油气田腐蚀结垢与防垢技术2

合集下载

油气田集输管道结垢机理及除垢措施

油气田集输管道结垢机理及除垢措施

油气田集输管道结垢机理及除垢措施摘要:集输管道结垢物一般都是具有反常溶解度的难溶盐类物质,在水中浓度达到饱和状态时,集输管道内壁的杂质就会结晶析出变成垢物。

集输管道结垢的物质种类很多,管道结垢过程复杂,首要因素就是溶解度处于过饱和状态。

过饱和浓度除了与溶解度有关外,还受热力学、结晶动力学、流体力学等因素的影响。

对于腐蚀垢而言,结垢则受输送介质、材料以及周围环境的共同影响。

根据油田集输管道结垢机理,从防垢溶垢剂除垢法、超声波防垢除垢法、机械除垢法对其除垢效果和机理进行研究,提出对应的集输管道除垢技术措施。

关键词:集输管道;结垢;机理一、管道结垢机理集输管道结垢物一般都是具有反常溶解度的难溶盐类物质,在水中浓度达到饱和状态时,集输管道内壁的杂质就会结晶析出变成垢物。

集输管道结垢的物质种类很多,最常见的是碳酸钙、碳酸镁,容易除去。

而硫酸盐垢,如BaSO4、SrSO4、CaSO4等结垢物就难以清除,危害比较大。

此外还有FeCO3、FeS、Fe(OH)2等铁垢。

根据垢成分分析集输管道主要为硅垢、铁垢、碳酸盐垢物等,现对其机理进行分析。

1、硅垢硅垢的产生是一个非常复杂的物理化学变化过程,与油井所在地质条件和岩石层物质组成有关,随着油井地下水pH值的升高,油井岩层中的二氧化铝、二氧化硅、铝化合物被大量溶解形成离子物质,此时与存在的Ca 2+、Mg 2+、Ba 2+等金属离子进行反应和结合,从而析出固体物质变成垢。

2、铁垢油井结垢物质中铁成分较多,铁垢的形成有多种机理,大部分都由油井管道、铁材料设备腐蚀形成,主要形成机理包含以下3个方面:①硫酸盐还原菌的腐蚀形成铁垢物,硫酸盐还原菌的条件下造成管壁腐蚀,金属发生阴极去极化反应;②二氧化碳腐蚀与铁发生反应产生铁垢,二氧化碳溶于水形成碳酸发生电离形成腐蚀;③硫化氢的腐蚀,硫化氢溶于水就可以直接导致管道设备的腐蚀。

3 、碳酸盐垢以碳酸钙为例,碳酸钙在水中发生反应:Ca(HCO3)2→CaCO 3 ↓+CO2+H2O,温度升高上述反应发生,从而产生碳酸钙垢。

油田防垢技术

油田防垢技术

2.4、防止腐蚀方法分析
3、电化学保护:
广泛应用于港口船舶、埋地管道、城市 供水供暖系统、储罐等各个领域,目前在海洋、 地面储罐、埋地管道等方面强制电流阴极保护 已成为一项成熟的防腐技术,具有经济有效抗 蚀能力强的优点;缺点是不适用于化学腐蚀和 物理腐蚀,牺牲阳极保护靠自然电位保护其效 果没有强制电流阴极保护效果好。
前言
在油气田开发过程中,从钻采、开采、集输到油气的 水处理、储运等的生产环节中,腐蚀无处不在、无时不有, 生产安全、人身安全和环境保护都受到严重的影响,因此腐 蚀是制约和影响油气田生产的主要因素之一。克服、防护腐 蚀是现在及未来必不缺少的一部分。
目录
一、腐蚀的概述 二、防腐的概述 三、防腐的工艺介绍 四、防腐的现有技术方案 五、现有技术比较

多层开采井:地层液相混合在井筒中,离子浓度发生变化。
3.4除垢和防垢工艺对比
除垢是采用酸式除垢剂清除沉积在井筒或地面管线上的垢质。 防垢是在垢晶形成之前采用化学防垢剂控制垢结晶、晶核长 大和沉积,主要手段有: (1)防止晶核化或抑制结晶长大; (2)分离晶核,控制成垢阳离子,主要是螯合二价金属离子; (3)防止沉积,保持固相颗粒在水中扩散并防止在金属表面沉 积。 油田产出水结垢是一种结构致密的沉积物,一旦形成垢要 清除掉积垢需要用大量的除垢剂和施工机具,投入成本高且不 能根除结垢,除垢对井筒油套管和地面管线的伤害较大;而采 用防垢手段则相对成本较低,选择低伤害防垢剂对地层、油套 管和地面管线均不会产生伤害。



3.3、结垢机理
油田水结垢大体可分为两种情况:( 1 )温度、压力、
等热力学条件改变,导致水中离子平衡状态改变,结垢组分
溶解度降低而析出结晶沉淀。( 2 )离子组成不相溶的水相 互混合而产生沉淀。结垢的形成可表示如下: Ca2+ + CO32= CaCO3 = = CaSO4 BaSO4

油水井防腐防垢治理策略分析

油水井防腐防垢治理策略分析

油水井防腐防垢治理策略分析摘要:油气田生产过程中腐蚀结垢一直影响油井生产开采重要问题之一。

本文对油井腐蚀结垢机理进行分析并提出防腐蚀和防结垢的措施,希望对相关从业者有所帮助。

关键词:油水井;腐蚀;结垢;机理;措施1油井井筒腐蚀机理分析1.1化学腐蚀机理:化学腐蚀是由于沉降水、气体或酸性介质与井筒内壁金属发生化学反应,使金属表面发生腐蚀。

常见的化学腐蚀机理包括以下几种:(1)酸性介质腐蚀:油井中存在硫酸、盐酸、稀酸等酸性介质,当这些介质接触到井筒内壁金属时,会引起腐蚀反应。

酸性介质可以溶解金属表面的氧化物和其他腐蚀产物,从而暴露更多的金属,进一步加剧腐蚀。

(2)氧化腐蚀:油井环境中存在氧气,当氧气与金属表面接触时,会发生氧化反应,形成金属氧化物。

金属氧化物会附着在金属表面,形成一层薄膜,阻碍进一步的氧化反应,但如果薄膜受损或破裂,金属就会继续与氧气接触,加速腐蚀的过程。

(3)硫化物腐蚀:油井中存在硫化物,如硫化氢,当硫化物与金属表面接触时,会发生硫化反应,形成金属硫化物。

金属硫化物的生成会消耗氧气和酸性介质,形成局部缺氧和碱性环境,从而促进金属的腐蚀。

1.2电化学腐蚀机理电化学腐蚀是由于金属表面与电解液(井液)之间形成差异电位,产生电化学反应导致腐蚀。

电化学腐蚀的机理主要包括以下两种:(1)阳极腐蚀:在电化学腐蚀中,金属表面被氧化为阳离子,并释放电子,形成腐蚀产物。

当井液中存在氧气、酸性物质或氯化物等能够从金属表面接受电子的物质时,金属表面就会发生阳极腐蚀。

(2)阴极腐蚀:在电化学腐蚀中,金属表面上的阳离子和电解液中的阴离子结合,还原为金属。

在井液中存在硫酸根、碳酸根等能够提供阴离子的物质时,金属表面就会发生阴极腐蚀。

1.3机械腐蚀机理机械腐蚀是由于井液或固体颗粒的流动或冲刷作用,使井筒内壁出现磨损或腐蚀。

(1)冲刷腐蚀:当井液在井筒内高速流动时,其中携带的固体颗粒会与井筒内壁发生冲击和摩擦,造成局部磨损和腐蚀。

油田结垢机理及防治技术参考文档

油田结垢机理及防治技术参考文档
硫酸钡的溶解 度随温度与压力的升高而增大, 因此这类 垢常发生在采油井。但温度影响幅度较小,如 25℃时, BaS04 溶解度2.3 mg/L,温度提高到94℃, BaSO4溶解度仅增 加到3.9m g/L。但在100℃以上,其 溶解度却随温度上升而 下降,如18 0℃,BaS0溶解度与25℃ 相当。
碳酸钙的溶解度随着温度的升高和C02的分压降低而减 小,后者的影响尤为重要。因为在系统内的任何部位,压 力降低都可能产生碳酸钙沉淀。
Ca2++2HC03══CaC03↓+C02↑+H20
结垢机理
如果系统内压力降低 ,溶液中 C02 减少,促使反应向右 进行,导致CaCO3沉淀。硫酸钙(CaS04 ·2H20)的溶解度随着温 度的升高而增 大,可是当达到35℃一40℃ 以上时,溶解度 又随温度的升 高而减小。硫酸钙的溶解度随压 力升高而增 大,这完全是 物理效应。
(3)避免不相容的水混合
防垢技术
不相容的水是指两种水混合时,沉淀出不溶性产物。不 相容性产生的原因是一种水含有高浓度的成垢阳离子,如 Ca2+、Ba2+、Sr2+等,另一种水含高浓度成垢阴离子,如 C032-、HC03-或SO42-。当这两种水混合,离子的最终浓 度达到过饱和状态,就产生沉淀,导致垢的生成。
结垢的分布规律与过去仅以热力学理论为基础所进行 的物理模拟和数值模拟不尽相同,地层中发现有大量与 粘土伴生的硫酸钙、硫酸钡垢。一般距油井井筒50~ 330米。
马岭油田水化学特征与结垢关系
产 层 水 型 总矿(g/l)
水特征及可能生成矿物
环河水 Na2SO4 洛河层水 Na2SO4
延4+5 Y6 Y7 Y9
在地面站,也常因不同层位的生产井来水混合而结CaS04垢,主要结 垢部位在收球筒及总机关处。

试论油井井筒结垢及防治措施

试论油井井筒结垢及防治措施

试论油井井筒结垢及防治措施油井井筒结垢问题一直是油田开发中的难题之一,井筒结垢会影响油气开采效率,增加生产成本,甚至可能导致井眼堵塞等严重后果。

及时有效地防治井筒结垢,对于保障油田生产安全、提高产能和延长井寿具有十分重要的意义。

本文将从井筒结垢的成因、特点及主要防治措施等方面进行论述。

一、井筒结垢成因井筒结垢是指在油井井筒内壁上的油气流动过程中,由于各种原因导致井筒内部沉积了一定量的垢类物质。

井筒结垢的主要成因包括以下几点:1. 油气中含有悬浮颗粒物和胶体粒子,这些颗粒物在流动过程中容易沉积在井筒内壁上,形成结垢。

3. 水合物是油气中的一种水合物质,当水合物遇到流体流动时,容易发生结晶和结垢。

4. 井筒内壁的温度、压力、流速等因素也会影响井筒结垢的形成。

二、井筒结垢的特点井筒结垢在油气开采中表现出一些特点,需要我们在防治过程中有针对性地加以应对。

1. 井筒结垢对产能影响显著,导致油气流动受阻,降低井筒内部的有效直径,增加了流体的粘滞阻力,减少了油气的产量。

2. 井筒结垢还容易造成井筒压力增大,产生井下自喷等问题,增加了油田生产中的安全隐患。

3. 井筒结垢还会影响井下设备的运行稳定性,增加了设备的维护和更换频率,增加了生产成本。

三、井筒结垢的防治措施针对井筒结垢问题,我们需要采取一系列有效的防治措施,保障油田生产平稳高效。

1. 优化油气流动系统,减少悬浮颗粒和胶体物质的含量,采用合适的过滤器和分离器等设备去除杂质,降低结垢发生的概率。

2. 加强化学分析和统计,通过分析油气中的主要成分和结垢物质的特性,选择合适的防垢剂,进行在线注入,阻断结垢物质的形成过程。

3. 定期进行井筒清洗和除垢工作,采用高压水射流、超声波、化学溶解等方法,清除井筒内部的结垢物质,恢复井筒的原有通畅状态。

4. 推进新技术的研发应用,如采用纳米技术改性防垢剂、超声波清垢技术、微生物除垢技术等,提高防治效果和工作效率。

5. 加强油井综合管理,在水驱油田中做好水质管理,净化水质,减少井筒中水合物发生的机会,降低井筒结垢的风险。

试论油井井筒结垢及防治措施

试论油井井筒结垢及防治措施

试论油井井筒结垢及防治措施油井井筒结垢是指在油井生产过程中,由于地层水或者油气中的盐类、铁、铜、有机物等成分在井筒中发生结晶、沉淀而形成的固体结垢。

结垢的产生会影响油井的正常生产,甚至可能导致油井部分或全部的堵塞。

对于油井井筒结垢的防治是非常重要的。

一、油井井筒结垢的成因1. 溶解度变化:在地层水和油气中的盐类、铁、铜、有机物等成分随着温度、压力、pH值的变化,会引起其溶解度的变化,从而形成结晶、沉淀。

2. 流动速度变化:油井井筒内的流动速度的变化会导致其中的物质的沉淀和结晶,从而形成结垢。

3. 化学反应:油井井筒中存在的不同成分之间可能发生化学反应,导致结垢的生成。

二、油井井筒结垢的危害1. 堵塞井筒:结垢的生成会导致井筒部分或全部的堵塞,从而影响油井的正常生产。

2. 降低产能:结垢的存在会影响油井的产能,导致产量下降。

3. 增加生产成本:由于结垢会导致油井的停产、清洗和修复,从而增加了油田的生产成本。

三、油井井筒结垢的防治措施1. 选择合适的防垢剂:可以根据油井的地质条件和生产情况选择合适的防垢剂进行投入,防止结垢的生成。

2. 控制生产参数:合理控制油井生产的温度、压力、pH值等参数,减少结垢的发生。

3. 增加冲洗频次:定期对油井进行清洗和冲洗,可以有效地减少结垢的发生。

4. 定期检测井筒情况:定期对油井井筒进行检测和监测,及时发现结垢的存在并采取相应的措施进行清理和修复。

5. 改进油井设计:在油井的设计中考虑到结垢的可能性,采取一些改进措施,减少结垢的生成。

四、结语油井井筒结垢的防治是油田生产管理中非常重要的一环,对于避免井筒堵塞、提高油井产能、降低生产成本具有重要的意义。

需要在油井开发和生产的全过程中,加强对于结垢的控制和管理,不断改进技术手段和管理方法,以确保油井井筒结垢得到有效的防治。

简述油田管线除垢防腐技术

简述油田管线除垢防腐技术

简述油田管线除垢防腐技术在油田工程中,需要使用大量的管道,这些管道多是金属材质,在传输原油的过程中,会受到具有腐蚀性物质的影响,使金属发生化学反应,从而导致管道出现腐蚀现象。

另外,受到外部压力的影响,原油化学元素中的离子会出现相互作用的现象,这使得管道内部出现了結垢,如果不及时处理这些现象,会导致原油的运输中断,而且还会对周围环境造成一定破坏。

油田管道的防腐以及除垢技术对油田工程的正常运行以及经济效益有着较大的影响,通过本文的分析希望可以引起相关部门的影响。

1、油田管线结垢与腐蚀现象产生的原因1.1结垢现象出现的原因油田管线内部出现结垢现象一般是由两种因素导致的,一种是在对原油进行开采时,会接触到地层中的水,而这些水中含有高浓度的盐离子,很容易导致结垢现象,在抽地下原油时,还会受到地层压力的影响,在一定的温度以及水成分条件喜爱,会打破地层化学平衡,所以,油田管线内部出现了大量的污垢。

另一种是油田管线接触了两种或两种以上的水,并且这几种水是无法相互融合的,在混合在一起后管线受到了结垢离子的作用,所以出现了污垢。

1.2腐蚀现象出现的原因油田管线出现腐蚀的原因主要有两种,一种是管线的腐蚀层出现了老化现象,腐蚀层出现了损坏,这一现象一般是由沥青管道在运输与吊装过程中受到的磨损引起的。

在管线补口的位置极容易受到破坏,该位置的质量比较低,防腐层经常会受到损害。

在对油田管线进行铺设时有时还会受到人工因素的影响,铺设人员没有按照相关规定进行操作,导致防腐层的质量不达标,所以管线出现了腐蚀现象。

另一种原因与原油所含成分有关,在传输原油的过程中,会受到具有腐蚀性介质的影响,而管线一般都是由金属材料构成的,与介质发生化学反应后,就会导致腐蚀现象的出现。

2、油田管线除垢防腐技术2.1油田管线除垢技术2.1.1投放防垢剂投放防垢剂在油田管线除垢工作中有着广泛的应用,这是一种通用的技术,不会受到结垢位置以及结垢类型的影响,在任何环境下都可以发挥出良好的防垢效果。

油田防垢技术

油田防垢技术

第二部分油田防垢技术结垢是海上采油工程中常遇的问题,海上采油工程的很多领域都要接触各种类型的水如淡水、海水、地层水、水井水等,因此结垢的现象会出现在生产中的各个环节,给生产带来严重的影响,使生产中的问题更加复杂化。

地层结垢会造成地层堵塞,使注水井不能达到配注量,油井产能大大下降;在井筒中结垢增加了井下的起下维修作业,严重的造成注水井、油井的报废;结垢还会造成地面系统中管线、输送泵、热交换器的堵塞,影响原油处理系统、污水处理系统的正常操作,增加了设备、管线的清洗和更换费用;水垢的沉积还会引起设备和管道的局部腐蚀,在很短的时间内出现穿孔,大大减小了使用寿命。

一、油田水结垢机理结垢就是指在一定条件下,水相中对于某种盐出现了过饱和而发生的析出和沉积过程,析出的固体物质叫做垢,主要是溶解度小的Ca、Ba、Sr 等无机盐。

结垢分为三个阶段,即垢的析出、垢的长大和垢的沉积。

在这个过程中主要作用机理为结晶作用和沉降作用。

1、结晶作用当盐浓度达到过饱和时,首先发生晶核形成过程,溶液中形成了少量盐的微晶粒,然后发生晶格生长过程,形成较大的颗粒,较大的颗粒经过熟成竞争成长过程进一步聚集。

图1 碳酸钙的溶解与析出曲线1—溶解;2—析出对于微溶盐类如碳酸钙,通常析出浓度远大于饱和浓度。

图1是用等浓度的钙硬度和碱度(以CaCO2计)作纵坐标,以温度作横坐标,得到碳酸钙溶解度曲线和碳酸钙结晶析出曲线。

该图分成三个区域:沉淀区、介稳区和溶解区。

介稳区出现的原因是在晶格生长的过程中,由于受到水中离子或粒子的扩散速度的影响,或者说受传质过程的控制造成的。

若盐类在水中的溶解度较大,则水中溶解的离子和粒子浓度都较高,晶核形成后很容易生长,这时盐类的溶解度曲线和晶体析出曲线基本重合,因而不存在介稳区。

但在微溶或难溶盐类的饱和溶液中,由于离子和粒子的浓度都很低,因此晶核形成后晶格并不生长,只有在离子或粒子浓度较高的过饱和溶液中,晶格才开始生长和析出晶体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-ATMP;2-HEDP;3-EDTMP;4-DETPMP;5-PBTCA
图 2-2 有机膦酸防碳酸钙垢性能
100 95 90
1 2 3 4
防垢 率 / %
85 80 75 70 65 60 0 2 4 6 8 10 12 14 16 18 20 22 ρ (防垢 剂)
/( mg.L-1)
1-PASP;2-HPMA;3-MA-AA;4-PAA
油气地质与采收率,2006,13(4)
复合驱中的结垢
注入系统: 氢氧化物垢、碳酸盐垢 生产系统: 强碱复合驱:硅酸盐垢为主 弱碱复合驱:碳酸盐垢为主
提 纲
1 油田垢的生成 2 油田用防垢剂 3 防垢剂的使用技术 4 氯化钠的防止
防垢的方法
(1)磁防垢 (2)超声波防垢 (3)电防垢 (4)用防垢剂防垢
图 2-5 ATMP 与 MA-AA 复配防碳酸钙垢性能
100 90 80 70
2 1
防垢 率 / %
60 50
3
40 30 20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ρ (防垢 剂)
5 4
/( mg.L-1)
1-w(ATMP)/w(HPMA)=2:1;2-w(ATMP)=1; 3-w(ATMP)/w(HPMA)=1:1; 4-w(ATMP)/w(HPMA)=1:2;5-w(HPMA)=1
图 2-6 ATMP 与 HPMA 复配防碳酸钙垢性能
100 90 80 70
3 4 1 2
防垢 率 / %
60 50 40 30 20 10 0 0.6 0.8 1.0 1.2
5
1.4
1.6
1.8
ρ (防垢 剂)
/( mg.L-1)
1-w(HEDP)/w(MA-AA)=2:1;2-w(HEDP)=1; 3-w(HEDP)/w(MA-AA) =1:1; 4-w(HEDP)/w(MA-AA)=1:2;5-w(MA-AA)=1
压力条件变化
溶液 pH 变化
溶液 pH 值升高
硅酸盐溶解
硫酸钡垢
硫酸钙垢
氯化钠垢
碳酸钙垢
硅酸钙垢
图 1-2 常见油田垢的生成机理
结垢机制
注 入 水 不 配 伍 温度条件变化
开采条件变化
物理条件变化 机制
化学条件变化
压力条件变化
溶液 pH 变化
溶液 pH 值升高
硅酸盐溶解
硫酸钡垢
硫酸钙垢
氯化钠垢
碳酸钙垢
结垢机制
注 入 水 不 配 伍 温度条件变化
开采条件变化
物理条件变化 机制
化学条件变化
压力条件变化
溶液 pH 变化
溶液 pH 值升高
硅酸盐溶解
硫酸钡垢
硫酸钙垢
氯化钠垢
碳酸钙垢
硅酸钙垢
图 1-2 常见油田垢的生成机理
结垢机制
注 入 水 不 配 伍 温度条件变化
开采条件变化
物理条件变化 机制
化学条件变化
防垢剂的热稳定性
表 2-5 防垢剂热处理前后阻碳酸钙垢性能 防垢率 /% 防垢剂* 未除氧加 加热前 除氧加热 热 PAA 72.3 70.2 56.2 W-118A 60.4 45.2 42.6 丙烯酸/丙烯酸酯 80.6 71.5 30.4 -5.6 HPMA 73.8 8.8 MA-AA -4.4 -6.5 71.4 HEDP 94.1 3.8 1.1 -0.2 -0.5 ATMP 95.5 EDTMP 92.3 0.5 0.6 DETPMP 93.2 2.8 6.3 -2.3 PBTCA 89.3 2.5 防垢剂的质量浓度皆为 5mg/L 150℃加热 72h
图 2-3 聚合物防碳酸钙垢性能(一)
100 95 90 85
1 2 3
防垢 率 / %
80 75 70 65 60 55 50 0 2 4 6 8 10
4
12
14
16
18
20
22
ρ (防垢 剂)
/( mg.L-1)
1-JN-520;2-JN-518;3-W-113;4-W-118A
图 2-4 聚合物防碳酸钙垢性能(二)
CH
z
COOH COOH
CH2 CH COOH CH2 O
COOCH 3
CH C CH3 CH2 C CH3
OOCCH 3
m
n
NH
CH2SO 3H
O CH CH m P OH CH n COOH COOH CH
COOH COOH
膦酰基羧酸(POCA)
PO 3 H2
CH2
CH
x
R
y
H
COOH
O O NH
结垢机制
注 入 水 不 配 伍 温度条件变化
开采条件变化
物理条件变化 机制
化学条件变化
压力条件变化
溶液 pH 变化
溶液 pH 值升高
硅酸盐溶解
硫酸钡垢
硫酸钙垢
氯化钠垢
碳酸钙垢
硅酸钙垢
图 1-2 常见油田垢的生成机理
硅酸盐垢的生成
结垢机制
注 入 水 不 配 伍 温度条件变化
开采条件变化
物理条件变化 机制
聚合物类防垢剂
常见的聚合物类防垢剂
聚丙烯酸(PAA) 聚甲基丙烯酸(PMA) 水解聚马来酸(HPMA)
CH3
CH2
CH
n
CH2
C
n
COOH
CH CH CH O C O CH C O
COOH
m
n
COOH COOH
马来酸/丙烯酸 (MA/AA) 丙烯酸 / 丙烯酸羟丙酯 (AA/HPA)
CH
CH
m
CH2
(氨基三甲叉膦酸(ATMP))
有机膦酸盐类防垢剂
H2O3P- CH2 H2O3P- CH2 N - CH2- CH2- N- CH2- CH2- N CH2- PO3H2 CH2- PO3H2 CH2- PO3H2
(二乙烯三胺五甲叉膦酸(DETPMP))
( PO3H2)2 CH3-C- OH
(羟基乙叉二膦酸(HEDP))
HPA—丙烯酸羟烷基酯;AMPS—2-丙烯酰胺基-2-甲基丙基磺酸;VA—醋酸乙烯酯 AM—丙烯酸甲酯;PASP—聚天冬氨酸;PESA—聚环氧琥珀酸
100 98 96
1 2 3 4 5
防 垢 率 /%
94 92 90 88 86 0 2 4
6
8
10
12
14
16
-1
18
20
22
ρ (防 垢 剂) /(mg.L )
油田垢的生成、防止与清除
葛际江 石油工程学院采油化学研究室
提 纲
1 油田垢的生成 2 油田用防垢剂 3 防垢剂的使用技术 4 氯化钠的防止 5 垢的清除
1 油田垢的生成—分类
(1)硫酸钙(CaSO4) (2)硫酸钡(BaSO4) 硫酸盐 (3)硫酸锶(SrSO4) (4)碳酸钙(CaCO3) 碳酸盐 (5)硅酸钙(CaSiO3) 硅酸盐 (6)氯化钠(NaCl) 其他 (7)腐蚀产物(FeS等)
CH2-PO3H2 CH2-PO3H2
多氨基多醚基亚甲基膦酸(PAPEMP)
有机膦酸防垢剂的发展
(1)ATMP 和 HEDP 是 20 世纪 60 年代开发的,至今 仍在水处理中广泛使用; (2)80 年代,研制了有机膦羧酸,其中,PBTCA 在高 温、高硬度、高 pH 值等苛刻条件下的防垢性能突出,HPA 则具有高效缓蚀性能; (3)90 年代,大分子有机膦酸 PAPEMP 问世,其分子 质量达 600 左右,且分子中引入多个醚键,因而有很高的钙 容忍度和分散垢的性能。
化学条件变化
压力条件变化
溶液 pH 变化
溶液 pH 值升高
硅酸盐溶解
硫酸钡垢
硫酸钙垢
氯化钠垢
碳酸钙垢
硅酸钙垢
图 1-2 常见油田垢的生成机理
碳酸钙垢生成
Ca +CO →CaCO3↓
Ca +2HCO →CaCO3↓+CO2+H2O
2+ 3
2+
23
复合驱结垢
大庆油田三元复合驱结垢情况
区块 杏五区 小井距北井组 杏二区 中区西部 小井距北井组 实施时间 95-97 97-99 96-00 94-96 04-05 井距/m 141 75 200 106 75 碱型 NaOH NaOH NaOH Na2CO3 Na2CO3 碱浓度/% 1.25 1.20 1.20 1.25 1.60 提高采收率 结垢情况 幅度/% 轻微 25000 严重 23.24 非常严重 19.46 无结垢 21.00 无结垢 24.60
100 90 80 70
1 2
防垢 率 / %
60 50 40 30
3 4
5
20 10 0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ρ (防垢 剂)
/( mg.L-1)
1-w(ATMP)=1;2-w(ATMP)/w(MA-AA)=2:1; 3-w(ATMP)/w(MA-AA)=1:1; 4-w(ATMP)/w(MA-AA)=1:2;5-w(MA-AA)=1
CH
n
COOH COOH
COOH
CH
CH
m
CH 2 O
CH C
n
COOH COOH
O
CH 2 CH OH
CH 3
常见的聚合物类防垢剂
马来酸 / 丙烯酸甲酯 / 醋 酸乙烯酯 丙烯酸/ 2-丙烯酰胺-2甲 基 丙 基 磺 酸 (AA/AMPS) 膦基聚马来酸酐(PCA)
CH CH
相关文档
最新文档