人教版七年级上册数学期中考试试卷[1]
人教版七年级第一学期期中数学试卷及答案

=12.
【点睛】本题考查了有理数的加减混合运算,含有乘方的有理数四则混合运算,熟练掌握运算顺序是解题的关键.
19.(1)0;(2)﹣4ab2,-1.
【分析】(1)直接利用有理数乘方运算法则计算得出答案;
(2)首先去括号,进而合并同类项,再把已知代入求出答案.
【详解】解:(1)(﹣1)2019﹣8÷(﹣2)3-4×(﹣ )3
(2)当a=2cm,b=4cm,c=1.5cm时,两个纸盒共用料多少?
23.已知|x|=3,|y|=7.
(1)若x<y,求x﹣y的值;
(2)若xy>0,求x+y的值;
24.某同学做一道数学题:“两个多项式 、 , ,试求 ”,这位同学把“ ”看成“ ”,结果求出答案是 ,那么 的正确答案是多少?
25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.
【详解】解:将1295330000用科学记数法表示为1.30×109.
故选A.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤‖a‖<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.B
【详解】确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键,单项式- 的系数为-2
∴2(a+b)-3ab=2×3-3×(-1)=9
故答案为:9
【点睛】本题主要考查了整体代入思想,转化所求代数式是解题的关键.
14.-1
【分析】直接利用互为相反数的定义得出a+b=0,进而化简得出答案.
【详解】解:∵实数a,b互为相反数,
∴a+b=0,
人教版七年级上册数学期中考试试卷及答案

人教版七年级上册数学期中考试试题一、单选题1.在有数理12,3-,1-,0中,最小的数是( )A .12B .3-C .1-D .02.下列计算中,正确的是( ) A .331-⨯= B .1313⎛⎫-⨯-= ⎪⎝⎭C .1313-⨯= D .()331-⨯-=3.-5的相反数是( )A .15-B .15C .5D .-54.下列各式中,不是整式的是( )A .1x B .x y - C .6xy - D .4x5.下列各组中的两项是同类项的是( ) A .2a b 和2ab - B .214x y 和5xy - C .a 和3a D .m 和7n6.有理数a ,b 在数轴上的位置如图所示,那么下列式子成立的是( )A .0a b +>B .0ab <C .a b >D .0ab > 7.一个有理数的平方等于36,则这个数是( )A .6B .6或6-C .36D .6- 8.下列各式正确的是( ) A .2->1+ B .30-> C .()0.3--13-> D .53147--> 9.下列说法:①绝对值最小的有理数是0;①无限小数是无理数;①数轴上原点两侧的数互为相反数;①a ,5,2y都是单项式;① 2341x y x -+- 是三次三项式中,正确的个数有( )A .2个B .3个C .4个D .5个10.对于有理数a ,b ,定义a ①b 2a b =-,则[(x y +) ①(x y -)] ①3x 化简后得 A .-+x y B .2x y -+ C .6x y -+ D .4x y -+二、填空题11.小亮家冰箱冷冻室的温度为-5①,调低3①后的温度为______①.12.在地理课本中,我国最长的河流长江约为6300千米,用科学记数法表示为___千米. 13.单项式312xy -的次数是___. 14.已知33x y +=-,则263x y ++=______.15.在一次数学活动课上,第一小组同学尝试用大小相等的小正方形拼大正方形,拼第1个大正方形需要4个小正方形,拼第2个大正方形需要9个小正方形,拼第3个大正方形需要16个小正方形,…,按着这样的方法拼下去,第(1n -)个大正方形比第99个大正方形多_______个小正方形(100n >且n 是正整数).16.若代数式5x -5与2x -9的值互为相反数,则x =________. 17.若式子()333394mxx x nx -+--的值与x 无关,则mn 的值是________.18.如图是用大小相等的小正方形拼成的一组图案:观察并探索:第(100)个图案中有小正方形的个数是________.三、解答题19.计算:25(1)24312--⨯20.计算:()32-÷43⨯(13-)2-(24-)÷621.计算:()()()33242a b b a a b ----+22.把下列各数填在相应的集合里: 32-,1-,5,0,23.2-,2+,500-,45⎛⎫-- ⎪⎝⎭. 正有理数集合:{ …} 负有理数集合:{ …}23.先化简,再求值:()()()3223322353x y x y x yx -++--+,其中3x =-,12y =24.小组课外活动时,第一小组设置了这样一个活动:1号组员在操场上从O 点出发,向正东方向前进了10米,到达A 点;然后继续向正东方向前进了20米到达B 点,又从B 点向正西方向前进50米到达点C .(1)以O 为原点,正东方向为正方向,用1cm 表示10米画数轴,并在数轴上表示出A 、B 、C 三个点;(2)C 点离A 点有 米. (3)1号组员共走了 米.25.现在有一种既隔热又耐老化的新型窗框材料——“断桥铝”,下图是这种材料做成的两种长方形窗框,已知窗框的长都是y 米,宽都是x 米.(1)若一用户需①型的窗框2个,①型的窗框3个,求共需这种材料多少米(接缝忽略不计)? (2)已知y >x ,求一个①型的窗框比一个①型的窗框节约这种材料多少米?26.学习了正负数,第一小组组长调查了本组6名同学的身高,与全班同学平均身高做了对比之后,列出了下面的表格,作为本组同学的一个活动课作业. 请你完成这道题:(1)将表格中的空白部分填上正确的数字;(2)他们6人中最高身高比最矮身高高多少cm ?请列式计算.(3)如果身高达到或超过平均身高时叫达标身高,这6个同学身高的达标率约为 (结果写成%a 的形式,其中a 保留到小数点后一位).27.(1)观察下列单项式:x -,23x ,35x -,47x ,59x -,…,写出第n 个单项式. 请认真阅读下面的解题思路 请注意:①——①小题不.需作答: ①这组单项式中不变的是什么?直接写下来;①这组单项式中系数的符号规律是什么? ①这组单项式中系数的绝对值规律是什么?①这组单项式的次数的规律是什么?探究:n的式子表示,①根据上面的归纳,猜想出第n个单项式是(只用一个..含n是正整数).①第2019个单项式是;第2020个单项式是.拓展:(2)请先观察下面的等式:①22-==⨯;① 22973284752483-==⨯;….按31881-==⨯;① 22-==⨯;① 22531682上面的规律填空:第①个等式是;第①个等式是;第n个等式;(3)请你用(2)的规律计算22-的值.20212019参考答案1.B2.B3.C4.A5.C6.B7.B8.D9.A10.C11.-8【详解】解:根据题意得:-5+(-3)=-8①,故答案为:-8.12.3⨯.6.310【详解】解:6300=36.310⨯. 故答案为36.310⨯. 【点睛】用科学记数法表示一个数的方法是 (1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零). 13.4. 【解析】 【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数,可得答案. 【详解】312xy -的次数是4, 故答案为:4. 【点睛】本题考查了单项式.解题的关键是掌握单项式的次数的定义:单项式中,所以字母的指数和叫做这个单项式的次数. 14.-3 【解析】 【分析】将2x +6y +3变形成2(x +3y)+3,代入即可求值. 【详解】解:①33x y +=-()()2632332333x y x y ++=++=⨯-+=-.故答案是:-3. 【点睛】本题考查了代数式的求值,正确进行代数式的变形是关键.15.()210000n -【解析】 【分析】首先根据图形中小正方形的个数规律得出第n 个图形有(n+1)2个正方形组成,从而得出第(1n -)个大正方形和第99个大正方形的所含小正方形的个数,再相减即可得出答案. 【详解】解:①第一个图形有22=4个正方形组成, 第二个图形有32=9个正方形组成, 第三个图形有42=16个正方形组成,… ①第n 个图形有(n+1)2个正方形组成, ①第(n -1)个图形有n 2个正方形组成, 第99个大正方形有2100个正方形组成,①第(1n -)个大正方形比第99个大正方形多()22210010000n n -=-个小正方形. 故答案为:()210000n -.【点睛】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键. 16.2 【解析】 【分析】由5x -5的值与2x -9的值互为相反数可知:5x -5+2x -9=0,解此方程即可求得答案. 【详解】解:由题意可得:5x -5+2x -9=0, 移项,得7x =14, 系数化为1,得x =2. 故答案为:2 【点睛】本题考查了相反数的性质以及一元一次方程的解法. 17.4【解析】 【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =. 4343mn ∴=⨯=.故答案为:4. 【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握. 18.397 【解析】 【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形. 【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形, 第(2)个图案中有4115⨯+=个小正方形, 第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=. 故答案为:397. 【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形. 19.-18 【解析】 【分析】先运用乘法分配律展开,再计算乘法,最后计算减法即可得出答案. 【详解】解:25(1)24312--⨯252412424312=⨯-⨯-⨯ 162410=--18=-.【点睛】本题考查了乘法的运算律,熟练掌握运算法则是解题的关键. 20.103【解析】 【分析】含乘方的有理数的混合运算,注意先计算乘方,然后计算乘除,最后加减. 【详解】解:()32-÷43⨯(13-)2-(24-)÷6318449=-⨯⨯+243=-+ 103=. 【点睛】本题考查了有理数的混合运算,掌握运算顺序及计算法则正确计算是解题关键.21.38a b -- 【解析】 【分析】先去括号再合并同类项即可得出答案. 【详解】解:原式33284a b b a a b =--+--38a b =--.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键. 22.正有理数集合:{32-,5,2+,4()5--,…};负有理数集合:{1-,23.2-,500-,…} 【解析】 【分析】根据有理数的分类法则以及正负数的定义即可得出结论. 【详解】解:①大于0的有理数称为正有理数, ①正有理数有32-,5,2+,4()5--, ①小于0的有理数称为负有理数, ①负有理数有1-,23.2-,500-, 故答案为:正有理数集合:{32-,5,2+,4()5--,…};负有理数集合:{1-,23.2-,500-,…}. 【点睛】本题主要考查有理数的分类,关键是要牢记有理数的分类方法.23.242x y y -++,152【解析】 【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】 解:原式32233324353xy x y x y x =-++-+-242x y y =-++当3x =-,12y =时 原式211(3)42()22=--+⨯+⨯ 152=. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)见解析;(2)30;(3)80【解析】【分析】(1)根据题意画出图形即可;(2)利用两点之间的距离公式求解即可;(3)求出路程的总和即可求出答案.【详解】解:(1)如图即为所求.(2)C 点离A 点有:10()12⎡⎤⨯--⎣⎦=30(米);故答案为:30;(3)1号组员共走了:10+20+50=80(米);故答案为:80.【点睛】本题考查了数轴与数轴上两点间的距离,有理数的运算,在数轴上正确确定点的坐标是解题的关键.25.(1)1213x y +;(2)y x -【解析】【分析】(1)根据题意列出算式,去掉括号后合并即可;(2)用1个①型的窗框的用料减去1个①型的窗框的用料,列出算式,去掉括号后合并即可.【详解】解:根据图形,1个①型窗框用料(32x y +)米;1个①型窗框用料(23x y +)米;(1)2个①型窗框和3个①型窗框共需这种材料(单位:米)2(32)3(23)x y x y +++6469x y x y =+++1213x y =+;(2)1个①型窗框和1个①型窗框多用这种材料(单位:米)(23)(32)x y x y +-+2332x y x y =+--y x =-.【点睛】本题考查了列代数式的应用,整式的加减运算,能正确列出代数式是解此题的关键. 26.(1)0、165、160、+10、+2;(2)16cm ;(3)66.7%【解析】【分析】(1)先根据学生A 的数据求出全班平均身高,再根据关系式分别计算其他学生的身高和身高与全班平均身高的差值;(2)由表找出最高身高的学生和最矮身高的学生,再相减即可得出答案;(3)先找出达标身高的人数,再根据总人数为6人即可得出答案.【详解】解:(1)学生A 的身高为157cm ,与全班平均身高差-6,∴全班平均身高为157-(-6)=163cm ,∴学生B 与全班平均身高差163-163=0;学生C 的身高为163+2=165cm ;学生D 的身高为163-3=160cm ;学生E 与全班平均身高差173-163=+10;学生F 与全班平均身高差165-163=+2;故填表为:(2)解:由表可知,最高身高为学生E 为173cm ,最矮身高为学生A 为157cm ,17315716-=(cm ),答:他们6人中最高身高比最矮身高高16cm ;(3)他们6人中,学生B 、C 、E 、F 的身高为达标身高,∴这6个同学身高的达标率约为4100%66.7%6⨯≈. 27.(1)①(1)(21)n n n x --;20194237x -;20204039x ;(2)2213114886-==⨯;2219177289-==⨯;(21)(21)8n n n -+=(n 是正整数);(3)8080【分析】(1)①根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;①根据①中得出规律将2019n =及2020n =代入化简即可;(2)列出4个式子中的关系即可得出变化规律:两个连续奇数的平方差等于8的倍数; (3)根据(2)中数据规律得出即可.【详解】解:(1)①由x -,23x ,35x -,47x ,59x -,…,可得出:各项系数的符号分别为:-,+,-,+,…,-,+,…,这组单项式的系数的符号规律是(-1)n ,各数的系数的绝对值分别为:1,3,5,7,…,则系数的绝对值规律是2n -1.这组单项式的次数分别为:1,2,3,4,5,…则次数的规律是从1开始的连续自然数.所以单项式的次数的规律是从1开始的连续自然数所以第n 个单项式是(1)(21)n n n x --;①由①可知第n 个单项式是(1)(21)n n n x --;∴当2019n =时,原式=()()201920191220191x -⨯⨯-=20194237x -; 当2020n =时,原式=()()202020201220201x -⨯⨯-=20204039x ; ∴第2019个单项式是20194237x -;第2020个单项式是20204039x ; (2)2231881-==⨯;当1n =时,213n +=,211n -=22531682-==⨯;当2n =时,215n +=,213n -=22752483-==⨯;当3n =时,217n +=,215n -=22973284-==⨯;当4n =时,219n +=,217n -=…∴第n 个等式为()()2221218+--=n n n (n 是正整数)∴第①个等式是()()2226126186⨯+-⨯-=⨯即2213114886-==⨯;第①个等式是()()2229129189⨯+-⨯-=⨯即2219177289-==⨯;(3)解:2220212019-()()22210101210101=⨯+-⨯-81010=⨯8080=.。
人教版七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷一、单选题 1.−12016的相反数是( )A .2016B .﹣2016C .12016D .−120162.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.013.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108B .4.40×108C .4.4×109D .4.4×10104.下列各对数中,相等的一对数是( ) A .(﹣2)3与﹣23B .﹣22与(﹣2)2C .﹣(﹣3)与﹣|﹣3|D .223与22()35.下列说法中,正确的是( )A .24m n 不是整式B .﹣32abc的系数是﹣3,次数是3C .3是单项式D .多项式2x 2y ﹣xy 是五次二项式6.若a 是有理数,则a+|a|( ) A .可以是负数 B .不可能是负数 C .必是正数 D .可以是正数也可以是负数7.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( ) A .abcB .a+10b+100cC .100a+10b+cD .a+b+c8.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A .b <aB .|b|>|a|C .a+b >0D .a-b >09.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是( )A .2B .4C .6D .8二、填空题 10.31232n mx y xy m n --+=若与是同类项,则_________11.若|y+6|+(x﹣2)2=0,则y x=_____.12.若a 、b 互为相反数,c 、d 互为倒数,m=2,4a b m++m 2-3cd= __13.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn ﹣3m )﹣3(2n ﹣mn )的值为 .14.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.三、解答题 15.计算:(1)25÷5×(﹣15)÷(﹣34);(2)(79﹣56+518)×(﹣18);(3)﹣42+112÷ |﹣113|×(12﹣2)2.16.化简:(1)222121863234a a a a --+-+(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)17.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=13.18.已知|x|=7,|y|=12,求代数式x+y的值.19.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?20.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b=a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣12)⊗(﹣25)]﹣(34⊗43)÷(﹣68).21.已知:A=2a2+3ab-2a-1,B=-a2+ab-1(1)求3A+6B的值;(2)若3A+6B的值与a的取值无关,求b的值.22.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2 016吗?如能,写出这五个数,如不能,说明理由.参考答案1.C【解析】−12016的相反数是-(−12016)=12016.故答案是:C.2.B【解析】【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9不在该范围之内,∴不合格的是B.故选B.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.4.A【解析】试题解析::∵(-2)3=-8,-23=-8,∴(-2)3=-23,∴选项A正确.∵-22=-4,(-2)2=4,∴-22≠(-2)2,∴选项B不正确.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,∴选项C不正确.∵224=33,(23)2=49,∴223≠(23)2,∴选项D不正确.故选A.5.C【解析】【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc的系数是﹣32,次数是3;多项式2x2y﹣xy是三次二项式;故选择C.6.B【解析】试题分析:分三种情况:当a>0时,a+|a|=a+a=2a>0;当a<0时,a+|a|=a-a=0;当a=0时,a+|a|=0+0=0;∴a+|a|是非负数,故选B.点睛:本题主要考查了有理数的分类和绝对值的性质,对a分三种情况进行讨论是解决此题的关键.7.B【解析】百位上的数字是c表示:100×c=100c;十位的数字是b表示:10×b=10b;个位上的数字a表示:1×a=a;这个数就可以表示为:100c+10b+a;故选B.8.C【解析】【分析】由数轴可知b<-1,0<a<1,【详解】A、b是负数,a是正数,所以b<a,故该项正确;B、由数轴可知,b离远点较远,所以|b|>|a|,故该项正确;C、根据绝对值不等的异号两数相加,取绝对值较大加数的符号可知a+b<0,故此项错误;D、根据两数相乘,异号得负可知ab<0,故此项正确.故选C,9.D【解析】21=2,22=4,23=8,24=16,25=32,26=64,27=128′′′可知,2n的个位数字以“2,4,8,6…”重复出现,2011÷4=502…3,所以22011的个位数字是8;故选:D.【点睛】此题主要考查数字的规律探索,根据已知确定数字的周期规律是解题的关键.10.0【解析】【分析】根据相同字母的指数相等列方程求解即可.【详解】由题意得,n=1,1-2m=3,∴m=-1,∴m+n=-1+1=0.故答案为0.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可. 11.36【解析】由题意得,y+6=0,x﹣2=0,解得x=2,y=﹣6,所以,y x=(﹣6)2=36.故答案是:36.12.1【解析】由题意得:a+b=0,cd=1,m2=4,原式=0+4−3=1.故答案为1.13.﹣8.【解析】试题分析:∵m+n=﹣2,mn=﹣4,∴原式=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣20+12=﹣8.故答案为﹣8.考点:整式的加减—化简求值.14.6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.15.(1)原式=43;(2)原式=﹣4;(3)原式=﹣1478.【解析】试题分析:(1)原式从左到右依次计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.试题解析:解:(1)原式=25×15×15×43=43;(2)原式=﹣14+15﹣5=﹣4;(3)原式=﹣16+98=﹣1478. 16.(1)﹣2a ﹣14;(2)x 2﹣3xy+2y 2. 【解析】试题分析:利用整式的混合运算顺序求解即可;试题解析:(1)222121863234a a a a --+-+ =222211863324a a a a -+--+ =﹣2a ﹣14(2)(3x 2﹣xy ﹣2y 2)﹣2(x 2+xy ﹣2y 2)=3x 2﹣xy ﹣2y 2﹣2x 2﹣2xy+4y 2=x 2﹣3xy+2y 2.17.原式=11x 2﹣11xy ﹣y=51.【解析】试题分析:原式去括号合并得到最简结果,将x 与y 的值代入计算即可求出值.试题解析:原式=3x 2﹣xy+y ﹣10xy+8x 2﹣2y=3x 2+8x 2﹣xy ﹣10xy+y ﹣2y=11x 2﹣11xy ﹣y当x=﹣2,y=13 时,原式=44+223﹣13=51 18.±19,±5【解析】试题分析:依据绝对值的性质求得x、y的值,然后代入求解即可.试题解析:解:∵|x|=7,|y|=12,∴x=±7,y=±12.当x=7,y=12时,x+y=7+12=19;当x=﹣7,y=12时,x+y=﹣7+12=5;当x=7,y=﹣12时,x+y=7﹣12=﹣5;当x=﹣7,y=﹣12时,x+y=﹣7+(﹣12)=﹣19.所以代数式x+y的值为±19或±5.点睛:本题主要考查的是求代数式的值,依据绝对值的性质求得x、y的值是解题的关键.19.(1)见详解;(2)7千米;(3)这辆货车此次送货共耗油25.5升.【解析】【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【详解】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.考点:数轴.20.﹣514.【解析】【分析】原式利用已知的新定义计算即可求出值.【详解】解:根据题中的新定义得:原式=﹣1+5×(﹣12﹣25)﹣(81﹣64)÷(﹣68)=﹣1﹣92+14=﹣514.21.(1)5ab-2a-3;(2)b的值为25【解析】试题分析:(1)将A与B代入3A+6B中去括号,合并同类项即可得到结果;(2)把(1)中a看成是字母,b看成是已知数,合并同类项,因为结果与a无关,所以a的系数等于0,即可求出b的值.试题解析:(1)3A+6B=3(2a2+3ab-2a-1)+6(-a2+ab-1)=6a2+9ab-6a-3-6a2+6ab-6=15ab-6a-9;(2)3A+6B=15ab-6a-9=(15b-6)a-9,因为3A+6B的值与a的取值无关,所以15b-6=0,所以b=25.22.(1)十字框中的五个数的和为中间的数16的5倍;(2)十字框中的五个数的和为5x;(3)不能框住五个数,使它们的和等于2016,理由见解析.【解析】试题分析:(1)将5个数相加,找出其与16的关系即可;(2)设中间的数为x,则另外四个数分别为x-10、x-2、x+2、x+10,将五个数相加即可得出结论;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)的结论可得出关于x的一元一次方程,解之即可得出x的值,由x不为整数即可得出假设不成立,即不能框住五个数,使它们的和等于2016.试题解析:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍.(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x.(3)假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【点睛】运用了一元一次方程的应用以及规律型中数字的变化类,解题的关键是:(1)求出十字框中的五个数的和;(2)根据中间数为x,用含x的代数式表示出其它四个数;(3)结合(2)的结论列出一元一次方程.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册期中模拟卷一考试范围:第1-2章 ;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.(2022·河南·商水县希望初级中学七年级阶段练习)下列等式正确的是( ) A .99-=- B .133-= C .77--=D .()22-+=-A .2365x y -π的系数是65-B .233x y 的次数是6C .2.46万精确到百分位D .222x xy y ++是二次三项式A .一个有理数不是正数就是负数B .最小的整数是0C .有理数包括正有理数、零和负有理数D .数轴上的点都表示有理数【答案】C【分析】根据有理数的定义对各选项分析判断求解.【详解】解:A 、一个有理数,不是正数,有可能是负数或零,故本选项错误; B 、整数分为正整数,0,负整数,所以没有最小的整数,故本选项错误; C 、有理数包括正有理数、零和负有理数,故本选项正确;D 、有理数可以用数轴上的点表示,但数轴上的点不一定都表示有理数,故本选项错误. 故选:C .【点睛】本题考查了有理数的定义,是基础题,熟记概念是解题的关键.4.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)用四舍五入法对0.1508按不同要求取近似数,其中错误的是( ) A .0.2(精确到0.1) B .0.16(精确到0.01) C .0.151(精确到千分位) D .0.15(精确到百分位)【答案】B【分析】根据近似数的精确度对各选项进行判断.【详解】解:A .0.15080.2≈(精确到0.1),所以A 选项的计算正确; B .0.15080.15≈(精确到0.01),所以B 选项的计算错误; C .0.15080.151≈(精确到千分位),所以C 选项的计算正确; D .0.15080.15≈(精确到百分位),所以D 选项的计算正确. 故选:B .【点睛】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.(2022·湖南·长沙市开福区青竹湖湘一外国语学校七年级阶段练习)下列各对数中,是互为相反数的是( ) A .()0.01--与1100⎛⎫- ⎪⎝⎭B .12-与(0.5)+-C .(5)-+与(5)+-D .13-与0.3的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,……则第2022次输出的结果为()A.3B.6C.9D.18形的数量是()A.2019B.2020C.3032D.30338.(2020·浙江杭州·七年级期末)若230-+-=,则b a=()a bA.9B.9-C.8D.8-+-+-时运算律用9.(2021·山西·介休市第三中学校七年级阶段练习)计算3(2)5+(7)4545得恰当的是()A .13323(2)5(7)4545⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦B .133235274455⎡⎤⎛⎫⎛⎫⎛⎫++-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦C .12333(7)(2)54554⎡⎤⎡⎤++-+-+⎢⎥⎢⎥⎣⎦⎣⎦D .3312(2)53(7)5445⎡⎤⎡⎤-+++-⎢⎥⎢⎥⎣⎦⎣⎦滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .2πB .4-πC .4+1-πD .41-π-【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:滚动两周的距离为221=4ππ⨯⨯, ∵点B 表示的数是41-π-, 故选:D .【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.第II 卷(非选择题)二、填空题11.(2021·山东·青岛爱迪学校七年级期中)若单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣,则m +n =_____. 【答案】8【分析】根据题意可知单项式23m n x y ﹣与单项式22n n x y 是同类项,根据同类项的特点,列出方程组,解方程即可求解.【详解】解:∵单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣, ∵单项式23m n x y ﹣与单项式22n n x y 是同类项,∵22m n n n -=⎧⎨=⎩,解得62m n =⎧⎨=⎩,∵m +n =6+2=8. 故答案为:8.【点睛】本题考查了同类项的定义以及整式的加法等知识,掌握同类项的定义是解答本题的关键.同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 12.(2022·黑龙江·兰西县红星乡第一中学校期中)若a ,b 互为相反数,m ,n 互为倒数,则2020(a +b )﹣9mn 的值为 _____. 【答案】﹣9【分析】根据互为相反数、互为倒数的概念得到a +b =0,mn =1,代入2020(a +b )﹣9mn 计算即可得到答案.【详解】解:∵a 与b 互为相反数, ∵a +b =0, ∵m 和n 互为倒数, ∵mn =1,∵2020(a +b )﹣9mn =2020×0﹣9×1 =0﹣9 =﹣9, 故答案为:﹣9.【点睛】本题考查互为相反数及互为倒数的概念、有理数的计算,熟练掌握知识点是解题的关键.13.(2021·江苏·涟水县第四中学七年级阶段练习)如果代数式225a a +=,则代数式2243a a +-=_____.【答案】7【分析】首先提公因式把2243a a +-变形为()2223a a +-,然后将225a a +=整体代入求值即可得到答案.【详解】解:()22243223a a a a +-=+-,∴将225a a +=代入可得,原式2537=⨯-=,故答案为:7.【点睛】本题考查了求代数式的值,运用整体代入求值法:整体代入求值法是将已知条件适当变形,然后作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 14.(2021·江苏·无锡市华庄中学七年级期中)点A 在数轴上表示数﹣3,点B 距离点A 有2个单位长度,则点B 表示的数为___________. 【答案】﹣1或﹣5#-5或-1【分析】设点B 表示的数为x ,再由数轴上两点间的距离公式即可得出结论. 【详解】解:设点B 表示的数为x ,则 |x +3|=2,解得x =﹣1或x =﹣5. 故答案为:﹣1或﹣5.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.三、解答题15.(2021·辽宁·大连市第八十中学七年级阶段练习)把下列各数在数轴上表示,并从小到大的顺序用<连接起来.+(-4),122,0, 1.5--,-(-5).1(1)4.7(8.9)7.4(6)---+-; (2)311(1)2824-⨯÷.(1)222322(3())a a a a a +---; (2)2237(43)2[]x x x x ----. 【答案】(1)5a (2)2533--x x【分析】(1)直接去括号进而合并同类项得出答案; (2)直接去括号进而合并同类项得出答案. (1)解:222322(3())a a a a a +---2223223a a a a a -+=+-5a =;(2)解:2237(43)2[]x x x x ---- 22374[]32x x x x =-+-- 2237432=-+-+x x x x 2533=--x x .【点睛】此题考查整式的加减,掌握整式的加减混合运算法则是解题关键.18.(2022·全国·七年级课时练习)用黑白两种颜色的正六边形地面砖中力所示的规律,拼成若干图案.(1)第1个图形中有白色地砖 块; 第2个图形中有白色地砖 块; 第3个图形中有白色地砖 块; 第4个图形中有白色地砖 块;(2)求第n 个图案中有白色地砖的块数,并求出n =100时白色地砖的块数. 【答案】(1)6;10;14;18; (2)402块.【分析】(1)观察前3个图形的变化即可得结论; (2)结合(1)得到规律,进而运用规律即可得结论. (1)解:第1个图形中有白色地砖6块,即4×1+2=6; 第2个图形中有白色地砖10块,即4×2+2=10; 第3个图形中有白色地砖14块,即4×3+2=14. 第4个图形中有白色地砖4×4+2=18(块); 故答案为:6;10;14;18; (2)解:根据(1)可知:第n 个图案中,白色地砖共(4n +2)块. 所以n =100时,白色地砖共4×100+2=402(块).【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.(2020·安徽安庆·七年级期中)小丽放学回家后准备完成下面的题目:化简()()226+8+652x x x x ---,发现系数“□”印刷不清楚 (1)她把“□”猜成3,请你化简()()2236+8+652x x x x ---(2)她妈妈说:你猜错了.我看到该题的答案是6.通过计算说明原题中“□”是几? 【答案】(1)226x -+ (2)5【分析】(1)去括号,合并同类项即可;(2)设“□”为a ,去括号化简,可知化简结果与二次项无关,即可求解. (1)解:()()2268652x x x x 3-++--22368652x x x x =-++--226x =-+;(2) 设“□”为a ,即有:()()()2226865256ax x x x a x -++--=-+,∵化简的结果为6,∵()256a x -+的结果与二次项无关,即二次项的系数为0,∵50a -=,即5a =, 答:“□”是5.【点睛】本题主要考查了整式的加减以及合并同类项的知识,灵活运用合并同类项的知识是解答本题的关键.20.(2021·内蒙古·霍林郭勒市第五中学七年级阶段练习)某电路检修小组在东西方向的一道路上检修用电线路,检修车辆从该道路P 处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下(单位:千米):(1)问检修小组收工时在P 的哪个方位?距P 处多远?(2)若检修车辆每千米耗油0.2升,每升汽油需6元,问这一天检修车辆所需汽油费多少元? 【答案】(1)检修小组收工时在P 的正东方,距P 处2千米 (2)50.4元【分析】(1)通过计算这七次车辆行驶记录结果的和就能得到答案;(2)计算出该天检修车辆走的路程之和,再乘以每千米耗油量和每升汽油的价格. (1)解:389104622-+-++--=(千米),答:检修小组收工时在P 的正东方,距P 处2千米.(2) 解:()60.2|3||8||9||10||4||6||2|⨯⨯-+++-+++++-+-()60.238910462=⨯⨯++++++=6×0.2×42=50.4(元).答:这一天检修车辆所需汽油费50.4元.【点睛】此题考查正负号的实际应用、绝对值的应用以及有理数的混合运算,理解正负号的意义是解题的关键.21.(2022·全国·七年级专题练习)观察下列等式:112⨯=1−12,123⨯=12−13,134⨯=13−14 将以上三个等式两边分别相加得:112⨯+123⨯+134⨯=1−12+12−13+13−14=1−14=34 (1)猜想写出()11n n += ; (2)直接写出下列各式的计算结果112⨯+123⨯+134⨯+…+()11n n += ; (3)探究计算1123⨯⨯+1234⨯⨯+1345⨯⨯+…+1201820192020⨯⨯.11111111223341n n111n =-+ 1n n =+; (3)解题的关键.22.(2021·河北唐山·七年级期中)已知:222232,432A a b ab abcB a b ab abc=--=--(1)求A B+的结果:(2)说明2A B-的结果和c的取值无关,并求1,62a b=-=时,2A B-的值(1)按图示规律完成下表:(2)按照这种方式搭下去,搭第n 个图形需要多少根火柴棒?(3)搭第2020个图形需要多少根火柴棒?(2)搭第n 个图形需要火柴棒根数为:5(1)41n n n --=+.(3)当2020n =时,414202018081n +=⨯+=,所以搭第2020个图形需要8081根火柴棒.【点睛】考查了规律型:图形的变化.注意:∵本题是规律性题目,要求具备较高的观察总结能力,合理利用所学知识求解.∵在做题过程中要合理利用转换思想,可以简化求解.。
人教版七年级上册数学《期中检测试卷》含答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共12道题,每题3分,总分36分)1. 如果水库的水位高于正常水位2m 时,记作+2m,那么低于正常水位3m 时,应记作( ). A. +3m B. -3mC. +13m D. 13-m2.12-的倒数是( ) A.B.C. 12-D.123.|﹣8|的相反数是( ) A. ﹣8 B. 8 C.18D. 18-4.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄居中国内在富豪榜榜首,这一数据用科学记数法可表示为( ) A. 0.242×1010美元 B. 0.242×1011美元 C. 2.42×1010美元 D. 2.42×1011美元5. 下列说法错误的是( ) A. 近似数2.50精确到百分位 B. 1.45×105精确到千位 C. 近似数13.6亿精确到千万位 D. 近似数7000万精确到个位6. 下列计算正确的是( ) A. 2(1)(1)0--+-= B 2237-+-= C. 3(2)8--= D 111()11222-+--=- 7.下列说法正确的是( )A.5xπ的系数是15B. 313x -是单项式 C. 52m - 是5次单项式 D.2533x y xy --是四次多项式8.2100×(﹣12)99=( ) A 2B. ﹣2C.12D. ﹣129.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A. (1-10%)(1+15%)x 万元B. (1-10%+15%)x 万元C. (x -10%)(x +15%)万元D. (1+10%-15%)x 万元10. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆.A. 42B. 44C. 46D. 4811.如图,数轴上的点A 所表示的数为k ,化简|k|+|1-k|的结果为( )A. 1B. 2k -1C. 2k +1D. 1-2k12. 下列说法:①0是绝对值最小的有理数 ②a 2=(﹣a)2 ③若|a|>b,则a 2>b 2④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数 ⑤若a <b,则a 3<b 3. 其中正确的个数有( ) A. 1个B. 2个C. 3个D. 4个二、填空题(共8道题,每题3分,总分24分)13.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 . 14.已知、b 互为相反数,m 、n 互为倒数,x 绝对值为2 ,则22a bmn x m n+-+--=______.15.对于实数a ,b ,定义运算“*”:a *b=2()()a ab a b a b a b ⎧-≥⎨-<⎩.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)=__________.16.一台电视机的原价是2000元,若按原价的八折出售,则购买a 台这样的电视机需要______元. 17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 18.若a-2b=3,则9-2a+4b 的值为 _____________.19.观察下面的一列单项式:﹣x,2x 2,﹣4x 3,8x 4,﹣16x 5,…根据你发现的规律,第8个单项式为 ,第n 个单项式为 .20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________.三、解答题(共6道题,总分60分.21题6分,22题15分,23题8分,24题10分,25题9分,26题10分,)21.将13-,12,22,-|-2|,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来. 22.计算: (1)20163351()()(1)461212-+---- (2)2221(2)2(10)4----⨯-(3)4322112(0.5)[(3)(3)]0.5338---÷⨯---+- 23.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米): +12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5. (1)B 地在A 地什么方向,距离A 地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中还需补充多少升油.24.化简求值:已知:(x﹣3)2+|y+13|=0,求3x2y﹣[2xy2﹣2(xy232x y)+3xy]+5xy2的值.25.有这样一道计算题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1”,甲同学把x=12看错成x=-12,但计算结果仍正确,你说是怎么一回事?26.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x的代数式表示);(2)李阿姨要买一条重量10克的此种铂金饰品,到哪个商店购买最合算.答案与解析一、选择题(共12道题,每题3分,总分36分)1. 如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作( ).A. +3mB. -3mC. +13m D.13-m【答案】B【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:“正”和“负”相对,所以,水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m.故选B2.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A3.|﹣8|的相反数是( )A. ﹣8B. 8C. 18D.18-【答案】A【解析】分析:本题考察绝对值和相反数的定义.解析:|﹣8|=8,8的相反数是-8.故选A4. 福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄居中国内在富豪榜榜首,这一数据用科学记数法可表示为( )A. 0.242×1010美元B. 0.242×1011美元C. 2.42×1010美元D. 2.42×1011美元【答案】C 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.242亿=24200000000用科学记数法表示时,其中a=2.42,n 为所有的整数数位减1,即n=10.故答案选C. 考点:科学记数法.5. 下列说法错误的是( ) A. 近似数2.50精确到百分位 B. 1.45×105精确到千位 C. 近似数13.6亿精确到千万位 D. 近似数7000万精确到个位 【答案】D 【解析】试题分析:根据近似数的精确度对各选项进行判断. 解:A 、近似数2.50精确到百分位,所以A 选项的说法正确; B 、1.45×105精确到千位,所以B 选项的说法正确; C 、近似数13.6亿精确到千万位,所以C 选项的说法正确; D 、近似数7000万精确到万位,所以B 选项的说法错误. 故选D .考点:近似数和有效数字. 6. 下列计算正确的是( ) A. 2(1)(1)0--+-= B. 2237-+-= C. 3(2)8--= D. 111()11222-+--=- 【答案】C 【解析】 试题解析:A 、,故本选项错误;B 、2234317-+-=-+=-≠,故本选项错误;C 、3(2)(8)8--=--=,故本选项正确;D 、111()121222-+--=-≠-,故本选项错误. 故选C .考点:有理数的混合运算. 7.下列说法正确的是( ) A.5xπ的系数是15B. 313x -是单项式 C. 52m - 是5次单项式 D.2533x y xy --是四次多项式【答案】D 【解析】A 选项:因为π是常数,所以π5x 的系数应该为π5. 因此,A 选项错误. B 选项:单项式中不能含有加减运算,而313x -中含有减法运算,故313x -不是单项式. 因此,B 选项错误. C 选项:单项式的次数是所有字母的指数之和,在单项式52m -中,只含m 一个字母,其指数为1,故52m -是1次单项式. 因此,C 选项错误.D 选项:多项式的次数是该多项式中次数最高项的次数,多项式2533x y xy --共有两项组成,2x y -项的次数为3,533xy -项的次数为4,故2533xy xy --为四次多项式. 因此,D 选项正确.故本题应选D. 8.2100×(﹣12)99=( ) A. 2 B. ﹣2C.12D. ﹣12【答案】B 【解析】观察式子可知,两个幂的底数相乘为-1. 由于-1的乘方运算是简单的,所以可以将2100分解为2×299,再对9999122⎛⎫⨯- ⎪⎝⎭逆向使用积的乘方法则,可简便地得到计算结果. 具体过程如下:()100999999999911122222212222⎡⎤⎛⎫⎛⎫⎛⎫⨯-=⨯⨯-=⨯⨯-=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故本题应选B.9.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A. (1-10%)(1+15%)x万元B. (1-10%+15%)x万元C. (x-10%)(x+15%)万元D. (1+10%-15%)x万元【答案】A【解析】【分析】根据1月份的产值是x万元,用x把2月份的产值表示出来(1-10%)x,进而得出3月份产值列出式子(1-10%)(1+15%)x万元,即可得出选项.【详解】1月份的产值是x万元,则:2月份的产值是(1-10%)x万元,3月份的产值是(1+15%)(1-10%)x万元,故选A.【点睛】本题主要考查怎么列代数式,属于简单题,解题关键在于读懂题意10. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 6 个图形有( )个小圆.A. 42B. 44C. 46D. 48【答案】C【解析】试题分析:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因此可得6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,由此可知第n个图形有:4+n(n+1).然后代入n=6可得4+6×(6+1)=46.故选C考点:规律探索11.如图,数轴上的点A所表示的数为k,化简|k|+|1-k|的结果为( )A. 1B. 2k -1C. 2k +1D. 1-2k【答案】B 【解析】【详解】解:由数轴可得1k >,则1121k k k k k +-=+-=-,故选B. 12 下列说法:①0是绝对值最小的有理数 ②a 2=(﹣a)2 ③若|a|>b,则a 2>b 2④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数 ⑤若a <b,则a 3<b 3. 其中正确的个数有( ) A. 1个 B. 2个C. 3个D. 4个【答案】D 【解析】试题分析:根据绝对值、相反数,有理数的乘方,依次进行判断即可. 解:①0是绝对值最小的有理数,正确; ②a 2=(﹣a)2,正确;③若|a|>b,则a 2>b 2,若a=1,b=﹣2,不正确;④当n 为正整数时,(﹣1)2n+1与(﹣1)2n 互为相反数,正确; ⑤若a <b,则a 3<b 3,正确; 故选D . 考点:有理数.二、填空题(共8道题,每题3分,总分24分)13.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 . 【答案】1.5或-3.5 【解析】 试题分析:如图:距离点A 点2.5个单位长度的数为-3.5或1.5.考点:数轴.14.已知、b 互为相反数,m 、n 互为倒数,x 的绝对值为2 ,则22a bmn x m n+-+--=______.【答案】-6. 【解析】【详解】解:已知、b 互为相反数,m 、n 互为倒数,x 的绝对值为2, 可得a+b=0,mn=1,x=±2, 所以22a bmn x m n+-+--=-2×1+0-4=-6. 故答案为:-6【点睛】本题考查求代数式的值,有理数的运算,准确计算是关键.15.对于实数a ,b ,定义运算“*”:a *b=2()()a ab a b a b a b ⎧-≥⎨-<⎩.例如:因为4>2,所以4*2=42-4×2=8,则(-3)*(-2)=__________. 【答案】-1 【解析】【详解】∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1, 故答案为:-1.【点睛】本题考查了新定义运算,能够看懂运算的条件,正确地选择运算的式子是解决本题的关键. 16.一台电视机的原价是2000元,若按原价的八折出售,则购买a 台这样的电视机需要______元. 【答案】1600a 【解析】 【分析】现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答. 详解】解:2000a×80%=1600a (元) 故答案为:1600a .【点睛】本题考查列代数式.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 【答案】x 2+7x-4【解析】【分析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++-2253221,x x x x =-+-++-27 4.x x =+-他所捂的多项式为27 4.x x +-故答案为27 4.x x +-【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;18.若a-2b=3,则9-2a+4b 的值为 _____________.【答案】3【解析】【详解】试题解析:∵a-2b=3,∴原式=9-2(a-2b)=9-6=3考点:代数式求值.19.观察下面的一列单项式:﹣x,2x 2,﹣4x 3,8x 4,﹣16x 5,…根据你发现的规律,第8个单项式为 ,第n 个单项式为 .【答案】128x 8,(﹣1)n 2n ﹣1x n .【解析】试题分析:根据符号的规律:n 为奇数时,单项式为负号,n 为偶数时,符号为正号;系数的绝对值的规律:第n 个对应的系数的绝对值是2n ﹣1.指数的规律:第n 个对应的指数是n 解答即可.解:根据分析的规律,得第8个单项式是27x 8=128x 8.第n 个单项式为(﹣1)n 2n ﹣1x n ,故答案为128x 8,(﹣1)n 2n ﹣1x n .考点:单项式.20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x 和y 的关系式为:y=3x 2-5,因此将x 的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y 的值.【详解】解:依据题中的计算程序列出算式:12×3-5. 由于12×3-5=-2,-2<0, ∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.三、解答题(共6道题,总分60分.21题6分,22题15分,23题8分,24题10分,25题9分,26题10分,)21.将13-,12,22,-|-2|,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来. 【答案】见解析【解析】试题分析:对题目中给出的各个数据进行整理可得到6个有理数. 根据这些有理数的特点,规定好单位长度画出数轴,准确标注各个有理数的位置. 在数轴上,位于右边的数总大于左边的数,故根据标注准确的数轴容易得到这些有理数的大小关系.试题解析:因为22=4,22--=-,-(-3)=3,故在数轴上应标出表示13-,12,4,-2,3,0的点. 数轴及标注如下(题目中要求表示的数在数轴上方标注):由于在数轴上右边的数总比左边的数大,所以根据数轴上各点的相对位置得:()211203232--<-<<<--<. 点睛:本题综合考查了有理数运算以及数轴的相关知识. 在处理绝对值符号与括号时,有理数符号的变化规则是不同的,这是本题的一个易错点. 另外,利用数轴比较有理数大小的关键在于能否在数轴上准确地找到对应点的位置,特别要注意的是负数的位置.22.计算: (1)20163351()()(1)461212-+---- (2)2221(2)2(10)4----⨯- (3)4322112(0.5)[(3)(3)]0.5338---÷⨯---+- 【答案】(1)14-;(2)-25;(3)738- 【解析】试题分析:(1) 易知在本小题式子最后的乘方运算得1,整个算式转化为有理数的加减混合运算. 运算时,可以将分母相同的分数结合在一起运算,也可以将符号不同的数结合在一起运算,不难得到最终结果.(2) 先处理乘方运算和绝对值,再按照有理数的四则运算法则进行运算.(3) 先将小数形式化为分数形式并将除法转化为相应的乘法运算,然后按照有理数的四则运算法则进行运算. 试题解析: (1) ()201633511461212⎛⎫⎛⎫-+----⎪ ⎪⎝⎭⎝⎭ =33511461212-++- =31511421212⎛⎫-++- ⎪⎝⎭ =3111422-+- =3111422⎛⎫--- ⎪⎝⎭ =314-=14- (2) ()()222122104----⨯- =()1441004⎛⎫--⨯⎪⎝⎭=-25 (3) ()()34221120.5330.5338⎛⎫⎡⎤---÷⨯---+- ⎪⎣⎦⎝⎭ =()()12111633272384⎛⎫⎡⎤---⨯⨯---+- ⎪⎣⎦⎝⎭=121163324238⎛⎫--⨯-⨯⨯+ ⎪⎝⎭ =311622428⎛⎫---⨯+⎪⎝⎭ =11162428-+⨯+ =116128-++ =738- 点睛:本题考查有理数的四则运算. 在实际运算过程中,应充分利用各种运算律简化运算. 由于乘法运算可以利用运算律简化运算过程,所以在需要进行除法运算时,一般利用倒数关系将除法转化为乘法再进行运算. 要注意,若在除数位置上是一个含有加减运算的式子则不能将该式子中的每一项分别进行除法运算.23.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5.(1)B 地在A 地什么方向,距离A 地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中还需补充多少升油.【答案】(1)B 地在A 地正东方向,距离A 地14千米;(2)途中还需补充4升油.【解析】【分析】(1)由于约定向东为正方向,那么正数表示向东,而当天的航行路程记录如下(单位:千米):+12,﹣9,+8,﹣7,+11,﹣6,+10,﹣5,那么只要把所给数据相加即可求解;(2)只要求出所给数据的绝对值再乘以每千米耗油0.5升即可解决问题.【详解】解:(1)+12﹣9+8﹣7+11﹣6+10﹣5=14(千米),B 地在A 地东边14千米;(2)(12+9+8+7+11+6+10+5)×0.5=68×0.5=34(升),34﹣30=4(升),还需补充4升油. 【点睛】考点:有理数的加减混合运算.24.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值. 【答案】2.【解析】试题分析:在初中数学范围内,任意数的平方是非负数,任意数的绝对值是非负数. 两个非负数之和为零,只可能是这两个非负数均为零. 据此可知,题目条件中给出的等式左侧的两部分应该都等于零. 由于只有零的平方等于零,只有零的绝对值等于零,故可得两个一元一次方程,解之即得满足条件的x ,y 的值. 对待求值的代数式进行化简后代入x ,y 的值求值即可.试题解析:(注:下列解析过程中的相关描述均限定在初中数学范围内)求解满足条件的x ,y 的值.∵()21303x y -++=, 又∵对于任意的x ,y 的值,()230x -≥,103y +≥均成立, ∴()230x -=,103y +=,即30x -=,103y +=, 解上述两个方程,得 3x =,13y =-. 化简待求值的式子. 22223322352x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦=()2222322335x y xy xy x y xy xy ⎡⎤---++⎣⎦ =()2222322335x y xy xy x y xy xy --+++=()22223235x y xy x y xy xy -+++=22223235x y xy x y xy xy ---+=23xy xy -将x ,y 的值代入化简后的式子求值.当3x =,13y =-时, 原式=21133333⎛⎫⎛⎫⨯⨯--⨯- ⎪ ⎪⎝⎭⎝⎭=1919⨯+=2. 点睛:若两个非负数之和为零,则这两个非负数均为零. 这条结论是解决本题的关键,也是初中数学中经常考查的知识点,应该予以重点理解和掌握. 另外,在化简过程中,去括号要逐层进行,符号问题要注意;合并同类项时,要注意同类项的定义.25.有这样一道计算题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =12,y =-1”,甲同学把x =12看错成x =-12,但计算结果仍正确,你说是怎么一回事? 【答案】-2y 3,与x 无关【解析】试题分析:根据去括号,合并同类项的法则,化简,通过结果可知与x 值无关,然后再代入y 求值.试题解析:代数式化简结果为32y -,与无关,所以与其他同学的结果都一样当y=-1时,结果是考点:整式的化简求值26.某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x 克,其中x >3.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x 的代数式表示);(2)李阿姨要买一条重量10克此种铂金饰品,到哪个商店购买最合算.【答案】(1)甲:477x ,乙:424318x +(2)乙【解析】【分析】(1)根据两个商店的销售方法分别列式整理即可;(2)把x=10代入代数式进行计算即可得解.【详解】解:(1)甲商店:477x ,乙商店:530×3+(x﹣3)×530×0.8=1590+424x﹣1272=424x+318;(2)当x=10时,甲商店:477×10=4770元,乙商店:424×10+318=4558元,∵4770>4558,∴到乙商店购买最合算.考点:列代数式;代数式求值.。
人教版七年级上册数学《期中考试试卷》附答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54-D. 54 2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3 3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元4.下列各式不是同类项是( )A. 24x y 与22xy -B.与C. 12xy -与yx - D. 25m n 与23nm -5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A. 0B. 1C. 2D. 36.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B. a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为08.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定9.下列去括号正确的是( )A. ﹣3(b ﹣1)=﹣3b ﹣3B. 2(2﹣a )=4﹣aC. ﹣3(b ﹣1)=﹣3b +3D. 2(2﹣a )=2a ﹣4 10.下列说法正确的是( )A. 单项式a 的系数是0B. 单项式﹣35xy 的系数和次数分别是﹣3和2C. x 2﹣2x +25是五次三项式D. 单项式﹣3πxy 2z 3的系数和次数分别是﹣3π和6 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.16.计算:()3222---=________. 17.多项式3x 2y ﹣3xy 2的次数为_____.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95 正整数集合:( )整数集合:( )负整数集合:( )正分数集合:( )21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 22.化简:(1)2272241x x x x ---+-;(2)222217(64)(3)2a a ab b ab a -+--+-. 23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车耗油量.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,什么?26.阅读材料:我们知道,4x ﹣2x +x =(4﹣2+1)x =3x ,类似地,我们把(a +b )看成一个整体,则4(a +b )﹣2(a +b )+(a +b )=(4﹣2+1)(a +b )=3(a +b ).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a ﹣b )2看成一个整体,合并3(a ﹣b )2﹣6(a ﹣b )2+2(a ﹣b )2的结果是 .(2)已知x 2﹣2y =4,求3x 2﹣6y ﹣21的值;拓广探索:(3)已知a ﹣2b =3,2b ﹣c =﹣5,c ﹣d =10,求(a ﹣c )+(2b ﹣d )﹣(2b ﹣c )的值.答案与解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|45-|的相反数是 ( ) A. 45- B. 45 C. 54- D. 54 【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】∵|45-|=45, ∴|45-|的相反数是45-. 故选A.【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 在数-3,-2,0,3中,大小在-1和2之间的数是( )A. -3B. -2C. 0D. 3【答案】C【解析】根据0大于负数,小于正数,可得0在﹣1和2之间,故选C .3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是( )A. 2.946亿元B. 22.94610⨯亿元C. 32.94610⨯亿元D. 30.294610⨯亿元 【答案】B【解析】【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0 的数字后面即可,确定n 的值时,要看把原数变成a 时,小数点移动的位数.【详解】易知 2.946a =,把原数变成2.946时,小数点移动了2位,所以2n = ,∴294.6亿元=22.94610⨯亿元.故选:B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键,注意本题中的单位.4.下列各式不是同类项的是( )A. 24x y 与22xy -B.与C. 12xy -与yx -D. 25m n 与23nm - 【答案】A【解析】【分析】根据同类项的概念:所含字母相同,相同字母的指数也相同,逐一进行判断即可.【详解】A. 24x y 与22xy -,相同字母的指数不同,不是同类项,故符合题意;B.与,都是常数,是同类项,故不符合题意;C. 12xy -与yx -,所含字母相同,相同字母的指数也相同 ,是同类项,故不符合题意; D. 25m n 与23nm -,所含字母相同,相同字母的指数也相同,是同类项,故不符合题意;故选:A .【点睛】本题主要考查同类项,掌握同类项的概念是解题的关键.5.如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是( ).A 0B. 1C. 2D. 3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点表示的数是-1,∴点表示的数是:2故选D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.6.将6(3)(5)(2)-+--+-改写成省略括号的和的形式( )A. 6352--+-B. 6352---C. 6352-+-D. 6352+--【答案】C【解析】【分析】将各个加数的括号及其前面的加号省略即可写成省略加号的和的形式.【详解】6(3)(5)(2)6352-+--+-=-+-故选:C .【点睛】本题主要考查有理数加减法统一成加法,掌握将有理数加减法统一成加法的方法是解题的关键. 7.|a |+|b |=|a +b |,则a ,b 关系是( )A. a ,b 的绝对值相等B a ,b 异号C. a +b 的和是非负数D. a 、b 同号或a 、b 其中一个为0【答案】D【解析】【分析】每一种情况都举出例子,再判断即可.【详解】解:A 、当a 、b 的绝对值相等时,如11a b ==-,,|a |+|b |=2,|a +b |=0,即|a |+|b |≠|a +b |,故本选项不符合题意;B 、当a 、b 异号时,如a =1,b =-3,|a |+|b |=4,|a +b |=2,即|a |+|b |≠|a +b |,故本选项不符合题意;C 、当a +b 的和是非负数时,如:a =﹣1,b =3,|a |+|b |=4,|a +b |=2,即即|a |+|b |≠|a +b |,故本选项不符合题意;D 、当a 、b 同号或a 、b 其中一个为0时,|a |+|b |=|a +b |,故本选项符合题意;故选D .【点睛】本题考查了绝对值、有理数的加法等知识点,能根据选项举出反例是解此题的关键8.如果a 为最大的负整数,b 为绝对值最小的数,c 为最小的正整数,则a ﹣b+c 的值是( )A. ﹣1B. 0C. 1D. 无法确定【答案】B【解析】【分析】根据题意确定出a,b,c的值,代入原式计算即可得到结果.【详解】由题意知:a=﹣1,b=0,c=1,则a﹣b+c=﹣1﹣0+1=0.故选B.【点睛】本题考查了有理数的相关知识.最大的负整数是﹣1,绝对值最小的有理数是0,最小的正整数是1.9.下列去括号正确的是( )A. ﹣3(b﹣1)=﹣3b﹣3B. 2(2﹣a)=4﹣aC. ﹣3(b﹣1)=﹣3b+3D. 2(2﹣a)=2a﹣4【答案】C【解析】【分析】根据去括号法则进行解答即可得到正确选项.【详解】A、原式=﹣3b+3,故本选项错误.B、原式=4﹣2a,故本选项错误.C、原式=﹣3b+3,故本选项正确.D、原式=4﹣2a,故本选项错误.故选C.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.10.下列说法正确的是( )A. 单项式a的系数是0B. 单项式﹣35xy的系数和次数分别是﹣3和2C. x2﹣2x+25是五次三项式D. 单项式﹣3πxy2z3的系数和次数分别是﹣3π和6 【答案】D【解析】【分析】单项式的系数是数字因数,次数是所有字母次数之和,多项式中有包含几个单项式,就称这个多项式是几项式,多项式的次数是由次数最高的单项式决定,根据概念逐项判断.【详解】A .a 的系数是1,故A 错误;B .单项式﹣35xy 的系数和次数分别是35和2,故B 错误; C .x 2﹣2x +25是二次三项式,故C 错误;D .正确;故选D.【点睛】本题考查单项式和多项式的概念,注意区别单项式的次数和多项式的次数,熟记概念是解题的关键. 11.马虎同学做了以下4道计算题:①0-(-1)=1; ②11122⎛⎫÷-=- ⎪⎝⎭;③111236-+=-; ④()201812018-=.请你帮他检查一下,他一共做对了( ).A. 1题B. 2题C. 3题D. 4题 【答案】C【解析】【分析】原式各项计算得到结果,即可作出判断.【详解】①0-(-1)=1;故正确; ②11122⎛⎫÷-=- ⎪⎝⎭,故正确; ③111236-+=-,故正确; ④()201811-=,故错误;所以一共做对了3题.故选C.【点睛】考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.由于受79H N 禽流感的影响,我市某城区今年月份鸡的价格比月份下降%a ,月份比月份下降%b ,已知月份鸡的价格为24元/千克,设月份鸡的价格为元/千克,则( )A. 24(1%%)m a b =--B. 24(1%)%m a b =-C. 24%%m a b =--D. 24(1%)(1%)m a b =--【答案】D【解析】【详解】解:根据题意可知:2月份的价格为24(1-a%),则3月份的价格为24(1-a%)(1-b%),故选D .13.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件元的价格购进了件牛奶;每件元的价格购进了件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A. 赚钱B. 赔钱C. 不嫌不赔D. 无法确定赚与赔【答案】D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利.【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b +⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚.故答案为D.【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键.14.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A. ﹣1009B. ﹣1010C. ﹣2018D. ﹣2020 【答案】B【解析】【分析】根据条件求出前几个数的值,得出n 是奇数时,结果等于-12n +,n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解.【详解】a 0=0,a 1=﹣|a 0+1|=﹣|0+1|=﹣1,a 2=﹣|a 1+2|=﹣|﹣1+2|=﹣1,a 3=﹣|a 2+3|═﹣|﹣1+3|=﹣2,a 4=﹣|a 3+4|═﹣|﹣2+4|=﹣2,a 5=﹣|a 4+4|=﹣|﹣2+5|=﹣3,a 6=﹣|a 5+4|=﹣|﹣3+6|=﹣3,a 7=﹣|a 6+7|=﹣|﹣3+7|=﹣4,……,∴当n 为奇数时,a n =-12n +,当n 为偶数时,a n =-2n , ∴a 2019=-201912+=-1010. 故选B .【点睛】此题主要考查了数字类变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、填空题(每题3分,满分15分,将答案填在答题纸上)15.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作______.【答案】-0.25米【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.以4.00米为标准,小东跳出了4.23米,可记做+0.23米,所以超过这个标准记为正数,3.75米,不足这个标准记为负数,又4.00-3.75=0.25,故记作-0.25米.故答案为-0.25米.16.计算:()3222---=________. 【答案】4【解析】【分析】根据有理数的乘方运算法则进行计算即可得解.【详解】()32224(8)484---=---=-+=,故答案为:4.【点睛】本题主要考查了有理数的乘方计算,熟练掌握乘方的运算法则是解决本题的关键.17.多项式3x 2y ﹣3xy 2的次数为_____.【答案】3【解析】【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得答案.【详解】解:多项式223x y 3xy -的次数是3,故答案为3.【点睛】本题考查了多项式,利用了多项式次数的定义.18.若单项式12m a b -与22n a b 的和仍是单项式,则n 的值是____.【答案】8.【解析】【分析】首先可判断单项式12m a b -与22n a b 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【详解】∵单项式12m a b -与22n a b 的和仍是单项式,∴单项式12m a b -与22n a b 是同类项,∴m−1=2,n=2,∴m=3,n=2,∴n =8.故答案为8【点睛】此题考查单项式,同类项,解题关键于掌握其定义.19.用形状和大小相同的按如图所示的方式排列,按照这样的规律,第个图形有______个.【答案】31n+【解析】【分析】通过分析前3个图形,找到规律,利用规律即可得出答案.【详解】通过观察可知,第一个图形中有4个,4311=⨯+;第二个图形中有7个,7321=⨯+;第三个图形中有10个,10331=⨯+;……则第n个图形中有31n+个;故答案为:31n+.【点睛】本题主要考查图形的规律,找到规律是解题的关键.三、解答题:共63分.解答应写出文字说明、证明过程或演算步骤.20.把下列各数填在相应的大括号里:﹣15,+6,﹣2,﹣0.9,1,35,0,314,0.63,﹣4.95正整数集合:( ) 整数集合:( ) 负整数集合:( ) 正分数集合:( )【答案】(1). +6,1;(2). ﹣15,+6,﹣2,1,0;(3). ﹣15,﹣2;(4). 35,314,0.63.【解析】【分析】根据负分数,整数以及有理数概念分别填空即可. 【详解】正整数集合:(+6,1…),整数集合:(﹣15,+6,﹣2,1,0,…),负整数集合:(﹣15,﹣2,…),正分数集合:(35,314,0.63…),【点睛】本题考查了有理数,熟记相关概念是解题的关键.21.计算: (1)24332(3)()(1)511511--++---; (2)32201820.25(2)[4()1](1)3⨯--÷-++-. 【答案】(1)1511-;(2)11- 【解析】【分析】(1)利用同分母结合法,将同分母的分数结合可简便运算;(2)按照有理数混合运算的顺序和法则进行计算即可,先算乘方运算,然后再算乘除,最后算加减.【详解】(1)24332(3)()(1)511511--++--- =2433231511511---+ =2343(2)(31)551111--+-+ =13(2)11-+- =1511- (2)32201820.25(2)[4()1](1)3⨯--÷-++- 40.25(8)(41)19=⨯--÷++ =201890.258(41)4(1)⨯--++-⨯() =2(91)1--++=11-【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则以及加法运算律是解题的关键.22.化简:(1)2272241x x x x ---+-; (2)222217(64)(3)2a a ab b ab a -+--+-. 【答案】(1)233x x ---;(2)22333a ab b ---【解析】【分析】(1)直接合并同类项即可;(2)去括号,合并同类项即可.【详解】解:(1)2272241x x x x ---+-=233x x ---(2)222217(64)(3)2a a ab b ab a -+--+- =22227323a a ab b ab a -+---+=22333a ab b ---.【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键.23.先化简,再求值:(1)22(37)(427)a ab a ab -+--++,其中1,2a b =-=;(2)224[63(42)1]x y xy xy x y -----,其中12,2x y ==-. 【答案】(1)273a ab -,13;(2)2565+-x y xy ,21-【解析】【分析】(1)先利用去括号,合并同类项进行化简,然后将a,b 的值代入化简后的式子中即可求解;(2)先利用去括号,合并同类项对括号内进行化简,然后再对括号外进行化简,最后将x,y 的值代入化简后的式子中即可求解.【详解】解:(1)22(37)(427)a ab a ab -+--++=2237427a ab a ab -++--=273a ab -当1,2a b =-=时,原式=27(1)3(1)27613⨯--⨯-⨯=+=(2)224[63(42)1]x y xy xy x y -----=22461261x y xy xy x y --+--()=22465x y xy x y ---+()=22465x y xy x y ++-=2565+-x y xy 当12,2x y ==-时, 原式=5212()2⨯⨯-+6×2×(12-) =1065---=21-【点睛】本题主要考查整式的化简求值,掌握去括号,合并同类项的法则是解题的关键.24.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A 、B 、C 表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.【答案】(1)答案见解析;(2)7.5千米;(3)1.6升【解析】【分析】(1)由已知得:从家向东走了5千米到超市,则超市A 表示5,又向东走了2.5,则爷爷家B 表示的数为7.5,从爷爷家出发向西走了10千米到姥爷家,所以姥爷家C 表示的数为7.5﹣10=﹣2.5,画数轴如图;(2)右边的数减去左边的数即可;(3)计算总路程,再根据耗油量=总路程×0.08即可求解.【详解】(1)点A ,B ,C 即为如图所示;(2)5﹣(﹣2.5)=7.5(千米),故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升),故小轿车的耗油量是1.6升..【点睛】本题考查了数轴,此类题的解题思路为:利用数形结合的思想,先根据条件找到超市、爷爷家和外公家的位置,再依次解决问题.25.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班现需球拍5副,乒乓球若干盒(不小于5盒).问:(1)若购买的乒乓球为盒,请分别用代数式表示在两家店购买这些乒乓球和乒乓球拍时应该支付的费用;(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买,为什么?【答案】(1)甲店:5125x +(元);乙店: 4.5135x +(元);(2)当购买15盒乒乓球时,应该在甲店购买;当购买30盒乒乓球时,应该在乙店购买.理由见解析【解析】【分析】(1)分别利用两家店的优惠政策,用乒乓球拍的钱数加上乒乓球的钱数即可得出总钱数;(2)分别计算出购买15盒和30盒乒乓球时在甲、乙两个店所支付的费用,进行比较即可得出答案.【详解】解:(1)根据题意得:甲店: 3055(5)x ⨯+-=5125x +(元);乙店:(3055)90% 4.5135x x ⨯+⨯=+(元);(2)当购买15盒乒乓球时,若在甲店购买,则费用是:5×15+125=200(元), 若在乙店购买,则费用是:4.5×15+135=202.5(元). 200202.5<∴应该在甲店购买;当购买30盒乒乓球时,若在甲店购买,则费用是:30×5+125=275(元), 若在乙店购买,则费用是:30×4.5+135=270(元),270275∴应该在乙店购买.【点睛】本题主要考查代数式的应用,读懂题意是解题的关键.26.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2;(2)-9;(3)8.【解析】【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.【详解】(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点睛】本题考查整式的加减,解决问题的关键是读懂题意,运用整体思想解题.。
人教版七年级上册数学期中测试卷(含答案)
初一年级第一学期期中测试题七年级数学注意事项:本试卷共三大题25小题,共5页,满分150分.考试时间120分钟. 1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生不可以...使用计算器.必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷(100分)一、 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的. )1. 下列各数中,是负数的是 ( ) A.-(-5) B. |-5| C. (5) D. -522. 如果0)2(32=-++b a ,那么代数式2015)(b a +的值是( )A. -2 015B. 2 015C. -1D. 13.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的染色体也长达30 000 000个核苷酸。
30 000 000用科学记数法表示为( )A.7103⨯B.61030⨯C.7103.0⨯D.8103.0⨯ 4.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( ) A .—5-3+1-5 B.5-3+1-5 C.5+3+1-5 D.5-3-1-55.已知a 、b 为有理数,且a<0,b>0,|b|<|a|,则a ,b ,-a ,-b 的大小关系是( ) A.-b<a<b<-a B.-b<b<-a<a C.a<-b<b<-a D.-a<b<-b<a6. 当1<a<2时,│a-2│+│1-a │的值是 ( ) A. -1B. 1C. 3D. -37. 已知a ,b 互为相反数,e 的绝对值为2,m 与n 互为倒数,mn e b a 432-++的值为( )A .0或-8B .-8C .0D .无法确定8. 小刚做了一道数学题:“已知两个多项式为A ,B ,,求的值.”他误将“”看成了“”,结果求出的答案是,那么原来的的值应该是( ) A .B .C .D .9.下列说法正确的个数有( )(1)倒数等于本身的数只有1;(2)相反数等于本身的数只有0;(3)平方等于本身的数只有0、1、-1;(4)有理数不是整数就是分数;(5)有理数不是正数就是负数。
人教版数学七年级上册《期中检测试卷》(附答案解析)
人教版数学七年级上学期期中测试卷一、选择题:1.14-的相反数是()A.14- B.14C. -4D. 42.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G用户总数达到613000000.将613000000用科学记数法计数表示为()A. 661310⨯ B. 761.310⨯ C. 86.1310⨯ D. 100.61310⨯3.下列方程中,解为x=4的方程是()A. x﹣1=4 B. 4x=1 C. 4x﹣1=3x+3 D. 1(1)5x-=14.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=05.如图所示,阴影部分的面积是()A.112xyB. 132xyC. 6xyD. xy6.若(a+2)2+|b﹣1|=0,则(a+b)2019的值是()A. 0 B. 1 C. ﹣1 D. 2016 7.在a﹣(2b﹣3c)=﹣□中的□内应填的代数式为()A. ﹣a﹣2b+3c B. a﹣2b+3c C. ﹣a+2b﹣3c D. a+2b﹣3c 8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.11.单项式223x y -的系数是_______,次数是__________. 12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.13.3﹣|x ﹣1|的最大值是_____.14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.15.如果x =﹣2是关于x 的方程3x +5=14x ﹣m 的解,则m ﹣1m =_____. 16.当x =﹣1时,代数式ax 3+bx +1的值为﹣2014,则当x =1时,代数式ax 3+bx +1的值为_____.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n 个算式的结果为_____(用含n 的代数式表示,其中n 是正整数).三.计算题18.﹣14×(+3)÷(﹣12)3 19.(49﹣1112+2﹣56)÷(﹣136). 20.[-12-(1-0.5×13)]×[-10+(-3)2] 四、解方程21.3x +7=32﹣2x .22.()()371323x x x --=-+五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程;(2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.6a b c 2- 1 ···()1可求得c = ,第2016个格子中的数为 ;()2判断:前m 个格子中所填整数之和是否可能为2016?若能,求出m 的值,若不可能,请说明理由; ()3如果x ,y 为前3格子中的任意两个数,那么所有x y 的和可以通过计算6666a a a b b a b b -+-+-+-+-+-得到,若x ,y 为前20格子中的任意两个数,则所有x y 的的和为29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________; ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.答案与解析一、选择题: 1.14-的相反数是( ) A. 14- B. 14 C. -4 D. 4【答案】B【解析】【详解】略 2.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G 用户总数达到613000000.将613000000用科学记数法计数表示为( )A. 661310⨯B. 761.310⨯C. 86.1310⨯D. 100.61310⨯ 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:613 000 000=86.1310⨯.故答案为C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列方程中,解为x =4的方程是( )A. x ﹣1=4B. 4x =1C. 4x ﹣1=3x +3D. 1(1)5x -=1 【答案】C【解析】【分析】把x=4代入方程的左右两边,判断左边和右边是否相等即可判断.【详解】解:A 、当x=4时,左边=4-1=3≠右边,故选项不符合题意;B、当x=4时,左边=16≠右边,故选项不符合题意;C、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意.故选C.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.4.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=0【答案】B【解析】【分析】根据合并同类项得到4m-m=3m,2a3-3a3=-a3,xy-2xy=-xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【详解】解:A、4m-m=3m,所以A选项错误;B、xy-2xy=-xy,所以B选项正确;C、2a3-3a3=-a3,所以C选项错误;D、a2b与ab2不能合并,所以D选项错误.故选B.【点睛】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.5.如图所示,阴影部分的面积是()A. 112xy B.132xy C. 6xy D. xy【答案】A【解析】【分析】阴影部分面积为长3x,宽2y的长方形面积减去长0.5x,宽y的长方形面积,然后合并同类项进行计算求解.【详解】解:由题意可得:阴影部分面积为111320.5(2)622x y x y y xy xy xy --=-= 故选:A 【点睛】本题考查列代数式及合并同类项的计算,根据图形找到图形面积之间的等量关系是解题关键. 6.若(a +2)2+|b ﹣1|=0,则(a +b )2019的值是( )A. 0B. 1C. ﹣1D. 2016 【答案】C【解析】【分析】直接利用互为相反数的定义结合绝对值的性质得出a ,b 的值,进而得出答案.【详解】解:∵|a+2|与| b-1|互相反数, ∴a+2=0,b-1=0,解得:a=-2,b=1,∴()2019a b +=-1.故选C .【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.7.在a ﹣(2b ﹣3c )=﹣□中的□内应填的代数式为( )A. ﹣a ﹣2b +3cB. a ﹣2b +3cC. ﹣a +2b ﹣3cD. a +2b ﹣3c 【答案】C【解析】【分析】先去括号,然后再添括号即可.【详解】解:a-(2b-3c )=a-2b+3c=-(-a+2b-3c ),故选C.【点睛】本题考查了去括号与添括号的知识,解答本题的关键是熟记去括号及添括号的法则.8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 【答案】A【解析】【分析】 用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16【答案】A【解析】【详解】解:a :设每堆牌的数量都是x (x >10);b :第1堆x+4,第2堆x-4,第3堆x ;c :第1堆x+4+8=x+12,第2堆x-4,第3堆x-8;d :第1堆x+12-(x-4)=16,第2堆x-4,第3堆x-8+(x-4)=2x-12,e :第1堆16+5=21,第2堆x-4-5=x-9,第3堆2x-12.如果x-9=5,那么x=14,如果x-9=8,那么x=17.故选A .二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.【答案】3232232m n m n mn -++-【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】解:把多项式2323232m n mn m n +--按字母m 的降幂排列是3232232m n m n mn -++-. 故答案为3232232m n m n mn -++-【点睛】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.此题还要注意分清按x 还是y 的降幂或升幂排列.11.单项式223x y -的系数是_______,次数是__________. 【答案】 (1). 23- (2). 3 【解析】【分析】根据单项式的定义以及性质直接写出系数和次数即可. 【详解】单项式223x y -的系数是23-,次数是3 故答案为:23-,3. 【点睛】本题考查了单项式的问题,掌握单项式的定义以及性质是解题的关键.12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.【答案】0.010【解析】【分析】把万分位上的数字1进行四舍五入即可.【详解】解:0.01016(精确到千分位)取近似数是0.010.故答案为0.010.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.3﹣|x ﹣1|的最大值是_____.【答案】3【解析】【分析】利用表示数轴上的3减去x 到1的距离,求得它的最大值即可.【详解】解:∵|x-1|表示数轴上的 x 到1的距离,要使31x --最大,就要让|x-1|最小,当x=1时,31x --取得最大值,最大值等于3,故答案为3.【点睛】此题主要考查了此种类型的最值的求法,对于此种最值可以分析其几何意义,然后再求得最值. 14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.【答案】4【解析】【分析】把a-b=2代入多项式3a-3b-2,求出算式的值是多少即可.【详解】解:∵a-b=2,∴3a-3b-2=3(a-b )-2=3×2-2=6-2=4故答案 4.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.如果x=﹣2是关于x的方程3x+5=14x﹣m的解,则m﹣1m=_____.【答案】3 2 -【解析】【分析】把x=-2代入方程即可得到一个关于m的方程,从而求解.【详解】解:把x=-2代入方程,得:-6+5=-12-m,解得:m=12,则m-1m=12-2=32-.故答案是:3 2 -.【点睛】本题考查了方程的解的定义,方程的解就是能使方程的左右两边相等的未知数的值.16.当x=﹣1时,代数式ax3+bx+1的值为﹣2014,则当x=1时,代数式ax3+bx+1的值为_____.【答案】2016【解析】分析】把x=1代入求出a+b的值,再把x=-1代入求解即可.【详解】解:x=-1时,-a-b+1=-2014,所以,a+b=2015,x=1时,ax3+bx+1=a+b+1=2015+1=2016.故答案为2016.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n个算式的结果为_____(用含n的代数式表示,其中n是正整数).【答案】 (1). -121 (2). 12(1)(21)n n +--【解析】【分析】每一个算式的第一个数的绝对值与行数相同,且偶数行每一个数字都是负数,数的个数是从1开始连续的奇数,所得的结果的绝对值是数的个数的平方,且偶数行的数字和是负数,由此得出算式的结果即可.【详解】解:第6个算式的结果为-(2×6-1)2=-121; 第n 个算式的结果为(-1)n+1(2n-1)2.故答案为-121;(-1)n+1(2n-1)2.【点睛】此题考查数字的变化规律,找出数字运算之间的规律,利用规律,解决问题.三.计算题18.﹣14×(+3)÷(﹣12)3 【答案】6【解析】【分析】按照有理数混合运算的顺序,先乘方,再乘除,后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化.【详解】解:()311 342⎛⎫-⨯+÷- ⎪⎝⎭=11-+3-48⨯÷()() =1384⨯⨯ =6 【点睛】此题主要考查了有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.19.(49﹣1112+2﹣56)÷(﹣136). 【答案】-25【解析】【分析】利用乘法分配律简算. 【详解】解41151:2912636⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ =()41152369126⎛⎫-+-⨯-⎪⎝⎭ =()()()()41153636236?369126⨯--⨯-+⨯--⨯- =-16+33-72+30=-25【点睛】此题考查有理数的混合运算,抓住运算顺序,根据数字特点,灵活利用运算定律简算.20.[-12-(1-0.5×13)]×[-10+(-3)2] 【答案】116【解析】【分析】按有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:][()221110.51033⎡⎤⎛⎫---⨯⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1-1-1-0.5-10+93⎡⎤⨯⨯⎢⎥⎣⎦() =1-1-1--16⎡⎤⨯⎢⎥⎣⎦()() =5-1-(1)6⎡⎤⨯-⎢⎥⎣⎦=11(1)6-⨯- =116【点睛】本题考查了有理数的混合运算,注意运算顺序和符号;本题使用的运算技巧是:①转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.②凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.③巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.四、解方程21.3x +7=32﹣2x .【答案】5x =【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】解:方程移项合并得:5x=25,解得:x=5.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.()()371323x x x --=-+【答案】5x =【解析】【分析】先去括号,再移项和合并同类项,即可求解.【详解】()()371323x x x --=-+377326x x x -+=--102x =5x =.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 【答案】80.【解析】试题分析:先去括号,再合并同类项,最后把字母的值代入计算即可.试题解析:222(52)2(3),a a a a a +---2225226,a a a a a =+--+244,a a =+,∵5a =-,∴原式24(5)4(5),=⨯-+⨯- 42520,=⨯-10020,=-80=.24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 【答案】2671a a +-;-3【解析】【分析】将A 与B 代入3A-2B 中,去括号合并得到最简结果,将a 的值代入计算即可求出值.【详解】解:∵A=2a 2-a ,B=-5a+1,∴3A-2B+1=3(2a 2-a )-2(-5a+1)+1=6a 2-3a+10a-2+1=6a 2+7a-1,当a=12-时,原式=32-72-1=-2-1=-3. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.【答案】6【解析】解:原式222926735x xy xy x y =++--++ 222311x xy y =+++当22235x xy y ++=-时原式511=-+6=六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.【答案】-4.【解析】【分析】首先根据数a ,b ,c 在数轴上的位置,可得b<a<0<c<2,据此判断出a+b 、b-2、c-a 、2-c 的正负;然后去掉绝对值符号,根据整式的加减运算方法,计算即可求解.【详解】解:根据图示,可得02b a c <<<<,0a b ∴+<,20b -<,0c a ->,20c ->,22a b b c a c +------()()()()22a b b c a c =-++-----22a b b c a c =--+--+-+4=-.【点睛】熟练掌握绝对值化简和整式加减运算是解决本题的关键,本题难度一般,但是要注意先判断各绝对值中式子的正负性再化简计算.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程; (2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.【答案】(1)是;见解析;(2)265. 【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【详解】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)∵关于x的一元一次方程6x=m+2是差解方程,∴m+2﹣6=26m+,解得:m=265.【点睛】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.()1可求得c=,第2016个格子中的数为;()2判断:前m个格子中所填整数之和是否可能为2016?若能,求出m的值,若不可能,请说明理由; ()3如果x,y为前3格子中的任意两个数,那么所有x y的和可以通过计算6666a a ab b a b b-+-+-+-+-+-得到,若x,y为前20格子中的任意两个数,则所有x y 的的和为【答案】(1)6,1 (2)不可能,证明见解析(3)1456【解析】【分析】(1)根据题意,归纳总结得到所求数字即可;(2)可先计算出这三个数的和,再照规律计算;(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)由题意得∵6a b a b c ++=++∴6c =∵2a b c b c ++=+-∴2a =-∵其中第9个格子中的数为1,按规律正好是b 的值,∴1b =∴格子中的数为6,2,1-依次循环∵20163672÷=∴第2016个格子中的数为1故答案为:6,1;(2)不可能,由于格子中的数为6,2,1-依次循环,前三个数的和是5,而201654031÷=,也就是说前40331209⨯=位之和是40352015⨯=,而第1210位是6,所以前m 个格子中所填整数之和为2016是不可能的;(3)由于是三个数重复出现,前20个格子中,这三个数中,6和-2出现了7次,1出现了6次,故代入式子可得()()()6276167267216716712761456+⨯+-⨯⨯+--⨯+--⨯⨯+-⨯++⨯⨯=故答案为:1456.【点睛】本题考查了表格类的规律题,掌握表格中的规律、绝对值的计算方法是解题的关键.29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________;ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.【答案】(1). 4(2). 6或2(3). 8 3【解析】【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意. 【详解】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2,当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4-2=6,∴A′表示的数为6,故答案为6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=43,∴x=4-43=83,同法可得:右移时,x=83.故答案为83;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,由题意可得方程:4-12x-13x=0,解得:x=245,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.【点睛】此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。
人教版七年级上册数学《期中考试试卷》及答案解析
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数的数一定是负数,不是负数的数一定是正数2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 33. 与原点距离是2.5个单位长度的点所表示的有理数是( )A 2.5 B. -2.5 C. ±2.5 D. 这个数无法确定4.计算(2)--的值是()A. -2B. 2C. 2±D. 45.﹣3的绝对值是( )A ﹣3 B. 3 C. -13D.136.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 77.下列各组中的两个单项式中,是同类项的是()A. a2和-2aB. 2m2n和3nm2C. -5ab和-5abcD. x3和238.化简5(2x-3)+4(3-2x)结果为( )A 2x-3 B. 2x+9 C. 8x-3 D. 18x-39.加上3m -等于2535m m --的式子是( ) A. 25(1)m -B. 2565m m --C. 25(1)m +D. 2(565)m m -+-10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克B. 50×109千克C. 5×109千克D. 5×1010千克二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 12.30+(﹣20)=_____.13.计算:2(3)-=__________;23-=__________. 14.当2x =-时,代数式221x x -+-=__________.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 16.3xy 2﹣7xy 2=_____.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣4519.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷bc的值. 23.根据下面给出数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示). (3)数轴上,线段AB 的中点表示的数是多少?五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人, (1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题: (1)请直接写出、、的值.a = ,b = ,c = .(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:|1||1|2|5|x x x +---+(请写出化简过程)(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)n n >个单位长度的速度向左运动,同时,点和点分别以每秒2n 个单位长度和5n 个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表示为BC ,点与点之间的距离表示为AB .请问:BC AB -的值是否随着时间的变化而改变?若变化,请说明理由:若不变,请求其值.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是( )A. 零是正数不是负数B. 零既不是正数也不是负数C. 零既是正数也是负数D. 不是正数数一定是负数,不是负数的数一定是正数【答案】B【解析】本题考查的是正、负数的意义根据正、负数的定义即可解答,零既不是正数也不是负数,故A、C错误,B正确,而不是正数的数是0和负数,不是负数的数是0和正数,故D错误,故选B.2.下列不是正有理数的是( )A. ﹣3.14B. 0.6C. 73D. 3【答案】A【解析】【分析】根据题意,在选项中寻找负有理数或零即可.【详解】解:不是正有理数,则为负有理数或零,而A中的﹣3.14是负数故选A.【点睛】本题考查有理数;能够理解题意,掌握有理数的分类是解题的关键.3. 与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5B. -2.5C. ±2.5D. 这个数无法确定【答案】C【解析】试题分析:根据数轴上的点表示的数即可判断.与原点距离是2.5个单位长度的点所表示的有理数是±2.5,故选C.考点:数轴点评:分类思想是初中数学学习中一个非常重要的思想,是学生对所学知识是否熟练掌握的很重要的一个体现,因而此类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需特别注意.4.计算(2)--的值是()A. -2B. 2C. 2±D. 4【答案】B【解析】【分析】根据去括号法则求解即可.【详解】(2)2--=故选:B.【点睛】本题考查了去括号法则,熟记法则是解题关键.5.﹣3的绝对值是( )A. ﹣3B. 3C. -13D.13【答案】B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.单项式7πa2b3的次数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】利用单项式次数求解即可. 【详解】单项式7πa 2b 3的次数是5. 故选B .【点睛】本题主要考查了单项式,解题的关键是熟记单项式的定义,注意π是常数. 7.下列各组中的两个单项式中,是同类项的是( ) A. a 2和-2a B. 2m 2n 和3nm 2 C. -5ab 和-5abc D. x 3和23【答案】B 【解析】试题分析:同类项是指:单项式中所含的字母相同,且相同字母的指数也完全相同.ACD 都不属于同类项. 考点:同类项的定义.8.化简5(2x-3)+4(3-2x)的结果为( ) A. 2x-3 B. 2x+9 C. 8x-3 D. 18x-3【答案】A 【解析】试题分析:根据整式的混合运算,结合合并同类项法则可求解:5(2x-3)+4(3-2x)=5(2x-3)-4(2x-3)=2x-3. 故选A考点:合并同类项9.加上3m -等于2535m m --的式子是( ) A. 25(1)m - B. 2565m m --C. 25(1)m +D. 2(565)m m -+-【答案】A 【解析】 【分析】根据整式的加减法则即可得.【详解】由题意得:所求的式子为2535(3)m m m ----25353m m m =--+ 255m =-25(1)m =-故选:A .【点睛】本题考查了整式的加减运算,理解题意,正确列出所求的式子是解题关键.10. 拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为 A. 0.5×1011千克 B. 50×109千克C. 5×109千克D. 5×1010千克【答案】D 【解析】 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1. 【详解】解:50 000 000 000一共11位,从而50 000 000 000=5×1010. 故选D .二、填空题(每题4分,满分28分,将答案填在答题纸上)11.数轴上原点右边的点表示的数都大于_____. 【答案】0. 【解析】 【分析】根据数轴上数字的表示可得答案.【详解】数轴上以原点为界限,右边的数都大于0,左边的数都小于0,原点表示0. 故答案为0.【点睛】本题考查了数轴上点所表示的数,非常简单. 12.30+(﹣20)=_____. 【答案】10. 【解析】 【分析】根据有理数加法法则计算即可. 【详解】30+(﹣20)=30﹣20=10. 故答案为10【点睛】本题主要考查了有理数的加法,熟记有理数的加法法则是解答本题的关键.13.计算:2(3)-=__________;23-=__________.【答案】 (1). 9 (2). -9 【解析】 【分析】根据有理数的幂运算法则即可得. 【详解】2(3)(3)(3)9-=-⨯-=23339-=-⨯=-故答案为:;9-.【点睛】本题考查了有理数的幂运算,熟记运算法则是解题关键. 14.当2x =-时,代数式221x x -+-=__________. 【答案】-9 【解析】 【分析】将2x =-代入求解即可得.【详解】22221(21)(1)x x x x x -+-=--+=-- 将2x =-代入得:原式()()222219=--+⨯--=- 故答案为:9-.【点睛】本题考查了代数式的化简求值,掌握有理数的混合运算方法是解题关键.15.若单项式﹣223x y的系数是m ,次数是n ,则mn 的值等于_____. 【答案】﹣2. 【解析】 【分析】根据单项式系数、次数的定义来求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,然后求出m和n的值,相乘即可,m=-23,n=3,mn=-2.【详解】∵单项式﹣223x y的系数是m,次数是n,∴m=﹣23,n=3,mn=﹣2.故答案为-2【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.3xy2﹣7xy2=_____.【答案】﹣4xy2.【解析】【分析】根据合并同类项的法则计算即可.【详解】3xy2﹣7xy2=(3﹣7)xy2=﹣4xy2.故答案为﹣4xy2【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.17.一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他记录如下(单位:米):+5,﹣3,+10,﹣8,+4,﹣6,+8,﹣10.守门员全部练习结束后,他共跑了__米.【答案】54.【解析】【分析】求出所有数的绝对值的和即可.【详解】由题意可得:|+5|+|﹣3|+|+10|+|﹣8|+|+4|+|﹣6|+|+8|+|﹣10|=5+3+10+8+4+6+8+10=54(米),答:守门员全部练习结束后,他共跑了54米.故答案为54.【点睛】本题考查了正数和负数,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.三、解答题一(每题6分,共18分)18.计算:﹣2×4﹣6+(﹣15)﹣45【答案】﹣15. 【解析】 【分析】根据有理数的乘法和加减法即可解答. 【详解】﹣2×4﹣6+(﹣15)﹣45=﹣8﹣6+(﹣15)+(﹣45)=﹣15.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 19.计算:|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| 【答案】6.5. 【解析】 【分析】根据有理数的乘法和加减法可即可求解. 【详解】|﹣3.75|+(﹣5.25)×(﹣1)﹣|﹣2.5| =3.75+5.25﹣2.5 =6.5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 20.合并同类项:2x 2﹣3x +4x 2﹣6x ﹣5 【答案】6x 2﹣9x ﹣5. 【解析】 【分析】根据合并同类项法则计算即可. 【详解】原式=(2x 2+4x 2)+(﹣3x ﹣6x )﹣5 =6x 2﹣9x ﹣5.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.四、解答题二(每题8分,共24分)21.先化简,再求值:22211(21)()(33)33x x x x x -----+-,其中32x = 【答案】244x -;5.【解析】【分析】先根据整式的加减:合并同类项进行化简,再将x 的值代入求解即可. 【详解】22211(21)()(33)33x x x x x -----+- 22211021333x x x x x =---+++- 244x =-当32x =时,原式2394()44429445=⨯-=⨯-=-=. 【点睛】本题考查了整式的加减及化简求值,熟记整式的运算法则是解题关键. 22.若|a +5|+|b ﹣2|+|c +4|=0,求a b ÷b c 的值. 【答案】5.【解析】【分析】根据绝对值的非负性可得a+5=0,b-3=0,c+2=0,再解可得a 、b 、c 的值,然后再代入代数式可得答案.【详解】∵|a +5|+|b ﹣2|+|c +4|=0,∴a +5=0,b ﹣2=0,c +4=0,解得a =﹣5,b =2,c =﹣4,∴a b ÷b c =a b ×c b=52-×42- =5,故答案为5.【点睛】此题主要考查了绝对值,以及有理数的乘法,关键是掌握有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.23.根据下面给出的数轴,解答下列问题:(1)A 、B 两点之间的距离是多少?(2)画出与点A 的距离为2的点(用不同于A 、B 的字母在所给的数轴上表示).(3)数轴上,线段AB 的中点表示的数是多少?【答案】(1)A 、B 两点之间的距离是5;(2)如图所示,见解析;(3)数轴上,线段AB 的中点表示的数是0.5.【解析】【分析】(1)从数轴上可以看出A 点是-2,B 点是3,所以距离为5;(2)与点A 的距离为2的点有两个,即一个向左,一个向右.(3)从数轴上找出线段AB 的中点,即距A ,B 两点的距离都是2.5的点,然后读出这个数即可.【详解】(1)A 、B 两点之间的距离是2+3=5.(2)如图所示:.(3)(﹣2+3)÷2=0.5.【点睛】本题主要考查了在数轴上解决实际问题的能力,学生要会利用数轴来解决这些问题.五、解答题三(每题10分,共20分)24.大客车上原有(3m ﹣n )人,中途有一半人下车,又上车若干人,此时车上共有乘客(8m ﹣5n )人,(1)请问中途上车的共有多少人?(2)当m =10,n =8时,中途上车的乘客有多少人?【答案】(1)中途上车的共有(132m ﹣92n )人;(2)中途上车的乘客有29人. 【解析】分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)将m 与n 的值代入(1)中的关系式,计算即可得到结果.【详解】(1)根据题意得:(8m ﹣5n )﹣12(3m ﹣n )=8m ﹣5n ﹣12m +12n =132m ﹣92n , 则中途上车的共有(132m ﹣92n )人; (2)当m =10,n =8时,原式=132×10﹣92×8=65﹣36=29, 则中途上车的乘客有29人.【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.25.已知:是最小的正整数,且、满足|6|||0c a b -++=,请回答问题:(1)请直接写出、、的值.a=,b=,c=.(2)、、所对应的点分别为、、,点为一动点,其对应的数为,点在、之间运动时,请化简式子:+---+(请写出化简过程)|1||1|2|5|x x xn n>个单位长度的速度向左运动,同时,点和(3)在(1)(2)的条件下,点、、开始在数轴上运动,若点以每秒(0)点分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过秒钟过后,若点与点之间的距离表-的值是否随着时间的变化而改变?若变化,请说明示为BC,点与点之间的距离表示为AB.请问:BC AB理由:若不变,请求其值.【答案】(1)-1,1,6;(2)-10;(3)不变,值为3.【解析】【分析】(1)根据最小的正整数是1,推出b=1,再利用非负数的性质求出a、c即可.(2)首先确定x的范围,再化简绝对值即可.(3)BC−AB的值不变.根据题意用n,t表示出BC、AB即可解决问题.【详解】解:∵b是最小的正整数,∴b=1,∵(c−6)2+|a+b|=0,(c−6)2⩾0,|a+b|⩾0,∴c=6,a=−1,b=1,故答案为−1,1,6;(2).由题意−1<x<1,∴|x+1|−|x−1|−2|x+5|=x+1+x−1−2x−10=−10.(3)不变,由题意BC=5+5nt−2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC−AB=(5+3nt)−(2+3nt)=3,∴BC−AB的值不变,BC−AB=3.【点睛】本题考查非负数的性质、绝对值、数轴等知识,解题的关键是熟练掌握非负数的性质,绝对值的化简,学会用参数表示线段的长.。
人教版七年级上册数学期中考试试卷及答案
人教版七年级上册数学期中考试试题一、单选题1.下列四个数中,最小的数是()A .0B .3-C .1-D .12-2.绝对值为13的数是()A .13±B .13C .13-D .33.将460000000用科学记数法表示为()A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯4.下列计算正确的是()A .527x y xy +=B .22234x y yx x y-=-C .257x x x +=D .321x x -=5.多项式2123xy xy --的次数和次数最高项的系数分别是()A .5,3-B .2,3-C .2,3D .3,3-6.下列说法中错误的是()A .-23x 2y 的系数是-23B .0是单项式C .23xy 的次数是1D .-x 是一次单项式7.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是()A .a >bB .b >﹣aC .a+b >0D .ab <08.研究表明“距离地面越高,温度越低”,相关数据如表所示:()距离地面的高度h/km 012345温度t/℃201482-4-10根据上表,请预测距离地面6km 的高空温度是()A .14-℃B .15-℃C .16-℃D .17-℃9.长方形的一边为2a ﹣3b ,另一边比它小a ﹣b ,则此长方形的另一边为()A .3a ﹣4bB .3a ﹣2bC .a ﹣2bD .a ﹣4b10.若多项式22233(52)x y x mx -+-+的值与x 的值无关,则m 等于()A .0B .3C .3-D .9-二、填空题11.若将“向东走100米”记作“+100米”,则“向西走60米”可记作“_________米”12.比较大小:-2______3--.13.已知点P 是数轴上表示3-的点,把点P 向左移动2个单位后,再向右移动5个单位,那么移动完后点P 表示的数是_________.14.已知某快递公司的收费标准为寄一件物品不超过1千克,收费10元;超过1千克的部分每千克加收1.5元.小丽在该快递公司寄一件6千克的物品,需要付费_________元.15.计算:16()(5)42÷---⨯=_________.16.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是______元.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如2231x x --+252x x =+-,则所捂住的多项式是_________.18.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”已知数轴上点A 1的相关点为A 2,点A 2的相关点为A 3,点A 3的相关点为A 4,…,这样依次得到点A 1、A 2、A 3、A 4、…、An .若点A 1在数轴上表示的数是12,则点A 2022在数轴上表示的数是_________.三、解答题19.计算:125233⎛⎫-++-- ⎪⎝⎭.20.合并同类项:3x 2-1-2x-5+3x-x 221.计算:3211(2)25(()24⎡⎤-+-⨯-÷-⎢⎥⎣⎦.22.把下列各数填在相应的集合中:716,,3,9.1,4,126,0,3.1410---.正数集合{…};分数集合{…};负整数集合{…}.23.画出数轴,在数轴上表示下列各数:5+, 3.5-,12,112-,4,0.并用“<”连接.24.先化简,再求值:2211312()()2323x x y x y --+-+,其中2x =-,23y =25.如图所示,有块长为20m ,宽为10m 的长方形土地,现在将其余三面留出宽都是xm 的小路,中间余下的长方形部分做菜地,用含x 的式子表示:(1)菜地的长a=m ,菜地的宽b=m .(2)当1x =时,求菜地的周长C .26.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为1+,向下一楼记为1-.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):7+,3-,11+,8-,12+,5-,10-.(1)请你通过计算说明小李最后停在几楼.(2)该中心大楼每层高3m ,电梯每上或下1m 需要耗电0.06度,根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?27.我们知道,42(421)3x x x x x -+=-+=.类似地,我们把()a b +看成一个整体,则4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把2()a b -看成一个整体,则合并2223()8()6()a b a b a b ---+-的结果是.(2)已知223x y -=,求2842y x -+-的值.28.先阅读,再解答问题:我们知道111122=-⨯,1112323=-⨯,1113434=-⨯,那么:(1)145=⨯;120202021=⨯;(2)用含有n (n 为正整数)的式子表示你发现的规律:;(3)依据(2)中的规律计算:111112233420212022++++⨯⨯⨯⨯ .(写出解题过程)参考答案1.B【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵|-3|>|-1|>|12-|>|0|,∴-3<−1<12-<0,∴其中最小的数是-3.故选:B .【点睛】本题考查了有理数大小比较,掌握有理数大小比较的法则是解答本题的关键.2.A【解析】【分析】数轴上某个数与原点的距离叫做这个数的绝对值,利用绝对值的意义进行判断.【详解】解:|13|=13,|﹣13|=13.故选:A.【点睛】本题考查了绝对值:若a>0,|a|=a;若a=0,|a|=0;若a<0,|a|=﹣a.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460000000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此判断即可.【详解】解:A、5x+2x=7x,原计算错误,故该选项不符合题意;B、3x2y−4yx2=−x2y正确,故该选项符合题意;C 、x 2与x 5不是同类项,不能合并,故该选项不符合题意;D 、3x-2x=x ,原计算错误,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.5.D【解析】【分析】直接利用多项式的次数与系数的确定方法即可得出答案.【详解】解:多项式2123xy xy --的次数为3,最高次项的系数是3-.故选:D .【点睛】本题考查多项式的定义.解题的关键是掌握多项式的相关定义,要注意多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数;次数最高项的系数就是数字因数.6.C【解析】【分析】根据单项式定义是“表示数与字母乘积的式子叫单项式,特别地,单独的一个数或字母也是单项式”,单项式的系数的定义是“单项式中的数字因数叫做单项式的系数”,单项式的次数的定义是“单项式中所有字母因数的指数之和叫单项式的次数”来判断.【详解】解:A 选项中,因为223x y -的系数是23-,所以本选项正确,不符合题意;B 选项中,因为0是单项式,所以本选项正确,不符合题意;C 选项中,因为23xy 的次数是2,不是1,所以本选项错误,符合题意;D 选项中,因为x -是一次单项式,所以本选项正确,不符合题意;故选C .【点睛】本题考查了单项式定义、系数、次数,解题的关键是掌握相应的定义:表示数与字母乘积的式子叫单项式,特别地,单独的一个数或字母也是单项式.7.D【解析】【分析】本题主要考查有理数的乘法,数轴,有理数的加法,根据数轴上点的特征可得a<0<b,且|a|>|b|,据此逐项判断可求解.【详解】解:由数轴可知:a<0<b,且|a|>|b|,故A选项错误;∴b<﹣a,故B选项错误;a+b<0,故C选项错误;ab<0,故D选项正确.故选:D.【点睛】本题主要考查了数轴,有理数的乘法及加法,掌握数轴上点的特征是解题的关键.8.C【解析】【分析】观察表格发现:距离地面的高度每升高1千米,温度就下降6℃.距离地面5千米的时候温度为-10℃,再降低6℃即可得出答案.【详解】解:观察表格发现:距离地面的高度每升高1千米,温度就下降6℃,∴距离地面6千米的高空温度为:-10-6=-16(℃),故选:C.【点睛】本题考查了正数和负数,有理数的减法,解题的关键是通过表格发现温度随距离地面的高度变化的规律.9.C【解析】【分析】根据另一边比它小a ﹣b ,列代数式()23a b a b ---,然后根据整式的加减运算法则计算即可.【详解】解:∵长方形的一边为2a ﹣3b ,另一边比它小a ﹣b ,另一边为()23232a b a b a b a b a b ---=--+=-.故选择C .【点睛】本题考查列代数式,整式的加减运算,掌握列代数式的方法,整式的加减运算法则是解题关键.10.D【解析】【分析】先将多项式化简,再根据多项式3x 2-3(5+y-2x 2)+mx 2的值与x 的值无关,即可得到m 的值.【详解】解:3x 2-3(5+y-2x 2)+mx 2=3x 2-15-3y+6x 2+mx 2=(9+m )x 2-3y-15,∵多项式3x 2-3(5+y-2x 2)+mx 2的值与x 的值无关,∴9+m=0,解得m=-9,故选:D .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.11.-60【解析】【分析】此题主要用正负数来表示具有意义相反的两种量:向东记为正,则向西就记为负,直接得出结论即可.【详解】解:∵向东走100米记作+100米,∴向西走60米可记作-60米,故答案为:-60.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.>【解析】【分析】先把3--化简成3-,再比较2-和3-的大小,绝对值越大的负数本身越小.【详解】解:33--=-,33-=,22-=,∵23<,∴23->-,即23->--.故答案是:>.【点睛】本题考查有理数的大小比较和绝对值的化简,解题的关键是掌握比较有理数大小的方法.13.0【解析】【分析】根据题意列出算式(-3)-2+5,求出即可.【详解】解:根据题意得:(-3)-2+5=0,即点P 表示的数是0,故答案为0.【点睛】本题考查了数轴和有理数的加减的应用,关键是能根据题意列出算式.14.17.5【解析】【分析】根据寄一件物品不超过1千克,收费10元;超过1千克的部分每千克加收1.5元,可以得到小丽在该快递公司寄一件6千克的物品,需要付费10+(6-1)×1.5,然后计算即可.【详解】解:由题意可得,小丽在该快递公司寄一件6千克的物品,需要付费:10+(6-1)×1.5=10+5×1.5=10+7.5=17.5(元),故答案为:17.5.【点睛】本题考查有理数的混合运算,解答本题的关键是列出相应的算式,求出小丽需要支付的费用.15.8【解析】【分析】先计算乘除,再根据有理数的减法法则计算即可.【详解】解:16()(5)42÷---⨯6220=-⨯+=-12+20=8.故答案为:8.【点睛】本题考查有理数的四则混合运算,掌握运算顺序,会把除法转化为乘法进行运算是解题关键.16.0.99a【解析】【分析】先求出按批发价a 元提高10%的零售价()110%a +(元),再乘以(1-10%)即可【详解】解:按批发价a 元提高10%的零售价格为()110%a +(元),又按零售价降低10%即为单价,则单价为()()110%110%0.99a a +⨯-=(元).故答案为:0.99a .【点睛】本题考查用字母表示数,列代数式,掌握用字母表示数,列代数式方法是解题关键.17.3x 2+8x-3【解析】【分析】根据整式的加减法则进行计算即可.【详解】解:所捂住的多项式是x 2+5x-2+2x 2+3x-1=3x 2+8x-3,故答案为:3x 2+8x-3.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.-1【解析】【分析】通过计算求出点A 2在数轴表示的数2,点A 3在数轴表示的数是-1,点A 4在数轴表示的数12,可得规律,每3组数是一个循环,则可判断点A 2022在数轴上表示的与点A 3在数轴上表示的相同,即可求解.【详解】解:∵点A 1在数轴表示的数是12,∴点A 2在数轴表示的数是12112=-,点A 3在数轴表示的数是1112=--,点A 4在数轴表示的数是111(1)2=--,∴每3组数是一个循环,∵2022÷3=674,∴点A2022在数轴上表示的与点A3在数轴上表示的相同,∴点A2022在数轴上表示的-1,故答案为:-1.【点睛】本题考查数字的变化规律,能够通过所给条件,探索出数的规律是解题的关键.19.2-【解析】【分析】根据有理数的加法运算,即可求得结果.【详解】解:1252 33⎛⎫-++--⎪⎝⎭125233⎛⎫=--+-⎪⎝⎭13=-+2=-【点睛】本题考查了有理数的加减混合运算,采用加法的结合律会使运算比较简单.20.2x2+x-6【解析】【详解】试题分析:先找出同类项,再根据合并同类项法则即可得到结果.原式=3x2-x2-1-5-2x+3x=2x2+x-6.考点:本题考查的是合并同类项,解答本题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.21.11-【解析】【分析】原式先计算乘方,再计算中括号内的,然后计算除法,最后进行加减运算即可得到答案.【详解】解:3211(2)25(()24⎡⎤-+-⨯-÷-⎢⎥⎣⎦=1418(25(4-+-⨯÷-=5418(2)()4-+-÷-=3418()4-+÷-=83--=11-【点睛】本题主要考查了有理数的混合运算,熟练掌握混合运算的顺序和法则是解答本题的关键.22.716,,10126,3.14;7,109.1,- 3.14;-3,-4【解析】【分析】根据“正数是大于0的数;分数包括正分数和负分数;负整数是小于0整数:进行判断即可.【详解】解:正数集合{716,,10126,3.14…};分数集合{7,109.1,- 3.14…};负整数集合{-3,-4…}故答案为:716,,10126,3.14;7,109.1,- 3.14;-3,-4【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类.23. 3.5-<112-<0<12<4<+5,见解析【解析】【分析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【详解】如图所示:由小到大排序为: 3.5-<112-<0<12<4<+5【点睛】本题考查了数轴:数轴有三要素(正方向、原点、单位长度),原点表示数0,原点左边的点表示负数,右边的点表示正数.24.23x y -+,469【解析】【分析】先化简整式,再代入求值即可;【详解】解:原式22123122323x x y x y =-+-+,=23x y -+,2x =-,23y =时,原式469=;【点睛】本题主要考查了整式加减化简求值,准确计算是解题的关键.25.(1)(20-2x ),(10-x )(2)菜地的周长为54m .【解析】【分析】(1)根据图形中的数据求出菜地的长、宽;(2)根据图形中的数据求出菜地的周长即可,把x=1代入求出即可.(1)解:菜地的长a=(20-2x )m ,菜地的宽b=(10-x )m ,故答案为:(20-2x ),(10-x );(2)解:菜地的周长为:2(20-2x )+2(10-x )=(60-6x )m ,当x=1时,菜地的周长C=60-6×1=54(m ).【点睛】本题考查了求代数式的值和列代数式,能够正确列出代数式是解此题的关键.26.(1)5楼(2)10.08度【解析】【分析】(1)把上下楼层的记录相加,根据有理数的加法运算法则进行计算,可判断小李最后的位置;(2)求出上下楼层所走过的总路程,然后乘以0.06即可得解.(1)解:()()()()()()()7311812510++-+++-+++-+-=7-3+11-8+12-5-10=44+1=5,故小李最后停在5楼;(2)解:7311812510++-+++-+++-+-=7+3+11+8+12+5+10=565630.0610.08⨯⨯=(度),当他办事时电梯需要耗电10.08度.【点睛】本题主要考查了有理数的混合运算,(2)中注意要求出上下楼层的绝对值,而不是利用(1)中的结论求解,这是本题容易出错的地方.27.(1)2()a b -(2)10,过程见解析【解析】【分析】(1)把2()a b -看成一个整体,合并同类项即可;(2)把2842y x -+-的前两项提取公因式4,然后整体代入求值.(1)解:2223()8()6()a b a b a b ---+-=(3-8+6)2()a b -=2()a b -故答案为:2()a b -(2)解:∵223x y -=,∴2842y x -+-=24(2)2y x -+-=24(2)2x y --=432⨯-=10【点睛】本题考查了整式的加减,掌握整体的思想是解决本题的关键.28.(1)1111;4520202021--(2)111(1)1n n n n =-++(3)20212022【解析】【分析】(1)利用题干中反映的规律解答即可;(2)利用(1)中的方法解答即可;(3)利用(2)中的规律将式子中的每一项变成两数之差即可得出结论.(1)∵111111111,,,12223233434=-=-=-⨯⨯⨯∴111111,45452020202120202021=-=-⨯⨯故答案为:1111;4520202021--(2)由(1)中的规律可得:用含有n (n 为正整数)的式子表示为:111(1)1n n n n =-++故答案为:111(1)1n n n n =-++(3)111112233420212022++++⨯⨯⨯⨯ 111111112233420212022=-+-+-++- 112022=-20212022=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册数学期中考试试卷
班级 姓名 学号
一、选择题(每小题2分共20分)
1、( )-4的倒数的相反数是:
A、 -4 B、4 C、41 D、41
2、( )下列运算,正确的是:
A、4559527 B、3÷35445÷1=3
C、932 D、172757275
3、( )温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收
入和新参加工作的大学生的住房需要,把36 000 000用科学记数法表示为:
A、6106.3 B、61036 C、7106.3 D、81036.0
4、( )下列说法:① 0是绝对值最小的有理数;② 相反数大于本身的数是负数;③ 数轴上
原点两侧的数互为相反数;④两个数比较大小,绝对值大的反而小。其中正确的有: A、1个
B、2个 C、3个 D、4个
5、( )下列式子:22x、ax、x21、x32、a1、11、2yx,其中单项式有: A、3
个 B、4个 C、6个 D、7个
6、( )下列各式中,去括号错误的是:
A、yxxyxx232322 B、22222525baabaa
C、24324322xxxx D、222233babababa
7、( )若一个多项式含有的项分别是3y、xy、2y、3,则这个多项式为:
A、323yxyy B、323yxyy
C、323yxyy D、323yxyy
8、( )多项式326224nnn减去3nnn31232(n为正整数)的差一定是:
A、5的整数倍 B、偶数 C、3的整数倍 D、不能确定
9、( )多项式725xnxn是关于x的二次三项式,则n的值是:
A、2 B、-2 C、2或-2 D、3
10、( )观察图中正方形四个顶点所标的数字规律,可知数2012应标在
A、第502个正方形的右上角 B、第502个正方形的右下角
C、第503个正方形的左上角 D、第503个正方形的左下角
二、填空题(每空2分,共24分)
1、用四舍五入法取近似数: 64670(精确到百位)
2、一个数的平方等于它本身的数是 ,一个数的立方等于它本身的数是 。
3、计算:32523÷21=
4、若012212yx,则32yx
5、将多项式13443322yxyxxyyx按字母y的升幂排列是
6、若单项式yxba22与843ba的和仍是个单项式,则yx
7、多项式723xnxn是关于x的二次三项式,则n值是
8、多项式baab2238与多项式baab2252的差是
9、已知多项式33bxax,当1x时的值是5,则当1x时,该多项式23bxax的值为
10、若多项式1532222yxbxbyaxx中不含2x和x项,则a ;b
三、解答题(共56分)
1、(本题8分)把下列各数填入相应的集合内:
-0.25 2 0 3 25.2 212
自然数集合: 负整数集合:
正分数集合: 非正数集合:
2、(本题4分)在数轴上表示下列各数,并按从小到大的顺序排列
-3.5 -(-1.5) 2 0 212
3、计算(每小题4分,共8分)
(1)101(1+0.5)×31÷4 (2)23÷3124324922
4、(本题4分)已知a、b、c在数轴上的对应点位置如图所示,
化简:cbcabca
5、化简:(每小题5分,共10分)
(1)22222322547abbaabbaba
c
b
a
0
(2)2222143225babaaba
6、(本题5分)求多项式22213yxyx与2223421yxyx的差
7、(本题5分)先化简,再求值:131222222abbaabba,其中2a,2b。
8、(本题6分)一天下午,一辆出租车以北京西站为出发地在东西方向营运,现规定向东为正,向
西为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-7,
-4,+10.
(1)将最后一名乘客送到目的地,出租车在北京西站的什么方向?距离有多远?
(2)若汽车每千米耗油0.3升,营运前油箱有18升汽油,则营运中途中否需要加油?若需要,则
需要加多少升?若不需要,则营运完时油箱还剩多少升汽油?
9、(本题6分)某校七年级学生在5名老师的带领下去公园秋游,公园的门票为每人30元,现有
两种优惠方案,甲方案:带队老师免费,学生按8折收费;乙方案:师生都按7.5折收费。
(1)若有m名学生,试用含m的式子分别表示两种优惠方案所需的钱数;
(2)当m = 70时,采用哪种方案优惠?
(3)当m =100时,采用哪种方案优惠?