【必考题】高二数学上期末试卷附答案

合集下载

【典型题】高二数学上期末模拟试卷附答案

【典型题】高二数学上期末模拟试卷附答案

【典型题】高二数学上期末模拟试卷附答案一、选择题1.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08152.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .253.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1444.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸5.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π6.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( ) A .23B .34C .25D .137.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19368.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D为BE中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.17B.14C.13D.4139.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.27B.57C.29D.5910.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( ).A.①B.②④C.③D.①③11.如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率 的近似值为()A.3.1B.3.2C.3.3D.3.412.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A .13B .49C .59D .23二、填空题13.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。

高二上理科数学期末试卷及答案

高二上理科数学期末试卷及答案

第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。

每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。

高二数学理科上学期期末试题(有答案)

高二数学理科上学期期末试题(有答案)

高二数学理科上学期期末试题(有答案)C.②③①D.③②①5.若a=(1,,2),b=(2,-1,1),a与b的夹角为60,则的值为A.17或-1B.-17或1C.-1D.16.设F1,F2是椭圆+=1(a5)的两个焦点,且|F1F2|=8,弦AB 过点F1,则△ABF2的周长为A.10B.20C.2D.47.对于R上可导的任意函数f(x),若满足(x-2)f(x)0,则必有A.f(-3)+f(3)2f(2)B.f(-3)+f(7)2f(2)C.f(-3)+f(3)2f(2)D.f(-3)+f(7)2f(2)二、填空题:本大题共6个小题,每小题5分,共30分.请把答案填在答题卷对应题号后的横线上.8.复数10的值是.9.用反证法证明命题:若x,y0,且x+y2,则,中至少有一个小于2时,假设的内容应为.10.已知等差数列{an}中,有=成立.类似地,在等比数列{bn}中,有成立.11.曲线y=sin x在[0,]上与x轴所围成的平面图形的面积为 .12.已知函数f(x)=x(x-c)2在x=2处有极大值,则c的值为 .13.正整数按下列方法分组:{1},{2,3,4},{5,6,7,8,9},{10,11,12,13,14,15,16},,记第n组中各数之和为An;由自然数的立方构成下列数组:{03,13},{13,23},{23,33},{33,43},,记第n组中后一个数与前一个数的差为Bn,则An+Bn= .三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.(本小题满分11分)已知函数f(x)=ax3+(a-1)x2+27(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,5]上的单调性,并求出f(x)在区间[-4,5]上的最值.15.(本小题满分12分)已知数列{an}满足Sn+an=2n+1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论.16.(本小题满分12分)如图,已知四棱锥P-ABCD中,底面ABCD为菱形,且AC=AB=BC=2,PA平面ABCD,E,F分别是BC,PC的中点.(1)证明:AE(2)若H为PD上一点,且AHPD,EH与平面PAD所成角的正切值为,求二面角E-AF-C的余弦值.必考试卷Ⅱ一、选择题:本大题共1个小题,每小题5分,满分5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义在R上的函数f(x)的导函数f(x)的图像如图,若两个正数a,b满足f(2a+b)1,且f(4)=1,则的取值范围是A.B.(5,+)C.(-,3)D.二、填空题:本大题共1个小题,每小题5分,共5分.请把答案填在答题卷对应题号后的横线上.2.设函数f(x)=x(x+k)(x+2k)(x-3k),且f(0)=6,则k= .三、解答题:本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤.3.(本小题满分13分)某电视生产企业有A、B两种型号的电视机参加家电下乡活动,若企业投放A、B两种型号电视机的价值分别为a、b万元,则农民购买电视机获得的补贴分别为a、mln(b+1)万元(m0且为常数).已知该企业投放总价值为10万元的A、B两种型号的电视机,且A、B两种型号的投放金额都不低于1万元.(1)请你选择自变量,将这次活动中农民得到的总补贴表示为它的函数,并求其定义域;(2)求当投放B型电视机的金额为多少万元时,农民得到的总补贴最大?4.(本小题满分13分)已知椭圆C:+=1(a0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP 分别与x轴交于点R,S,O为坐标原点,求证:为定值.5.(本小题满分14分)已知函数f(x)=ex,xR.(1)若直线y=kx+1与f(x)的反函数的图象相切,求实数k 的值;(2)设x0,讨论曲线y=与直线y=m(m0)公共点的个数;(3)设函数h满足x2h(x)+2xh(x)=,h(2)=,试比较h(e)与的大小.湖南师大附中2019届高二第一学期期末考试试题数学(理科)参考答案必考试卷Ⅰ又∵函数f(x)在[-4,5]上连续.f(x)在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数.(9分)f(x)的最大值是54,f(x)的最小值是-54.(11分)15.解:(1)a1=,a2=,a3=,.猜测an=2-(5分)(2)①由(1)已得当n=1时,命题成立;(7分)②假设n=k时,命题成立,即ak=2-,(8分)当n=k+1时,a1+a2++ak+ak+1+ak+1=2(k+1)+1,且a1+a2++ak=2k+1-ak2k+1-ak+2ak+1=2(k+1)+1=2k+3,2ak+1=2+2-,ak+1=2-,即当n=k+1时,命题成立.(11分)根据①②得nN+时,an=2-都成立.(12分)16.(1)证明:由AC=AB=BC,可得△ABC为正三角形.因为E为BC的中点,所以AEBC.又BC∥AD,因此AEAD.因为PA平面ABCD,AE平面ABCD,所以PAAE.而PA平面PAD,AD平面PAD且PAAD=A,所以AE平面PAD.又PD平面PAD,所以AEPD.(5分)(2)解:因为AHPD,由(1)知AE平面PAD,则EHA为EH与平面PAD所成的角.在Rt△EAH中,AE=,此时tanEHA===,在Rt△AOE中,EO=AEsin 30=,AO=AEcos 30=,又F是PC的中点,在Rt△ASO中,SO=AOsin 45=,又SE===,在Rt△ESO中,cosESO===,即所求二面角的余弦值为.(12分)解法二:由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,所以A(0,0,0),B(,-1,0),C(,1,0),D(0,2,0),P(0,0,2),E(,0,0),F,所以=(,0,0),所以cos〈m,〉===.因为二面角E-AF-C为锐角,所以所求二面角的余弦值为.(12分)必考试卷Ⅱ一、选择题1.D 【解析】由图像可知f(x)在(-,0)递减,在(0,+)递增,所以f(2a+b)1即2a+b4,原题等价于,求的取值范围.画出不等式组表示的可行区域,利用直线斜率的意义可得.二、填空题2.-1 【解析】思路分析:按导数乘积运算法则先求导,然后由已知条件构造关于k的方程求解.f(x)=(x+k)(x+2k)(x-3k)+x(x+2k)(x-3k)+x(x+k)(x-3k)+x (x+k)(x+2k)故f(0)=-6k3,又f(0)=6,故k=-1.三、解答题3.解:(1)设投放B型电视机的金额为x万元,则投放A型电视机的金额为(10-x)万元,农民得到的总补贴f(x)=(10-x)+mln(x+1)=mln(x+1)-+1,(19).(5分)(没有指明x范围的扣1分)(2)f(x)=-==,令y=0,得x=10m-1(8分)1 若10m-11即02 若110m-19即3 若10m-19即m1,则f(x)在[1,9]是增函数,当x=9时,f(x)有最大值.因此,当0当当m1时,投放B型电视机9万元,农民得到的总补贴最大.(13分)4.解:(1)依题意,得a=2,e==,c=,b==1;故椭圆C的方程为+y2=1.(3分)(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,-y1),不妨设y10.由于点M在椭圆C上,所以y=1-.(*)(4分)由已知T(-2,0),则=(x1+2,y1),=(x1+2,-y1),=(x1+2,y1)(x1+2,-y1)=(x1+2)2-y=(x1+2)2-=x+4x1+3方法二:点M与点N关于x轴对称,故设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,由已知T(-2,0),则=(2cos +2,sin )(2cos +2,-sin )=(2cos+2)2-sin2=5cos2+8cos +3=52-.(6分)故当cos =-时,取得最小值为-,此时M,又点M在圆T上,代入圆的方程得到r2=.故圆T的方程为:(x+2)2+y2=.(8分)(3)方法一:设P(x0,y0),则直线MP的方程为:y-y0=(x-x0),令y=0,得xR=,同理:xS=,(10分)故xRxS=(**)(11分)又点M与点P在椭圆上,故x=4(1-y),x=4(1-y),(12分) 代入(**)式,得:xRxS===4.所以===4为定值.(13分)方法二:设M(2cos ,sin ),N(2cos ,-sin ),不妨设sin 0,P(2cos ,sin ),其中sin sin .则直线MP的方程为:y-sin =(x-2cos ),令y=0,得xR=,同理:xS=,(12分)故xRxS===4.所以===4为定值.(13分)5.解:(1)f的反函数g(x)=ln x.设直线y=kx+1与g(x)=ln x 相切于点P(x0,y0),则x0=e2,k=e-2.所以k=e-2.(3分) (2)当x0,m0时,曲线y=f(x)与曲线y=mx2(m0)的公共点个数即方程f(x)=mx2根的个数.由f(x)=mx2m=,令v(x)=v(x)=,则v(x)在(0,2)上单调递减,这时v(x)(v(2),+v(x)在(2,+)上单调递增,这时v(x)(v(2),+).v(2)=.v(2)是y=v(x)的极小值,也是最小值.(5分)所以对曲线y=f(x)与曲线y=mx2(m0)公共点的个数,讨论如下:当m时,有0个公共点;当m=时,有1个公共点;当m时有2个公共点;(8分)(3)令F(x)=x2h(x),则F(x)=x2h(x)+2xh=所以h=,故h===令G(x)=ex-2F(x),则G(x)=ex-2F(x)=ex-2=显然,当0当x2时,G(x)0,G(x)单调递增;所以,在(0,+)范围内,G(x)在x=2处取得最小值G(2)=0. 即x0时,ex-2F(x)0.故在(0,+)内,h(x)0,所以h(x)在(0,+)单调递增,又因为h(2)==,h(2)所以h(e).(14分)2019年高二数学理科上学期期末试题就为大家整理到这儿了,同学们要好好复习。

高二数学上册期末试题及答案

高二数学上册期末试题及答案

高二数学上册期末试题及答案 一、选择题(本大题共10小题,每小题5分,共50分) 1.下列命题正确的是 ( ) A.若,abcd,则acbd B.若ab,则22acbc C.若acbc,则ab D.若ab,则ab 2.如果直线220axy与直线320xy平行,那么系数a的值是 ( B ) A.-3 B.-6 C.32 D.23

3.与双曲线2214yx有共同的渐近线,且过点(2,2)的双曲线方程为 ( ) A.221312yx B.18222xy C.18222yx D.221312xy 4.下说法正确的有 ①对任意实数a、b,都有|a+b|+|a-b|2a; ②函数y=x·21x(0

④ 若AB≠0,则2||lg||lg2||||lgBABA. A. ①②③④ B.②③④ C.②④ D.①④ ( ) 5.直线l过点P(0,2),且被圆x2+y2=4截得弦长为2,则l的斜率为 ( B )

A.23 B.33 C.2 D.3

6.若椭圆12222byax(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点 分成5∶3的两段,则此椭圆的离心率为 ( ) A.1617 B.41717 C.45 D.255

7.已知不等式02cbxax的解集为(—∞,—1)∪(3,+∞),则对于函数 cbxaxxf2)(,下列不等式成立的是 ( )

A.)1()0()4(fff B.)0()1()4(fff C.)4()1()0(fff D.)1()4()0(fff 8.已知直线240xy,则抛物线2yx上到直线距离最小的点的坐标为 ( ) A.(1,1) B.(1,1) C.(1,1) D.(1,1)

9.设z=xy, 式中变量x和y满足条件3020xyxy, 则z的最小值为 ( ) A.1 B.1 C.3 D.3 10.已知椭圆E的离心率为e,两焦点为F1,F2. 抛物线C以F1为顶点,F2为焦点.P为两曲线的一 个交点.若ePFPF21,则e的值为 ( ) A.33 B.23 C.22 D.36 二、填空题(本大题共4小题,每小题4分,共16分) 11.设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 12.已知两变量x,y之间的关系为xyxylglg)lg(,则以x为自变量的函数y的最小值为________. 13.直线l经过直线0402yxyx和的交点,且与直线012yx的夹角为45°,则直线l方程的一般式为 06-y3x083或yx . 14.已知下列四个命题: ①在直角坐标系中,如果点P在曲线上,则P点坐标一定满足这曲线方程的解; ②平面内与两个定点F1,F2的距离的差的绝对值等于常数的点的轨迹叫做双曲线; ③角α一定是直线2tanxy的倾斜角; ④直线0543yx关于x轴对称的直线方程为0543yx. 其中正确命题的序号是 (注:把你认为正确命题的序号都填上) 三、解答题 15.解不等式0||122xxxx. 18.解关于x的不等式).(02Raaxax 16.已知圆229xy与直线l交于A、B两点,若线段AB的中点(2,1)M (1)求直线l的方程; (2)求弦AB的长.(12分)

高二数学上学期期末考试试卷 理普通班,含解析 试题(共15页)

高二数学上学期期末考试试卷 理普通班,含解析 试题(共15页)

黄陵中学2021-2021学年(xuénián)高二〔普通班〕上学期期末考试数学〔理〕试题一、选择题(本大题一一共12小题,每一小题5分,一共60分)1.设命题:,那么为〔〕A. B.C. D.【答案】C【解析】因为特称命题的否命题全称命题,因为命题,所以为:,应选C.【方法点睛】此题主要考察全称命题的否认,属于简单题.全称命题与特称命题的否认与命题的否认有一定的区别,否认全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否认结论,而一般命题的否认只需直接否认结论即可.2.=(-1,3),=(1,k),假设⊥,那么实数k的值是( )A. k=3B. k=-3C. k=D. k=-【答案】C【解析】【分析】根据⊥得,进展数量积的坐标运算即可求k值.【详解】因为=(-1,3),=(1,k),且⊥,,解得k=,应选(yīnɡ xuǎn):C.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:〔1〕两向量平行,利用解答;〔2〕两向量垂直,利用解答.是向量,命题“假设,那么〞的逆命题是A. 假设那么B. 假设那么C. 假设那么D. 假设那么【答案】D【解析】:交换一个命题的题设与结论,所得到的命题与原命题是〔互逆〕命题。

应选D4.命题“假设a>0,那么a2>0”的否认是( )A. 假设a>0,那么a2≤0B. 假设a2>0,那么a>0C. 假设a≤0,那么a2>0D. 假设a≤0,那么a2≤0【答案】B【解析】【分析】根据逆命题的定义,交换原命题的条件和结论即可得其逆命题,即可得到答案.【详解】根据逆命题的定义,交换原命题的条件和结论即可得其逆命题,即命题“假设,那么〞的逆命题为“假设,那么〞,应选B.【点睛】此题主要考察了四种命题的改写,其中熟记四种命题的定义和命题的改写的规那么是解答的关键,着重考察了分析问题和解答问题的才能,属于根底题.5. “a>0”是“|a|>0”的〔〕A. 充分(chōngfèn)不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:此题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或者a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件应选A考点:必要条件.【此处有视频,请去附件查看】6.命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.那么下面结论正确的选项是( )A. 命题“p∧q〞是真命题B. 命题“p∧q〞是假命题C. 命题“p∨q〞是真命题D. 命题“p∧q〞是假命题【答案】D【解析】取x0=,有tan=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.7.假设命题“〞为假,且“〞为假,那么〔〕A. 或者为假B. 假C. 真D. 不能判断的真假【答案】B【解析(jiě xī)】“〞为假,那么为真,而〔且〕为假,得为假8.假设向量且那么( )A. B.C. D.【答案】C【解析】【分析】此题首先可根据以及列出等式,然后通过计算得出结果。

江苏省高二上学期期末考试数学试卷(含解析)

江苏省高二上学期期末考试数学试卷(含解析)

南通市海安县如东县2022-2023学年度第一学期高二数学期末试卷解析一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合,,则( ) A ={x |‒2<x ≤1}B ={x |‒1<x ≤2}A ∩B =A. B. C. D. (‒1,1](‒2,2](‒2,1](‒1,2]【答案】A 【解析】【分析】本题考查交集及其运算,是基础题. 直接由交集运算得答案. 【解答】解:集合,, A ={x |‒2<x ≤1}B ={x |‒1<x ≤2}所以.A ∩B =(‒1,1]2. 已知复数,则( ) z =1+i1‒i z 3=A. B. C. D.1‒1i ‒i 【答案】D【解析】 【分析】本题考查了复数代数形式的乘除运算,是基础题.直接利用复数代数形式的乘除运算化简,然后利用即可求出结果. i 2=‒1【解答】解:, ∵z =1+i 1‒i =(1+i )2(1‒i)(1+i)=i , ∴z 3=i 3=‒i 故选:.D3. 已知点,,若直线与直线垂直,则( )A (1,0)B (3,1)AB x ‒my +1=0m =A. B. C. D. ‒2‒12122【答案】B【解析】 【分析】本题考查了两直线垂直与斜率的关系,考查了过两点的斜率公式,属于基础题. 求出直线的斜率,根据两直线垂直斜率乘积为即可求的值. AB ‒1m 【解答】解:直线的斜率为, AB 1‒03‒1=12因为直线与直线垂直, AB x ‒my +1=0所以直线的斜率为.x ‒my +1=0‒2所以,解得.1m =‒2m =‒124. 数学家斐波那契在研究兔子繁殖问题时,发现有这样一个数列,,,,,{a n }: 112358,其中从第项起,每一项都等于它前面两项之和,即,,⋯3a 1=a 2=1a n +2=a n +1+a n 这样的数列称为“斐波那契数列”若,则( ) .a m =2(a 3+a 6+a 9+⋯+a 126)+1m =A. B. C. D. 126127128129【答案】C【解析】 【分析】本题主要考查数列递推关系在解题中的应用,考查阅读能力和分析解决问题的能力,属于中档题.根据数列的特点,每个数等于它前面两个数的和,移项得: ,使用累加法a n =a n +2‒a n +1求得,然后将的系数倍展开即可求解. S n =a n +2‒12(a 3+a 6+a 9+⋯+a 126)+12【解答】解:由从第三项起,每个数等于它前面两个数的和,,a 1=a 2=1由,得 ,所以,,a n +2=a n +1+a n (n ∈N ∗)a n =a n +2‒a n +1a 1=a 3‒a 2a 2=a 4‒a 3a 3,, ,将这个式子左右两边分别相加可得:=a 5‒a 4…a n =a n +2‒a n +1n ,所以 S n =a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+⋯+a n =a n +2‒1S n +1=a n +2所以2(a 3+a 6+a 9+⋯+a 126)+1=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+⋯a 124+, a 125+a 126+1=S 126+1=a 128故选C .5. 已知双曲线的焦点在轴上,渐近线方程为,则的离心率为( )C y y =±2x C A.B. C. D.52235【答案】A【解析】 【分析】本题考查了双曲线的性质,属于基础题.由焦点在轴上,渐近线方程为可得,从而求得离心率的值. y y =±2x ab =2【解答】解:由题意可得,即,ab =2b =12a 所以. c a =a 2+b 2a 2=a2+a 24a 2=54=526. 已知函数的导函数为,且,则( ) f (x )f '(x )f (x )=2xf '(π6)+cos x f (π6)=A.B.C.D.‒12123‒π63+π6【答案】D【解析】 【分析】本题考查了导数的运算,属于基础题. 求导,代入,可得,从而可求 x =π6f '(π6)=12f (π6).【解答】解:, ∵f (x )=2xf '(π6)+cosx ,∴f '(x )=2f '(π6)‒sinx 令,则,x =π6f '(π6)=2f '(π6)‒sin π6即, f '(π6)=12则,.f (x )=x +cosx 7. 已知等差数列中,记,,则数列的前项和为( ){a n }a 4+a 5=2.b n =a n +1a n‒1n ∈N ∗{b n }8A. B. C. D. 04816【答案】C【解析】 【分析】本题考查了等差数列的性质与分组求和法,属于中档题. 分离常数可得,设,当时,可得,b n =1+2a n ‒1c n =2a n‒1c n +c 9‒n =0故可得数列的前项和. {b n }8【解答】解:,b n =a n +1a n ‒1=a n ‒1+2a n ‒1=1+2a n ‒1设,c n =2a n‒1当时,c n +c 9‒n =2a n ‒1+2a 9‒n ‒1=2·a n +a 9‒n ‒2(a n ‒1)(a 9‒n ‒1),=2·a 4+a 5‒2(a n ‒1)(a 9‒n ‒1)=0故 b 1+b 2+b 3+⋯+b 8=1+2a 1‒1+1+2a 2‒1+⋯+1+2a 8‒1=8+c 1+c 2+⋯+c 8.=8+(c 1+c 8)+(c 2+c 7)+(c 3+c 6)+(c 4+c 5)=88. 已知函数及其导函数的定义域均为,且是奇函数,记,f (x )f '(x )R f (x +1)g (x )=f '(x )若是奇函数,则( ) g (x )g (10)=A. B. C. D.20‒1‒2【答案】B【解析】 【分析】本题主要考查了函数的奇偶性及周期性在函数求值中的应用,属于中档题.根据 是奇函数,可得 ,两边求导推得,f (x +1)f (‒x +1)=‒f (x +1)g (x )=g (‒x +2),再结合题意可得是函数的一个周期,且,进而可求解. g (2)=g (0)4g (x )g (0)=0【解答】解:因为 是奇函数,所以 , f (x +1)f (‒x +1)=‒f (x +1)两边求导得 , ‒f '(‒x +1)=‒f '(x +1)即, f '(‒x +1)=f '(x +1)又,g (x )=f '(x )所以 ,即, g (‒x +1)=g (x +1)g (x )=g (‒x +2)令 可得 ,x =2g (2)=g (0)因为是定义域为的奇函数,所以, g (x )R g (0)=0即.g (2)=0因为是奇函数,g (x )所以 ,又, g (‒x )=‒g (x )g (x )=g (‒x +2)所以, g (‒x +2)=‒g (‒x )则,g (x +2)=‒g (x ), g (x +4)=‒g (x +2)=g (x )所以是函数的一个周期, 4g (x )所以. g (10)=g (2)=0故选B .二、多选题(本大题共4小题,共20.0分。

最新高二数学上学期期末考试试卷 含答案

最新高二数学上学期期末考试试卷 含答案
3、对于两个命题:
① ,② ,
下列判断正确的是()。
A.①假②真B.①真②假C.①②都假D.①②都真
4、与椭圆 共焦点且过点 的双曲线方程是()
A. B. C. D.
5、已知 是椭圆的两个焦点,过 且与椭圆长轴垂直的弦交椭圆与 , 两点,
则 是正三角形,则椭圆的离心率是()
A B C D
6、过抛物线 的焦点作倾斜角为 直线 ,直线 与抛物线相交与 , 两点,
则弦 的长是()
A 8 B 16 C 32 D 64
7、在同一坐标系中,方程 的曲线大致是()
A.B.C.D.
8、已知椭圆 ( >0)的两个焦点F1,F2,点 在椭圆上,则 的面积最大值一定是()
A B C D
9、已知函数 ,下列判断正确的是()
A.在定义域上为增函数;B.在定义域上为减函数;
C.在定义域上有最小值,没有最大值;D.在定义域上有最大值,没有最小值;
二、填空题(本大题共4小题,每小题5分,共20分.)
11、 , ;12、 ;13、 ;14、
三、解答题:(本大题共6小题,共80分.)
15、解:(Ⅰ)在△ABC中, ………2分
∵ …………4分
又 ∴ …………6分
(Ⅱ)∵ 由正弦定理,得 ………8分
即: 故△ABC是以角C为直角的直角三角形,………10分
一.选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。请将答案填在答题卷表格上。
1、若 、 是任意实数,且 ,则()
A. B. C. D.
2、设 均为直线,其中 在平面 的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

高二数学上学期期末考试试题 理含解析 试题(共15页)

 高二数学上学期期末考试试题 理含解析 试题(共15页)

HY黄陵中学(zhōngxué)高新部2021-2021学年高二数学上学期期末考试试题理〔含解析〕一、选择题〔每一小题5分,12小题一共60分〕1.设,,,那么以下命题为真命题的是〔〕A. B. C. D.【答案】C【解析】对A,时不成立;对B,时不成立;对C,正确;对D,时不正确,应选C.2.假设是真命题,是假命题,那么A. 是真命题B. 是假命题C. 是真命题D. 是真命题【答案】D【解析】试题分析:因为p是真命题,q是假命题,所以是假命题,选项A错误,是假命题,选项C错误,是真命题,选是真命题,选项B错误,p项D正确,应选D.考点:真值表的应用.【此处有视频,请去附件查看】3.双曲线的离心率(xīn lǜ),且其右焦点,那么双曲线的方程为〔 〕 A. B. C.D.【答案】B 【解析】由双曲线2222:1x y C a b -=的离心率54e =,且其右焦点为2(5,0)F ,可得,所以,所求双曲线的方程为221169x y -=,应选B .4.曲线在处的切线方程是〔 〕A. B. C.D.【答案】D 【解析】 【分析】先求出导数,再把代入求出切线的斜率,代入点斜式方程并化为一般式.【详解】解:由题意知,, 在处的切线的斜率,那么在(1,1)处的切线方程是:,即210x y --=,应选(yīnɡ xuǎn):.【点睛】此题考察了导数的几何意义,即在某点处的切线斜率是该点处的导数值,以及直线方程的点斜式和一般式的应用,属于根底题.5.假设,那么等于〔〕A. 0B. 1C. 3D. 【答案】B【解析】【分析】根据题意,由导数的定义可得答案.【详解】解:根据题意,假设,那么,即;应选:.【点睛】此题考察导数的定义,掌握导数与极限的关系即可.6.以下各式正确的选项是()A. (a为常数)B.C. D.【答案】C【解析】由根本的求导公式可得:(a 为常数(chángshù)); ; ;.此题选择C 选项. 7.函数,其导函数的图象如以下图所示,那么()y f x =〔 〕A. 在上为减函数B. 在处取极小值C. 在上为减函数D. 在处取极大值【答案】C 【解析】 分析】根据导函数图象可断定导函数的符号,从而确定函数的单调性,得到极值点. 【详解】解:根据导函数图象可知当时,,在时,,∴函数在和()4,+∞上单调递减,在(),0-∞和上单调递增,、为函数()y f x =的极大值点,2x =为函数()y f x =的极小值点,那么正确的为C . 应选:C .【点睛】此题主要考察了导函数图象与函数的性质的关系,以及函数的单调性、极值等有关知识,属于中档题.8.假设(jiǎshè)函数在处获得极值,那么〔〕A. 2B. 3C. 4D. 5 【答案】B【解析】【分析】由在2x=-时获得极值,求出得,解出a值.【详解】解:,;又()f x在2x=-时获得极值,;.应选:B.【点睛】此题考察了应用导数求函数极值的问题,是根底题.9.〔〕A. B. C. D. 【答案】C【解析】,应选C.10.由“,,〞得出:“假设且,那么〞这个推导过程使用的方法是〔〕A. 数学归纳法B. 演绎推理C. 类比推理D. 归纳推理【答案】D【解析】根据局部成立的事实(shìshí),推断出一个整体性的结论,这种推理是归纳推理中的不完全归纳法,所以选D . 11.函数()y f x =在点取极值是的〔 〕 A. 充分条件 B. 必要条件C. 充要条件D. 必要非充分条件 【答案】A 【解析】 【分析】函数可导,取极值时导数为0,但导数为0并不一定会取极值.【详解】解:假设函数()y f x =在点0x 处可导,且函数()y f x =在点0x 取极值, 那么,假设0()0f x '=,那么连续函数()y f x =在点0x 处不一定取极值,例如:.应选:.【点睛】此题考察了函数的极值与导数之间的关系,属于根底题. 12.函数的定义域为,其导函数在(),a b 的图象如下图,那么函数()f x 在(),a b 内的极小值点一共有( )A. 个B. 2个C. 个D. 个【答案(dá àn)】C 【解析】 【分析】根据极小值点存在的条件,可以判断出函数()f x 的极小值的个数. 【详解】根据极小值点存在的条件,①②在的左侧()0f x '<,在0x x =的右侧()0f x '>,可以判断出函数()f x 的极小值点一共有1个,应选C .【点睛】此题主要考察函数图象的应用以及利用导数判断极值点. 二、填空题〔4小题一共20分)时,第一步验证时,左边应取的项是 . 【答案】【解析】 在等式中,当1n =时,,而等式左边起始为1的连续的正整数的和,故1n =时,等式左边的项为1234+++,故答案为1234+++. 14.函数一共有________个极值.【答案】0 【解析】 【分析】对函数求导,结合导数(dǎo shù)的符号判断函数的单调性,进而可求函数的极值的个数.【详解】解:由题知()f x的导函数,,恒成立.∴函数32=-+在上是单调递增函数,y x x x22∴函数没有极值.故答案为:.【点睛】此题考察利用导数研究函数的极值,属于根底题.15.表示虚数单位,那么______.【答案】1【解析】【分析】利用复数代数形式的乘除运算化简,再利用复数的乘法计算可得.【详解】解:且,,,,……故答案为:1【点睛】此题考察复数的代数形式的乘除运算以及复数的乘方,属于根底题.16. 黑白两种颜色的正六边形地面砖按如图的规律拼成假设干个图案:那么(nà me)第个图案中有白色地面砖块.【答案】4n+2【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个公差是4,首项为6的等差数列.因此第n个图案中有白色地面砖有6+〔n-1〕×4=6+4n-4=4n+2.故答案为4n+2.三、解答题〔6小题一共80分)17.a,b是正实数,求证:.【答案】证明见解析【解析】【分析】因为,,要证明这个不等式,可将不等式两边同时平方,即可得证.【详解】证明:要证明87510+>+,只需证明,即,只需证明,即,这显然(xiǎnrán)成立.这样,就证明了87510+>+.【点睛】此题考察分析法证明不等式,属于根底题.18.点为椭圆上一点,以点P以及焦点,为顶点的三角形的面积为1,那么点P的坐标是?【答案】,,,.【解析】【分析】根据,点P是椭圆22154x y+=上的一点,以点P以及焦点1F,2F为顶点的三角形的面积等于1,根据该三角形的底边,我们易求出P点的横坐标,进而求出P点的纵坐标,即可得到答案.【详解】1F、2F是椭圆22154x y+=的左、右焦点,,那么,,设椭圆上一点,由三角的面积公式可知:,即,将1y=代入椭圆方程得:,解得:,∴点P的坐标为15⎫⎪⎪⎝⎭,15⎛⎫⎪⎪⎝⎭,151⎛⎫-⎪⎪⎝⎭,151⎫-⎪⎪⎝⎭.【点睛(diǎn jīnɡ)】此题考察的知识点椭圆的HY 方程,椭圆的简单性质,其中判断出以点P 以及焦点1F ,2F 为顶点的三角形的底边12||2F F ,是解答此题的关键.与直线所围图形的面积.【答案】. 【解析】【详解】试题分析:利用定积分计算曲线所围成面积,先画出图象,再找到图象交点的横坐标,然后写出定积分式子,注意被积函数为上方的图象对应的函数减图象在下方的函数. 试题解析:由解得.从而所求图形的面积.考点:定积分. 20.复数,.〔1〕求及并比拟大小; 〔2〕设,满足条件的点的轨迹是什么图形?【答案(dá àn)】(1) 1z =2, 2z =1, (2) 以为圆心,以1和2为半径的两圆之间的圆环〔包含圆周〕 【解析】 【分析】〔1〕利用复数的模的计算公式求出1z 、2z 即可解答. 〔2〕根据的几何意义及〔1〕中所求的模1z 、2z 可知的轨迹.【详解】解:〔1〕,,∴12z z >.〔2〕由21z z z ≤≤及〔1〕知.因为z 的几何意义就是复数z 对应的点到原点的间隔 ,所以表示所表示的圆外部所有点组成的集合,表示所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环〔包含圆周〕,如下图.【点睛】此题考察复数的模及其几何意义,属于根底题. 21.曲线 y = x 3 + x -2 在点 P 0 处的切线平行于直线 4x -y -1=0,且点 P 0 在第三象限, ⑴求P 0的坐标;⑵假设直线, 且 l 也过切点P 0 ,求直线l 的方程.【答案(dá àn)】〔1〕〔2〕【解析】【详解】本试题主要是考察了导数的几何意义,两条直线的位置关系,平行和垂直的运用.以及直线方程的求解的综合运用.首先根据条件,利用导数定义,得到点P 0的坐标,然后利用1l l ⊥,设出方程为x+4y+c=0,根据直线过点P 0得到结论. 解:〔1〕由y=x 3+x-2,得y′=3x 2+1, 由得3x 2+1=4,解之得x=±1. 当x=1时,y=0; 当x=-1时,y=-4. 又∵点P 0在第三象限, ∴切点P 0的坐标为〔-1,-4〕; 〔2〕∵直线 l⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-1/ 4 ,∵l 过切点P 0,点P 0的坐标为〔-1,-4〕 ∴直线l 的方程为y+4=〔x+1〕即x+4y+17=0.22.函数,当1x =时,有极大值3.〔1〕求该函数的解析式; 〔2〕求函数的单调区间. 【答案】(1)(2) 单调递增区间为,单调递减区间为(),0-∞,.【解析】 【分析(fēnxī)】 〔1〕求出,由1x =时,函数有极大值3,所以代入和中得到两个关于a 、b 的方程,求出a 、b 即可; 〔2〕令解出得到函数的单调增区间,令得到函数的单调减区间;【详解】解:〔1〕∵32y ax bx =+, ∴.由题意得:当1x =时,,.即,解得,,∴函数的解析式为:3269y x x =-+. 综上所述,结论为:3269y x x =-+. 〔2〕由题〔1〕知3269y x x =-+,,令得, 令得或者,∴函数的单调递增区间为()0,1, 函数的单调递减区间为(),0-∞,()1,+∞.【点睛】此题考察利用导数研究函数的单调性、函数的极值,属于根底题,准确求导,纯熟运算是解决该类问题的根底. 23.曲线〔1〕求曲线在点处的切线方程;〔2〕求曲线过点(2,4)P 的切线方程【答案】〔1〕;〔2〕或者440x y --=.【解析(jiě xī)】 【分析】〔1〕根据曲线的解析式求出导函数,把P 的横坐标代入导函数中即可求出切线的斜率,根据P 的坐标和求出的斜率写出切线的方程即可;〔2〕设出曲线过点P 切线方程的切点坐标,把切点的横坐标代入到〔1〕求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P 的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可. 【详解】解:〔1〕∵,∴在点处的切线的斜率,∴曲线在点()2,4P 处的切线方程为,即440x y --=.〔2〕设曲线与过点()2,4P 的切线相切于点,那么切线的斜率,∴切线方程为,即. ∵点()2,4P 在该切线上,∴,即,∴,∴,∴,解得或者.故所求切线方程为440x y --=或者20x y -+=.【点睛】此题考察学生会利用导数研究曲线上某点的切线方程,是一道综合题,学生在解决此类问题一定要分清“在某点处的切线〞,还是“过某点的切线〞;同时解决“过某点的切线〞问题,一般是设出切点坐标解决,属于中档题.内容总结(1)HY黄陵中学高新部2021-2021学年高二数学上学期期末考试试题理〔含解析〕一、选择题〔每一小题5分,12小题一共60分〕1.设,,,那么以下命题为真命题的是〔〕A. B. C. D.【答案】C【解析】对A,时不成立(2)又在时获得极值,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.12.68 万元
B.13.88 万元
C.12.78 万元
D.14.28 万元
8.执行如图所示的程序框图,如果输入的 a 1,则输出的 S
A.2
B.3
C.4
D.5
9.赵爽是我国古代数学家、天文学家大约在公元 222 年赵爽为《周碑算经》一书作序时,
介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由 4 个全等的直角
人,则星期六安排一名男生、星期日安排一名女生的概率为( )
A. 1 3
B. 5 12
C. 1 2
D. 7 12
11.从 1,2,3,…,9 中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个
奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一
个偶数.在上述事件中,是对立事件的是
的平均数和方差分别为( )
A. x , 82
B. 5x 2 , 82
C. 5x 2 , 2582 D. x , 2582
4.某高校大一新生中,来自东部地区的学生有 2400 人、中部地区学生有 1600 人、西部地
区学生有 1000 人.从中选取 100 人作样本调研饮食习惯,为保证调研结果相对准确,下列判
一、选择题
1.A 解析:A 【解析】 【分析】
根据二项式 (2 x)5 展开式的通项公式,求出 x3 的系数,由已知先求 a 的值,模拟程序的
运行,可得判断框内的条件. 【详解】
3
解:由于 a (2x 1)dx x2 x |30 6 ,
0
二项式 (2 x)5 展开式的通项公式是 Tr1 C5r 25r xr , 令r 3, T31 C53 22 x3 ; x3 的系数是 C53 22 13 40 . 程序运行的结果 S 为 360, 模拟程序的运行,可得 k 6 , S 1 不满足条件,执行循环体, S 6 , k 5 不满足条件,执行循环体, S 30 , k 4 不满足条件,执行循环体, S 120 , k 3 不满足条件,执行循环体, S 360 , k 2 由题意,此时,应该满足条件,退出循环,输出 S 的值为 360.
(Ⅰ)求 a 的值; (Ⅱ)从被抽取安装 APP 的个数不低于 50 的居民中,随机抽取 2 人进一步调研,求这 2 人 安装 APP 的个数都低于 60 的概率; (Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考, 试估计 A 市使用智能手机的居民手机内安装 APP 的平均个数在第几组(只需写出结论). 25.有 20 名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小
数点后两位的近似值 3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在
半径为 1 的圆内作正 n 边形求其面积,如图是其设计的一个程序框图,则框图中应填入、
输出 n 的值分别为( )
(参考数据: sin
200
22.2018 年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范
围内的 1000 名消费者在中秋节期间的月饼购买量 ( 单位: g) 进行了问卷调查,得到如下
频率分布直方图:
1 求频率分布直方图中 a 的值; 2 以频率作为概率,试求消费者月饼购买量在 600g~1400g 的概率; 3 已知该超市所在销售范围内有 20 万人,并且该超市每年的销售份额约占该市场总量的
5%,请根据这 1000 名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满 足市场需求 ( 频率分布直方图中同一组的数据用该组区间的中点值作代表 ) ?
23.某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根 据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记 5 分,“不合格”记 0 分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图 如图所示:
三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图
所示的图形,它是由个 3 全等的等边三角形与中间的一个小等边三角形组成的一个大等边
三角形,设 DF2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率
是( )
A.
B.
C.
D.
10.从 2 名男生和 2 名女生中任意选择两人在星期六、星期日参加某公益活动,每天一
200 0.3420, sin(
)
0.1161 )
3
A. S 1 n sin 1800 , 24
2
n
B. S 1 n sin 1800 ,18
2
n
C. S 1 n sin 3600 ,54
2
n
D. S 1 n sin 3600 ,18
2
n
3.如果数据 x1, x2 , , xn 的平均数为 x ,方差为 82 ,则 5x1 2 , 5x2 2 ,…, 5xn 2
校学生中每天用于阅读的时间在
(单位:分钟)内的学生人数为____.
16.执行如图所示的程序框图,若输入 n 的值为 8,则输出的 s 的值为_____.
17.如图,在平放的边长为 1 的正方形中随机撒 1000 粒豆子,有 380 粒落到红心阴影部分
上,据此估计红心阴影部分的面积为____.
18.执行下面的程序框图,如果输入的 t 0.02 ,则输出的 n _______________.
从左到右的顺序分别编号为第一组,第二组, ,第五组,如图是根据试验数据制成的频 率分布直方图,已知第一组与第二组共有 20 人,第三组没有疗效的有 6 人,则第三组中有 疗效的人数为__________.
三、解答题
21.随着经济的发展,轿车已成为人们上班代步的一种重要工具.现将某人三年以来每周开 车从家到公司的时间之和统计如图所示.
为40,50 ,50,60 ,60,70 ,70,80 ,80,90 ,90,100.
(1)求 a 的值; (2)估计该单位其他部门的员工对后勤部门的评分的中位数;
(3)以评分在 40,60 的受访者中,随机抽取 2 人,求此 2 人中至少有 1 人对后勤部门评 分在40正确的有( )
①用分层抽样的方法分别抽取东部地区学生 48 人、中部地区学生 32 人、西部地区学生 20
人;
②用简单随机抽样的方法从新生中选出 100 人;
③西部地区学生小刘被选中的概率为 1 ; 50
④中部地区学生小张被选中的概率为 1 5000
A.①④
B.①③
C.②④
D.②③
5.某市委积极响应十九大报告提出的“到 2020 年全面建成小康社会”的目标,鼓励各县
(Ⅲ)某评估机构以指标
M

M
E D
,其中
D 表示
的方差)来评估该校安全
教育活动的成效.若 M 0.7 ,则认定教育活动是有效的;否则认定教育活动无效,应调
整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案? 24.随着智能手机的发展,各种“APP”(英文单词 Application 的缩写,一般指手机软 件)应运而生.某机构欲对 A 市居民手机内安装的 APP 的个数和用途进行调研,在使用智 能手机的居民中随机抽取 100 人,获得了他们手机内安装 APP 的个数,整理得到如图所示 频率分布直方图.
次停止的概率为_____(用数字作答).
14.如图,在半径为 1 的圆上随机地取两点 B, E ,连成一条弦 BE ,则弦长超过圆内接正
BCD 边长的概率是__________.
15.为调查某校学生每天用于课外阅读的时间,现从该校 名学生中随机抽取 名学
生进行问卷调查,所得数据均在区间
上,其频率分布直方图如图所示,则估计该
【必考题】高二数学上期末试卷附答案
一、选择题
3
1.在如图所示的算法框图中,若 a 2x 1 dx ,程序运行的结果 S 为二项式 2 x5
0
的展开式中 x3 的系数的 9 倍,那么判断框中应填入的关于 k 的判断条件是( )
A. K 3
B. K 3
C. K 2
D. K 2
2.公元 263 年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面
积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知 A,B 两个贫困县各有 15 名
村代表,最终 A 县有 5 人表现突出,B 县有 3 人表现突出,现分别从 A,B 两个县的 15 人
中各选 1 人,已知有人表现突出,则 B 县选取的人表现不突出的概率是( )
A. 1 3
B. 4 7
C. 2 3
则判断框中应填入的关于 k 的判断条件是 k 3 ?
故选 A. 【点睛】 本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结 论,是基础题. 2.C
解析:C 【解析】
分析:在半径为1的圆内作出正 n 边形,分成 n 个小的等腰三角形,可得正 n 边形面积是
S 1 n sin 360 ,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的
(1)求此人这三年以来每周开车从家到公司的时间之和在 6.5,7.5 (时)内的频率;
(2)求此人这三年以来每周开车从家到公司的时间之和的平均数(每组取该组的中间值作 代表); (3)以频率估计概率,记此人在接下来的四周内每周开车从家到公司的时间之和在
4.5,6.5 (时)内的周数为 X ,求 X 的分布列以及数学期望.
D.三星销量最小的是第四季度
7.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区 5 户家庭,得到如
下统计数据表:
收入 x 万
相关文档
最新文档