技术,对已经进行的优化过程进行记录和选择,指导下一步的搜索方向。
TS是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中涉及邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu 1ength)、候选解(candidate)、藐视准则(candidate)等影响禁忌搜索算法性能的关键因素。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
禁忌搜索

• 如果在搜索的过程中,留守泰山的兔子还 没有归队,但是找到的地方全是华北平原 等比较低的地方,兔子们就不得不再次考 虑选中泰山,也就是 说,当一个有兔子留 守的地方优越性太突出,超过了“best so far”的状态,就可以不顾及有没有兔子留守, 都把这个地方考虑进来,这就叫“特赦准 则(aspiration criterion)”。
藐视准则
• 当一个禁忌移动在随后T次的迭代内再度出 现时,如果它能把搜索带到一个从未搜索 过的区域,则应该接受该移动即破禁,不 受禁忌表的限制。 • 破禁准侧保证了搜索过程在全部候选解被 禁或者是有优于当前最优解的候选解被禁 时,能够释放特定的解,从而实现全局优 化搜索。
终止规则
• 确定步数终止,无法保证解的效果,应记录当前最 优解; • 频率控制原则,当某一个解、目标值或元素序列的 频率超过一个给定值时,终止计算; • 目标控制原则,如果在一个给定步数内,当前最优 值没有变化,可终止计算.
C
• 第1步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B CD
C
f(x0)=4
CD BC BD
4.5 ☻ 7.5 8
A
1 1
1
B
5 1
四城市非对称TSP问题
D
1
0.5
1.5
C
• 第2步 解的形式 选解 禁忌对象及长度 候 对换 评价值
B A B
C
D
A B DC
C
f(x1)=4.5
邻域
• TSP问题解的一种表示方法为:
D={x=(i1,i2,…,in)|i1,i2,…,in是1,2,…,n的排列},定义 它的邻域映射为2-opt,即x中的两个元素进行对换, N(x)中共包含x的Cn2=n(n-1)/2个邻居和x本身。 • 例如:x=(1,2,3,4),则C42=6,N(x)={(1,2,3,4), (2,1,3,4), (3,2,1,4), (4,2,3,1), (1,3,2,4), (1,4,3,2), (1,2,4,3)}
禁忌搜索算法 (第6章)

8.终止条件
(1)给定最大迭代步数,如N =10000.优点是易于 操作和控制计算时间,但无法保证解的质量. (2)给定当前的最好解保持不变的最大连续迭代次 数.如2500次. (3)设定目标值的偏离幅度.若ZLB为问题的下界, ε为给定的偏离幅度,则当f (x)-ZLB≤ε时,终止计 算. (4) 设定禁忌对象的最大禁忌频率.若某个禁忌对 象的禁忌频率超过给定的值,则终止计算.
6.2 TS的基本思想和步骤
算法的基本思想:给定一个当前解(初始解)和候 选解产生函数(邻域结构),然后在当前解的邻域 中确定若干候选解;若最佳候选解对应的目标值优 于到目前为止搜索到的“最好解”(best-sofar),则忽视其禁忌特性,用其替代当前解和 “最好解”;若不存在上述候选解,则在候选解集 中选择非禁忌的最佳候选解为新的当前解,而无视 它与当前解的优劣;两种情况下都将相应的对象加 入禁忌表,并修改禁忌表中各对象的任期;如此重 复上述迭代搜索过程,直到满足停止准则.
5.禁忌对象
被置入禁忌表中的那些变化元素.禁忌的目的是为 了尽量避免迂回搜索. (1)以整个解的变化为禁忌对象.当解状态由x变化到 解状态y时,将解y(或x→y的变化)视为禁忌对 象. (2)以解分量的变化为禁忌对象.如示例中的情形. (3)以目标值的变化作为禁忌对象.
6.禁忌表和禁忌长度
禁忌表(tabu list)是针对禁忌对象所设计的一种结 构,可以是一维或二维的. 禁忌长度t(tabu length)是禁忌对象的禁忌期,即 9 不允许再次被选取的迭代次数.每迭代一步,t减
11
TS求解过程演示
当前解 最好解 (best-so-far) 逐步减小
显示 总迭代次数 最好解保持 不变的连续 迭代次数 特点 累加 波动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
禁忌搜索算法
又名“tabu搜索算法”
为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:
procedure tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有关键的几点:
(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
(2)为了降低计算量,禁忌长度和禁忌表的集合不宜太大,但是禁忌长度太小容易循环搜索,禁忌表太小容易陷入“局部极优解”。
(3)上述程序段中对best_to_far的操作是直接赋值为最优的“解禁候选解”,但是有时候会出现没有大于best_to_far的,候选解也全部被禁的“死锁”状态,这个时候,就应该对候选解中最佳的进行解禁,以能够继续下去。
(4)终止准则:和模拟退火,遗传算法差不多,常用的有:给定一个迭代步数;设定与估计的最优解的距离小于某个范围时,就终止搜索;当与最优解的距离连续若干步保持不变时,终止搜索;
禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的.
遗传算法是基于生物进化的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。
其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。
蚂蚁算法是群体智能可用于解决其他组合优化问题,比如有n个城市,需要对所有n个城市进行访问且只访问一次的最短距离。