2021版新高考数学:高考中的立体几何问题含答案

合集下载

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

2021年高考数学真题模拟试题专项汇编之立体几何(文)(Word版,含解析)

(8)立体几何(文)——2021年高考数学真题模拟试题专项汇编1.【2021年新高考Ⅰ卷,3】已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2B.22C.4D.422.【2021年新高考Ⅱ卷,4】卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度指卫星到地球表面的最短距离).把地球看成一个球心为O ,半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α.该卫星信号覆盖的地球表面面积22π(1cos )S r α=-(单位:2km ),则S 占地球表面积的百分比为( ) A.26%B.34%C.42%D.50%3.【2021年北京卷,4】某四面体的三视图如图所示,该四面体的表面积为( )33+ B.1213+3 4.【2021年浙江卷,4】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.32B.3C.322D.325.【2021年新高考Ⅱ卷,5】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则四棱台的体积为( ) A.5623B.562C.282D.28236.【2021年浙江卷,6】如图,已知正方体1111ABCD A B C D -,,M N 分别是1A D ,1D B 的中点,则( )A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B7.【2021年北京卷,8】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10<mm ),中雨(10mm —25mm ),大雨(25mm —50mm ),暴雨(50mm —100mm ),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )A.小雨B.中雨C.大雨D.暴雨8.【2021年全国乙卷(文),10】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A.π2B.π3C.π4D.π69.【2021年全国甲卷(文),14】已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为__________.10.【2021年上海卷,9】已知圆柱的底面半径为1,高为2,AB 为上底面圆的一条直径,点C 为下底底面圆周上的一个动点,点C 绕着下底底面旋转一周,则ABC △面积的取值范围为____________.11.【2021年全国乙卷(文),16】以图①为正视图,在图②③④③中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为___________(写出符合要求的一组答案即可).12.【2021年全国乙卷(文),18】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.13.【2021年安徽怀宁模拟,18】如图,在三棱柱111ABC A B C -中,侧面11AAC C ⊥底面11,2,ABC AA AC AC AB BC ====,且AB BC ⊥,O 为AC 的中点.(1)求证:平面11A B O ⊥平面1BCA ;(2)若点E 在1BC 上,且//OE 平面1A AB ,求三棱锥1E A BC -的体积.14.【2021年广西桂林模拟(文),18】如图所示,在三棱锥A BCD -中,侧棱AB ⊥平面BCD ,F 为线段BD 中点,Q 为线段AB 中点,2π3BCD ∠=,3AB =,2BC CD ==.证明:(1)CF ⊥平面ABD ; (2)求点D 到平面QCF 的距离.15.【2021年全国甲卷(文),19】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形.2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥,(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.答案以及解析1.答案:B解析:本题考查圆锥的侧面展开图.设圆锥的底面半径为r ,母线长为l .由题意可得2ππr l =,所以222l r ==. 2.答案:C解析:由题意可知,6400cos 0.1536000640036000r r α==≈++,所以从同步卫星上可望见的地球的表面积222π(1cos )2π(10.15)S r r α=-≈-,此面积与地球表面积之比约为222π(10.15)100%42%4πr r -⨯≈.3.答案:A解析:画正方体,删点,剩下的4个点就是三棱锥的顶点,如图:1333311(11)2S +=⨯⨯⨯+=表. 4.答案:A解析:本题考查几何体的三视图.该几何体是高为1的四棱柱,其底面为三个全等的直角边为1的等腰直角三角形拼成的梯形,面积为32,故其体积是32. 5.答案:D解析:本题考查棱台的体积.将正四棱台1111A B C D ABCD -补成四棱锥P ABCD -,作PO ⊥底面ABCD 于点O ,交平面1111A B C D 于点1O ,则棱台1111A B C D ABCD -的体积1111P ABCD P A B C D V V V --=-.由题意,11112142PA PO A B PA PO AB ====,易知,4PA =,22AO =22224(22)22PO PA AO --=,所以12PO =,则1322(44)223P ABCD V -=⨯⨯⨯,1111142(22)23P A B C D V -=⨯⨯,所以棱台1111A B C D ABCD -的体积111132242282P ABCD P A B C D V V V --=-==.6.答案:A解析:本题考查空间的线线关系与线面关系.易知1A D ⊥平面1ABD ,故11A D D B ⊥,排除B ,C 项;连接1AD ,可知//MN AB ,所以//MN 平面ABCD ,A 项正确;因为AB 不垂直于平面11BDD B ,//MN AB ,所以直线MN 不垂直于平面11BDD B ,D 项错误.7.答案:B解析:由相似的性质可得,小圆锥的底面半径2002502r ==,故231π5015050π3V =⨯⨯⨯=⋅小圆锥,积水厚度3250π12.5π100V h S ⋅===⋅大小圆锥圆,属于中雨,故选B. 8.答案:D解析:本题考查立体几何中的线面关系及解三角形的应用.如图,记正方体的棱长为a ,则1111112AD C B A C B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=.在1BC P 中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.9.答案:39π解析:本题考查圆锥的体积与侧面积.由题可得圆锥的体积21π12π30π3V r h h ===,可得52h =,故圆锥的母线22132l r h +,所以圆锥的侧面积π39πS rl ==. 10.答案:5]解析:本题主要考查空间几何体.上顶面圆心记为O ,下底面圆心记为O ',连接OC ,过点C 作CM AB ⊥,垂足为点M ,则12ABCSAB CM =⨯⨯,根据题意,AB 为定值2,所以ABCS 的大小随着CM 长短的变化而变化.当点M 与点O 重合时,22125CM OC ==+=,取得最大值,此时12552ABCS =⨯⨯=.当点M 与点B 重合时,CM 取最小值2,此时12222ABCS=⨯⨯=.综上所述,ABCS 的取值范围为[2,5].11.答案:②⑤或③④解析:本题考查几何体的三视图.由高度可知,侧视图只能为②或③.当侧视图为②时,则该三棱锥的直观图如图1,平面PAC ⊥平面ABC ,2PA PC ==,5BA BC =2AC =,此时俯视图为⑤;当侧视图为③时,则该三棱锥的直观图如图2,PA ⊥平面ABC ,1PA =,5AC AB ==2BC =,此时俯视图为④.12.答案:(1)因为PD ⊥底面ABCD ,AM ⊂底面ABCD , 所以PD AM ⊥.又因为PB AM ⊥,PD PB P ⋂=,PB ,PD ⊂平面PBD , 所以AM ⊥平面PBD .因为AM ⊂平面PAM ,所以平面PAM ⊥平面PBD .(2)由PD ⊥底面ABCD ,所以PD 即为四棱锥P ABCD -的高,DPB 是直角三角形. 由题可知底面ABCD 是矩形,1PD DC ==,M 为BC 的中点,且PB AM ⊥.设2AD BC a ==,取CD 的中点为E ,CP 的中点为F ,连接MF ,AF , EF ,AE ,可得//MF PB ,//EF DP ,那么AM M F ⊥,AM F 为直角三角形,且12EF =,2144AE a =+,21AM a =+,222142AF EF AE a =++因为DPB 是直角三角形,所以根据勾股定理得224BP a =+,则2242a MF +=.由AM F 是直角三角形,可得222AM MF AF +=,解得22a =, 所以底面ABCD 的面积22S a ==,则四棱锥P ABCD -的体积11221333V S h =⋅⋅=⨯⨯-.13.答案:(1)1111,//,AB BC AB A B BC A B ⊥∴⊥,在1A AC 中,112AA AC AC ===,O 是AC 的中点,1AO AC ∴⊥,又平面11AAC C ⊥平面ABC ,平面11AAC C平面ABC AC =,1A O ∴⊥平面ABC .BC ⊂平面1,ABC AO BC ∴⊥. 111,A B AO ⊂平面111111,A B O A B AO A =,BC ∴⊥平面11A B O , 又BC ⊂平面1BCA ,∴平面1BCA ⊥平面11A B O .(2)如图,连接1B C ,设1B C 与1BC 交于点E ,连接1,OE AB , 易得1//OE AB ,1AB ⊂平面11,ABB A OE ⊄平面11ABB A ,//OE ∴平面11ABB A ,∴满足条件的E 为1BC 的中点.11111 1122E A BCC A BC B A CC V V V ---==三棱锥三棱锥三棱锥21133212346=⨯⨯⨯⨯=, 故三棱锥1E A BC -的体积为36.14.答案:(1)AB ⊥平面BCD ,CF ,BD ⊂平面BCD ,AB CF ∴⊥,AB BD ⊥.2BC CD ==,F 为BD 中点,CF BD ∴⊥.又CF AB ⊥,AB BD B =,AB ,BD ⊂平面ABD ,CF ∴⊥平面ABD .(2)在三棱锥Q DCF -中,设D 到平面QFC 距离为d . Q DCF D QCF V V --=,1133DCFQCFQB Sd S ∴⋅⋅=⋅⋅,DCFQCFQB S d S ⋅∴=.1112π322sin 2223DCFDCBSS ==⨯⨯⨯⨯=,2π44222cos 233BD =+-⨯⨯⨯.AB BD ⊥,3AB =,Q ,F 分别为AB ,BD 的中点.22912212ADAB BD QF ++∴====.QCF 中,π2cos 13CF ==,235422CQ ⎛⎫=+ ⎪⎝⎭,21QF =. 25211244cos 55212QCF +-∴∠==⨯⨯,21sin QCF ∴∠=. 152121122QCFS∴=⨯⨯=. 33372221d ∴==.15.答案:(1)如图,取BC 的中点为M ,连接EM .由已知易得//EM AB ,2AB BC ==,1CF =,112EM AB ==,11//AB A B , 由11BF A B ⊥得EM BF ⊥,又易得EM CF ⊥,BF CF F ⋂=,所以EM ⊥平面BCF , 故1111121132323F EBC E FBC V V BC CF EM --==⨯⨯⨯=⨯⨯⨯⨯=三棱锥三棱锥.(2)连接1A E ,1B M ,由(1)知11//EM A B , 所以ED 在平面11EMB A 内.在正方形11CC B B 中,由于F ,M 分别是1CC ,BC 的中点,所以1tan 2CF CBF BC ∠==,111tan 2BM BB M BB ∠==, 且这两个角都是锐角,所以1CBF BB M ∠=∠, 所以111190BHB BMB CBF BMB BB M ∠=∠+∠=∠+∠=︒, 所以1BF B M ⊥,又11BF A B ⊥,1111B M A B B ⋂=,所以BF ⊥平面11EMB A , 又DE ⊂平面11EMB A ,所以BF DE ⊥.。

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试题(新高考Ⅰ卷)(word版,含答案与解析)

2021年高考数学真题试卷(新高考Ⅰ卷)一、选择题:本题共8小题,每小题5分,共40分。

1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=()A. {2}B. {2,3}C. {3,4,}D. {2,3,4}【答案】B【考点】交集及其运算【解析】【解答】解:根据交集的定义易知A∩B是求集合A与集合B的公共元素,即{2,3},故答案为:B【分析】根据交集的定义直接求解即可.2.已知z=2-i,则( z(z⃗+i)=()A. 6-2iB. 4-2iC. 6+2iD. 4+2i【答案】C【考点】复数的基本概念,复数代数形式的混合运算【解析】【解答】解:z(z+i)=(2−i)(2+2i)=4+4i−2i−2i2=6+2i故答案为:C【分析】根据复数的运算,结合共轭复数的定义求解即可.3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2 √2C. 4D. 4 √2【答案】B【考点】旋转体(圆柱、圆锥、圆台)【解析】【解答】解:根据底面周长等于侧面展开图弧长,设母线为l,底面半径为r,则有2πr=180°360°×2πl,解得l=2r=2√2故答案为:B【分析】根据底面周长等于侧面展开图弧长,结合圆的周长公式与扇形的弧长公式求解即可.4.下列区间中,函数f(x)=7sin( x−π6)单调递增的区间是()A. (0, π2) B. ( π2, π) C. ( π, 3π2) D. ( 3π2, 2π)【答案】A【考点】正弦函数的单调性【解析】【解答】解:由−π2+2kπ≤x−π6≤π2+2kπ得−π3+2kπ≤x≤2π3+2kπ,k∈Z,当k=0时,[−π3,2π3]是函数的一个增区间,显然(0,π2)⊂[−π3,2π3],故答案为:A【分析】根据正弦函数的单调性求解即可.5.已知F 1,F 2是椭圆C :x 29+y 24=1 的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A. 13 B. 12 C. 9 D. 6 【答案】 C【考点】基本不等式在最值问题中的应用,椭圆的定义【解析】【解答】解:由椭圆的定义可知a 2=9,b 2=4,|MF 1|+|MF 2|=2a=6, 则由基本不等式可得|MF 1||MF 2|≤|MF1||MF2|≤(|MF1|+|MF2|2)2=9 ,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故答案为:C【分析】根据椭圆的定义,结合基本不等式求解即可. 6.若tan θ =-2,则sin θ(1+sin2θ)sin θ+cos θ=( )A. −65 B. −25 C. 25 D. 65 【答案】 C【考点】二倍角的正弦公式,同角三角函数间的基本关系,同角三角函数基本关系的运用 【解析】【解答】解:原式=sinθ(sin 2θ+2sinθcosθ+cos 2θ)sinθ+cosθ=sinθ(sinθ+cosθ)2sinθ+cosθ=sinθ(sinθ+cosθ)=sin 2θ+sinθcosθsin 2θ+cos 2θ=tan 2θ+tanθtan 2θ+1=25故答案为:C【分析】根据同角三角函数的基本关系,结合二倍角公式求解即可. 7.若过点(a,b)可以作曲线y=e x 的两条切线,则( ) A. e b <a B. e a <b C. 0<a<e b D. 0<b<e a 【答案】 D【考点】极限及其运算,利用导数研究曲线上某点切线方程【解析】【解答】解:由题意易知,当x 趋近于-∞时,切线为x=0,当x 趋近于+∞时,切线为y=+∞,因此切线的交点必位于第一象限,且在曲线y=e x 的下方. 故答案为:D【分析】利用极限,结合图象求解即可.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A. 甲与丙相互独立 B. 甲与丁相互独立 C. 乙与丙相互独立 D. 丙与丁相互独立 【答案】 B【考点】相互独立事件,相互独立事件的概率乘法公式,古典概型及其概率计算公式 【解析】【解答】解:设甲乙丙丁事件发生的概率分别为P(A),P(B),P(C),P(D), 则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16 ,对于A ,P(AC)=0;对于B ,P(AD)=16×6=136; 对于C ,P(BC)=16×6=136; 对于D ,P(CD)=0.若两事件X,Y 相互独立,则P(XY)=P(X)P(Y), 故B 正确. 故答案为:B【分析】根据古典概型,以及独立事件的概率求解即可二、选择题:本题共4小题。

2021高考数学必考点解题方式秘籍 立体几何3 理(1)

2021高考数学必考点解题方式秘籍 立体几何3 理(1)

2021高考理科数学必考点解题方式秘籍:立体几何3一.专题综述:立体几何的要紧任务是培育学生的空间想像能力,固然推理中兼顾逻辑思维能力的培育,几何是研究位置关系与数量关系的学科,而位置关系与数量关系能够彼此转化,解决立体几何的大体方式是将空间问题转化为平面的问题,即空间问题平面化,平面化的手法有:平移(包括线、面、体的平移)、投影、展开、旋转等变换。

1.考纲要求(1)把握平面的大体性质。

会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各类位置关系的图形,能够依照图形想像它们的位置关系。

(2)把握直线和平面平行的判定定理和性质定理:明白得直线和平面垂直的概念,把握直线和平面垂直的判定定理:把握三垂线定理及其逆定理。

(3)明白得空间向量的概念,把握空间向量的加法、减法和数乘。

(4)了解空间向量的大体定理;明白得空间向量坐标的概念,把握空间向量的坐标运算。

(5)把握空间向量的数量积的概念及其性质:把握用直角坐标计算空间向量数量积的公式;把握空间两点间距离公式。

(6)明白得直线的方向向量、平面的法向量、向量在平面内的射影等概念。

(7)把握直线和直线、直线和平面、平面和平面所成的角、距离的概念,关于异面直线的距离,只要求会计算已给出公垂线或在座标表示下的距离把握直线和平面垂直的性质定理把握两个平面平行、垂直的判定定理和性质定量。

(8)了解多面、凸多面体的概念,了解正多面体的概念。

(9)了解棱柱的概念,把握棱柱的性质,会画直棱柱的直观图。

(10)了解棱锥的概念,把握正棱锥的性质,会画正棱锥的直观图。

(11)了解球的概念,把握球的性质,把握球的表面积、体积公式。

2.考题设置与分值从近几年各地高考试题分析,立体几何题型一样是1至3个填空或选择题,1个解答题,分值25分左右3.考试重点与难度(1)空间大体的线、面位置关系。

一样以客观题的形式显现,试题很基础,但需要全面、准确把握空间线、面位置关系的判定、性质,还需要有好的空间感。

2021版《大高考》高考数学(文)一轮总复习高考AB卷:第8章 立体几何初步 第五节

2021版《大高考》高考数学(文)一轮总复习高考AB卷:第8章 立体几何初步 第五节

1.(2021·大纲全国,11)已知正四棱柱ABCDA 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33 C.23D.13解析 如图,设AA 1=2AB =2,AC 交BD 于点O ,连接OC 1,过C 作CH ⊥OC 1于点H ,连接DH .∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面ACC 1A 1.∴CH ⊂平面ACC 1A 1,∴CH ⊥BD .∴CH ⊥平面C 1BD .∴∠CDH 为CD 与平面BDC 1所成的角. OC 1=CC 21+OC 2=4+⎝ ⎛⎭⎪⎫222=32. 由等面积法得OC 1·CH =OC ·CC 1, ∴32·CH =22×2.CH =23. ∴sin ∠CDH =CH CD =231=23.故选A. 答案 A2.(2022·新课标全国Ⅰ,18)如图,已知正三棱锥P ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明:G 是AB 的中点;(2)作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四周体PDEF 的体积.(1)证明 由于P 在平面ABC 内的正投影为D ,所以AB ⊥PD .由于D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 所以AB ⊥平面PED ,故AB ⊥PG .又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,由于P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四周体PDEF 的体积V =13×12×2×2×2=43.3.(2022·新课标全国Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CFCD ,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.4.(2021·新课标全国Ⅰ,18)如图,四边形ABCD 为菱形,G 是AC 与BD的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积. 解 (1)由于四边形ABCD 为菱形,所以AC ⊥BD .由于BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得 AG =GC =32x ,GB =GD =x2.由于AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥EACD 的体积V EACD =13×12AC ·GD ·BE =624x 3=63.故x =2. 从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+2 5.5.(2022·新课标全国Ⅰ,19)如图,三棱柱ABCA 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABCA 1B 1C 1的高.(1)证明 连接BC 1,则O 为B 1C 与B C 1的交点.由于侧面BB 1C 1C 为菱形, 所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,又由于BC 1∩AO =O ,所以B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,AO ∩OD =O ,故BC ⊥平面AOD ,所以OH ⊥BC .又OH ⊥AD ,所以OH ⊥平面ABC .由于∠CBB 1=60°,所以△CBB 1为等边三角形, 又BC =1,可得OD =34.由于AC ⊥AB 1,所以OA =12B 1C =12. 由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114.又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为217.故三棱柱ABCA 1B 1C 1的高为217.1.(2022·浙江,6)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A.若m ⊥n ,n ∥α,则m ⊥α B.若m ∥β,β⊥α,则m ⊥α C.若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D.若m ⊥n ,n ⊥β,β⊥α,则m ⊥α解析 选项A 、B 、D 中m 均可能与平面α平行、垂直、斜交或平面α内,故选C. 答案 C2.(2021·浙江,4)设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A.若m ∥α,n ∥α,则m ∥n B.若m ∥α,m ∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析A选项中直线m,m可能平行,也可能相交或异面,直线m,n的关系是任意的;B选项中,α与β也可能相交,此时直线m平行于α,β的交线;D选项中,m也可能平行于β.故选C.答案 C3.(2022·北京,18)如图,在四棱锥P ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC;(2)求证:平面P AB⊥平面P AC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.(1)证明∵PC⊥平面ABCD,DC⊂平面ABCD,∴PC⊥DC.又AC⊥DC,PC∩AC=C,PC⊂平面P AC,AC⊂平面P AC,∴CD⊥平面P AC. (2)证明∵AB∥CD,CD⊥平面P AC,∴AB⊥平面P AC,AB⊂平面P AB,∴平面P AB⊥平面P AC.(3)解棱PB上存在点F,使得P A∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又由于E为AB的中点,∴EF为△P AB的中位线,∴EF∥P A.又P A⊄平面CEF,EF⊂平面CEF,∴P A∥平面CEF.4.(2022·浙江,18)如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示,由于平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又由于EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解由于BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=3,DF=32,得cos ∠BDF=217.所以,直线BD与平面ACFD所成角的余弦值为217.5.(2022·四川,17)如图,在四棱锥P ABCD中,P A⊥CD,AD∥BC,∠ADC=∠P AB=90°,BC=CD=12AD.(1)在平面P AD内找一点M,使得直线CM∥平面P AB,并说明理由.(2)证明:平面P AB⊥平面PBD.(1)解取棱AD的中点M(M∈平面P AD),点M即为所求的一个点,理由如下:由于AD∥BC,BC=12AD.所以BC∥AM,且BC=AM.所以四边形AMCB是平行四边形,从而CM∥AB.又AB⊂平面P AB.CM⊄平面P AB.所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,P A⊥AB,P A⊥CD.由于AD∥BC,BC=12AD,所以直线AB与CD相交,所以P A⊥平面ABCD.从而P A⊥BD.由于AD∥BC,BC=12AD,所以BC∥MD,且BC=MD.所以四边形BCDM是平行四边形,所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.6.(2021·安徽,19)如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求PMMC的值.(1)解由题设AB=1,AC=2,∠BAC=60°,可得S△ABC =12·AB·AC·sin 60°=32.由P A⊥平面ABC,可知P A是三棱锥P-ABC的高,又P A=1.所以三棱锥P-ABC的体积V=13·S△ABC·P A=36.(2)证明在平面ABC内,过点B作BN⊥AC,垂足为N,在平面P AC内,过点N作MN∥P A 交PC于点M,连接BM.由P A⊥平面ABC知P A⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN,又BM⊂平面MBN,所以AC⊥BM.在Rt△BAN中,AN=AB·cos∠BAC=12,从而NC=AC-AN=32,由MN∥P A,得PMMC=ANNC=13.7.(2021·湖北,20)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四周体称之为鳖臑.在如图所示的阳马P ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E 是PC的中点,连接DE、BD、BE.(1)证明:DE⊥平面PBC.试推断四周体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马P ABCD的体积为V1,四周体EBCD的体积为V2,求V1V2的值.解(1)由于PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PCD,所以BC⊥DE.又由于PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.由BC⊥平面PCD,DE⊥平面PBC,可知四周体EBCD的四个面都是直角三角形,即四周体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB. (2)由已知,PD是阳马P ABCD的高,所以V1=13S ABCD·PD=13BC·CD·PD;由(1)知,DE是鳖臑DBCE的高,BC⊥CE,所以V2=13S△BCE·DE=16BC·CE·DE.在Rt△PDC中,由于PD=CD,点E是PC的中点,所以DE=CE=22CD,于是V1V2=13BC·CD·PD16BC·CE·DE=2CD·PDCE·DE=4.8.(2021·浙江,18)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.(1)证明设E为BC的中点,由题意得A1E⊥平面ABC,所以A1E⊥AE,由于AB=AC,所以AE⊥BC.故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以AA1DE为平行四边形.于是A1D∥AE.又由于AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)解作A1F⊥DE,垂足为F,连接BF.由于A1E⊥平面ABC,所以BC⊥A1E.由于BC⊥AE,所以BC⊥平面AA1DE.所以BC⊥A1F,A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E =14.由DE=BB1=4.DA1=EA=2,∠DA1E=90°,得A1F=7 2.所以sin ∠A1BF=7 8.。

2021届高考数学立体几何专题:点到平面的距离(学生版)

2021届高考数学立体几何专题:点到平面的距离(学生版)

立体几何专题点到平面的距离定义:从平面外一点向平面作垂线,这个点与垂足之间的距离叫这个点到平面的距离。

作用:(1)求几何体的体积;(2)求直线与平面所成的角;(3)求二面角;方法一:直接法,根据题意得到平面α外一点P 在平面α内的射影O ,建立三角形,解出PO 的长度。

【题型一】根据已知条件直接找出点P 在平面α内的射影。

如:①正棱锥的顶点在底面内的射影是底面正多边形的中心;②侧棱长相等的棱锥的顶点在底面内的射影是底面多边形的外心;③三棱锥P ﹣ABC 的三侧棱两两垂直,则顶点在底面的射影是底面三角形的垂心;【典例】在三棱锥P ﹣ABC 中,PA=PB=PC=AC ,AB ⊥BC ,求PB 与底面ABC 所成角的大小.【题型二】利用平面与平面垂直的性质定理,找出点P 在平面α内的射影。

【典例1】(2011重庆文)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AC=AD=2,BC=CD=1.(Ⅰ)求四面体ABCD 的体积;(Ⅱ)求二面角C ﹣AB ﹣D 的平面角的正切值。

【典例2】(2012年天津文)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC=1,PC=32,PD=CD=2.(I )求异面直线PA 与BC 所成角的正切值;(II )证明:平面PDC ⊥平面ABCD ;(III )求直线PB 与平面ABCD 所成角的正弦值。

ABCPABCPD ABCD【题型三】根据已知条件,证明PO ⊥α.【典例1】(2016全国Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D′EF 的位置.(Ⅰ)证明:AC ⊥HD′;(Ⅱ)若AB=5,AC=6,AE=45,OD′=22,求五棱锥D′﹣ABCFE 的体积【典例2】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,AE =A 1E ,AB =3,BE ⊥EC 1.(1)求BC 1与平面EB 1C 1所成角的正弦值;(2)求四棱锥11E BB C C -的体积.方法二:平行线转移法若直线l ∥α,则直线l 上任意一点到平面α的距离相等。

2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)

2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)

2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.6 立体几何中的向量方法目录一、考点全归纳1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=|a·n||a||n|.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图①①,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【常用结论】 利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二 题型全归纳题型一 异面直线所成的角【题型要点】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【易错提醒】注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.【例1】如图,在四棱锥P ­ABCD 中,P A ①平面ABCD ,底面ABCD 是菱形,AB =2,①BAD =60°.(1)求证:BD ①平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解析】(1)证明:因为四边形ABCD 是菱形, 所以AC ①BD .因为P A ①平面ABCD ,所以P A ①BD . 又因为AC ∩P A =A ,所以BD ①平面P AC . (2)设AC ∩BD =O .因为①BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64.即PB 与AC 所成角的余弦值为64. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ①平面BDE , 所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.题型二 直线与平面所成的角【题型要点】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2. 【易错提醒】求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.【例1】(2020·深圳模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ①平面AMHN .(1)证明:MN ①PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.【解析】:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ①AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ①BD ,因为AC ∩PO =O ,且AC ,PO ①平面P AC ,所以BD ①平面P AC . 因为PC ①平面P AC ,所以BD ①PC .因为BD ①平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ①MN , 所以MN ①PC .(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD ,因为P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图①所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32, 所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34.所以AD 与平面AMHN 所成角的正弦值为34. 【例2】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1, 又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1, 又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1. 因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1, 所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E . (2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.题型三 二面角【题型要点】利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【易错提醒】:判断二面角的平面角是锐角还是钝角,可结合图形进行.【例1】(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN ①P C.(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD , 所以P A 与平面ABCD 所成的角为①P AO , 所以①P AO =60°,所以AO =12P A ,PO =32P A ,因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32),所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0).设平面AMHN 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 【例2】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC ,所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz , 则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.题型四 利用空间向量求距离【题型要点】求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.【易错提醒】该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.【例1】(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33,所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0, 整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 【例2】如图,①BCD 与①MCD 都是边长为2的正三角形,平面MCD ①平面BCD ,AB ①平面BCD ,AB =23,求点A 到平面MBC 的距离.【答案】见解析【解析】:如图,取CD 的中点O ,连接OB ,OM ,因为①BCD 与①MCD 均为正三角形,所以OB ①CD ,OM ①CD ,又平面MCD ①平面BCD ,平面MCD ∩平面BCD =CD ,OM ①平面MCD ,所以MO ①平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为①BCD 与①MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23),所以BC →=(1,3,0).BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ①BC →,n ①BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0, 取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.三、高效训练突破一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°【答案】C【解析】设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又0°≤β≤90°,①β=30°.2.在正方体A 1B 1C 1D 1­ABCD 中,AC 与B 1D 所成角大小为( )A.π6B.π4C.π3D.π2 【答案】D【解析】建立如图所示的空间直角坐标系设正方体边长为1,则A (0,0,0), C (1,1,0),B 1(1,0,1),D (0,1,0). ①AC →=(1,1,0),B 1D →=(-1,1,-1),①AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,①AC →①B 1D →,①AC 与B 1D 所成的角为π2. 3.如图,在空间直角坐标系中有直三棱柱ABC ­A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35【答案】A 【解析】设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 4.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2【答案】B 【解析】:.以O 为坐标原点建系如图则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C ⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1),所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, 所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B. 5.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277 C.33 D .24 【答案】A.【解析】:如图以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3). 因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°【答案】C.【解析】:如图所示二面角的大小就是〈AC →,BD →〉.因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,BD →〉①[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.7.已知斜四棱柱ABCD ­A 1B 1C 1D 1的各棱长均为2,①A 1AD =60°,①BAD =90°,平面A 1ADD 1①平面ABCD ,则直线BD 1与平面ABCD 所成的角的正切值为( ) A.34B.134C.3913D.393 【答案】C【解析】取AD 中点O ,连接OA 1,易证A 1O ①平面ABCD .建立如图所示的空间直角坐标系得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 所成的角为θ,①sin θ=|BD 1→·n ||BD 1→||n |=34,①tan θ=3913. 8.如图,在四棱锥P ­ABCD 中,四边形ABCD 为平行四边形,且BC ①平面P AB ,P A ①AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B ­AC ­M 的余弦值为( )A.66B.36C.26D.16【答案】A【解析】因为BC ①平面P AB ,P A ①平面P AB ,所以P A ①BC ,又P A ①AB ,且BC ∩AB =B ,所以P A ①平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A ­xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1,所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1,求得平面AMC 的一个法向量为n =(-2,1,1),又平面ABC 的一个法向量AP →=(0,0,2),所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66. 所以二面角B ­AC ­M 的余弦值为66. 9.设正方体ABCD ­A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233【答案】D【解析】如图建立坐标系则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2).设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,①⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ①D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233. 二、填空题1.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】:35【解析】:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1). 设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35, 所以B 1F 与平面GEF 所成角的正弦值为35. 2.如图,平面ABCD ①平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.【答案】63【解析】如图以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a ),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0AC →·n 1=0①⎩⎪⎨⎪⎧ax 1+ay 1=02ay 1+2a =0①⎩⎪⎨⎪⎧x 1=1y 1=-1①n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a ×3=63. 3.已知正四棱锥S ­ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为________.【答案】33 【解析】以两对角线AC 与BD 的交点O 作为原点,以OA ,OB ,OS 所在直线分别为x ,y ,z 轴建立空间直角坐标系设边长为2,则有O (0,0,0),A (2,0,0),B (0,2,0),S (0,0,2),D (0,-2,0),E ⎝⎛⎭⎫0,22,22, AE →=⎝⎛⎭⎫-2,22,22,SD →=(0,-2,-2), |cos AE →,SD →|=|AE →·SD →||AE →||SD →|=22×3=33, 故AE 与SD 所成角的余弦值为33. 4.在正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.【答案】23【解析】以D 为坐标原点,建立空间直角坐标系,如图设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0, 令y =-2,得平面BDC 1的一个法向量n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 5.(2020·汕头模拟)在底面是直角梯形的四棱锥S ­ABCD 中,①ABC =90°,AD ①BC ,SA ①平面ABCD ,SA=AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________. 【答案】63 【解析】如图所示建立空间直角坐标系,则依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量.设平面SCD 的一个法向量n =(x ,y ,z ),因为SD →=⎝⎛⎭⎫12,0,-1,DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x 2-z =0,x 2+y =0.令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ,则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63. 6.(2020·北京模拟)如图所示,四棱锥P ­ABCD 中,PD ①底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点,当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.【答案】542 【解析】如图建立空间直角坐标系,则A (2,0,0),P (0,0,2),B (2,2,0),①AP →=()-2,0,2,①E 是棱PB 的中点,①E (1,1,1),设M (0,2-m ,m ),则EM →=()-1,1-m ,m -1,①||cos 〈AP →,EM →〉=⎪⎪⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=||2+2()m -1221+2(m -1)2=12, 解得m =34,①M ⎝⎛⎭⎫0,54,34, ①PM =2516+2516=54 2. 三 解答题1.如图所示,菱形ABCD 中,①ABC =60°,AC 与BD 相交于点O ,AE ①平面ABCD ,CF ①AE ,AB =AE =2.(1)求证:BD ①平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.【答案】见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以BD ①AC .因为AE ①平面ABCD ,BD ①平面ABCD ,所以BD ①AE .又因为AC ∩AE =A ,AC ,AE ①平面ACFE .所以BD ①平面ACFE .(2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0, 令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去). 所以OF →=(-1,0,3),BE →=(1,-3,2),cos 〈OF →,BE →〉=-1+610×8=54, 故异面直线OF 与BE 所成角的余弦值为54. 2.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1, 又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC ,又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC .因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1.又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO .又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A ,所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12. 又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55. 3.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC .因为MN ①平面EFC ,EC ①平面EFC ,所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE .因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC ,所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC .(2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2),设平面BDM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0. 令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.。

2021高考数学一轮复习统考第8章立体几何第2讲空间几何体的表面积和体积学案(含解析)北师大版

2021高考数学一轮复习统考第8章立体几何第2讲空间几何体的表面积和体积学案(含解析)北师大版

第2讲空间几何体的表面积和体积基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是01侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=022πrlS圆锥侧=03πrlS圆台侧=04π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=05Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=0613Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=074πr2V=0843πr31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)直棱柱的外接球半径可利用棱柱的上下底面平行,借助球的对称性,可知球心为上下底面外接圆圆心连线的中点,再根据勾股定理求球的半径.(4)设正四面体的棱长为a ,则它的高为63a ,内切球半径r =612a ,外接球半径R =64a .正四面体的外接球与内切球的半径之比为3∶1.1.(2019·福州二模)设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( )A .100π B.256π3 C.400π3 D.500π3答案 D解析 由题意知切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=500π3,即该西瓜的体积为500π3.2.(2019·安徽蚌埠质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .π+43B .π+2C .2π+43D .2π+2答案 A解析由三视图可知,该几何体由半个圆柱和一个三棱锥组合而成.故该几何体的体积为12×π×12×2+13×12×2×2×2=π+43.3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2 B.4C.6 D.8答案 C解析由三视图知该几何体是底面为直角梯形的直四棱柱,即如图所示四棱柱A1B1C1D1-ABCD.由三视图中的数据可知底面梯形的两底分别为1和2,高为2,所以S底面=12×(1+2)×2=3.因为直四棱柱的高为2,所以体积V=3×2=6.故选C.4.(2019·北京东城区模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5C.2+2 5 D.5答案 C解析该三棱锥的直观图如图所示,过点D作DE⊥BC,交BC于点E,连接AE,则BC=2,EC=1,AD=1,ED=2,S 表=S △BCD +S △ACD +S △ABD +S △ABC =12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.故选C.5.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的棱长为6,则球的表面积和体积分别为________,________.答案 36π 36π解析 底面中心与C ′的连线即为半径,设球的半径为R ,则R 2=(6)2+(3)2=9.所以R =3,所以S 球=4πR 2=36π,V 球=43πR 3=36π.6.如图所示,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________.答案9π2解析 由题意知,DC 边的中点就是球心O , ∵它到D ,A ,C ,B 四点的距离相等, ∴球的半径R =12CD ,又AB =BC =3,∴AC =6,∴CD =AC 2+AD 2=3, ∴R =32,∴V 球O =4π3⎝ ⎛⎭⎪⎫323=9π2.核心考向突破考向一 几何体的表面积例 1 (1)(2019·衡水模拟)如图是某个几何体的三视图,则这个几何体的表面积是( )A .π+42+4B .2π+42+4C .2π+42+2D .2π+22+4答案 B解析 由几何体的三视图可知,该几何体是由半圆柱与三棱柱组成的几何体,其直观图如图所示,其表面积S =2×12π×12+π×1×1+2×12×2×1+(2+2+2)×2-2×1=2π+42+4.故选B.(2)(2019·郑州二模)如图是某几何体的三视图,图中方格的单位长度为1,则该几何体的表面积为________.答案 8+4 5解析 由三视图,知该几何体为三棱锥,将该几何体放在长方体中如图所示,由题意可知长方体的长、宽、高分别为2,2,4,由BC =2,CD =2计算,得BD =22,AD =25,AB =25,所以S △BCD =12×2×2=2,S △ADC =12×2×25=25, S △ABC =12×2×25=25,因为△ABD 为等腰三角形,高为252-22=32,所以S △ABD =12×22×32=6,所以该几何体的表面积为2+25+25+6=8+4 5.几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.[即时训练] 1.(2019·山东潍坊模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π答案 C解析 由三视图可知该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥的底面半径为3,高为4,则该几何体的表面积S =π×32+π×3×5+2π×1×2=28π.故选C.2.(2019·河北承德模拟)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A.8+42+2 5 B.6+42+4 5C.6+22+2 5 D.8+22+2 5答案 C解析由三视图可知,该几何体为放在正方体内的四棱锥E-ABCD,如图,正方体的棱长为2,该四棱锥底面为正方形,面积为4,前后两个侧面为等腰三角形,面积分别为22,2,左右两个侧面为直角三角形,面积都为5,可得这个几何体的表面积为6+22+25,故选C.精准设计考向,多角度探究突破考向二几何体的体积角度1 补形法求体积例2 (1)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63πC.42π D.36π答案 B解析(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.(2)(2019·北京高考)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.答案 40解析 由题意知去掉的四棱柱的底面为直角梯形,底面积S =(2+4)×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方体的体积为43=64,所以该几何体的体积为64-24=40.角度2 分割法求体积例3 (1)(2019·山西五校联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺答案 A解析 该楔体的直观图如图中的几何体ABCDEF .取AB 的中点G ,CD 的中点H ,连接FG ,GH ,HF ,则该几何体的体积为四棱锥F -GBCH 与三棱柱ADE -GHF 的体积之和.又可以将三棱柱ADE -GHF 割补成高为EF ,底面积为S =12×3×1=32(平方丈)的一个直棱柱,故该楔体的体积V =32×2+13×2×3×1=5(立方丈)=5000(立方尺).故选A.(2)(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27,因此,该柱体的体积V =27×6=162.故选B.角度3 转化法求体积例4 (1)如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.答案 8 3解析 由正三棱柱的底面边长为4,得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则V 三棱锥A -A 1EF =V 三棱锥F -A 1AE =13S △A 1AE ×23=13×12×6×4×23=8 3.(2)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,三棱锥P -ABC 的体积为V 2,则V 1V 2=________.答案1 4解析如图所示,由于D,E分别是边PB与PC的中点,所以S△BDE=14S△PBC.又因为三棱锥A-BDE与三棱锥A-PBC的高相等,所以V1V2=14.(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体、不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体的体积,常用于求三棱锥的体积,即利用三棱锥的任何一个面可作为三棱锥的底面进行等体积变换[即时训练] 3.(2019·河北沧州质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( ) A.50 B.75C.25.5 D.37.5答案 D解析如图,由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥C 1-MNB 1A 1所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱A 1B 1C 1-ABC -V 四棱锥C 1-A 1B 1NM =12×5×5×5-13×3×5×5=37.5,故选D.4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.答案 16解析 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为线段AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V 三棱锥F -DD 1E =13×12×1=16.考向三 与球有关的切、接问题例5 (1)(2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26π D.6π 答案D 解析设PA =PB =PC =2a ,则EF =a ,FC =3,∴EC 2=3-a 2. 在△PEC 中,cos ∠PEC =a 2+3-a 2-2a22a 3-a2.在△AEC 中,cos ∠AEC =a 2+3-a 2-42a 3-a2. ∵∠PEC 与∠AEC 互补,∴3-4a 2=1,a =22, 故PA =PB =PC = 2.又AB =BC =AC =2,∴PA ⊥PB ⊥PC , ∴外接球的直径2R =22+22+22=6,∴R =62,∴V =43πR 3=43π×⎝ ⎛⎭⎪⎫623=6π.故选D. (2)(2019·沈阳市东北育才学校模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π答案 B解析 将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆的半径为R ,则有2πR =3×2π3,所以R =1,设圆锥的内切球的半径为r ,结合圆锥和球的特征,可知内切球的球心必在圆锥的高线上,设圆锥的高为h ,因为圆锥的母线长为3,所以h =9-1=22,所以rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B.“切”“接”问题的处理规律(1)“切”的处理解决与球有关的内切问题主要是指球内切于多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[即时训练] 5.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心, ∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=18 3.故选B.6.(2019·漳州模拟)在直三棱柱A 1B 1C 1-ABC 中,A 1B 1=3,B 1C 1=4,A 1C 1=5,AA 1=2,则其外接球与内切球的表面积之比为( )A.294B.192C.292D .29答案 A解析 由底面三角形的三边长可知,底面三角形为直角三角形,内切球半径r =AA 12=1,取AC ,A 1C 1的中点D ,E ,则外接球球心是DE 的中点O ,由A 1C 1=5,AA 1=2,得AC 1=29,所以外接球半径R =OA =292,所以S 外S 内=4πR 24πr 2=294,故选A.1.(2019·郑州二模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的体积为( )A.455π2B.1355π2C .1805πD .905π答案 A解析 构造底面边长为3,6,高为3的长方体,由三视图可知,该几何体是如图1中所示的三棱锥P -ABC .所以在该三棱锥中,PA ⊥底面ABC ,并且AB ⊥AC ,把该三棱锥放在如图2所示的底面边长为32,高为3的长方体中,则该三棱锥的外接球就是该长方体的外接球,设该三棱锥的外接球的半径为R ,则有(2R )2=32+(32)2+(32)2=45,解得R =352,所以该三棱锥的外接球的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫3523=455π2,故选A.2.(2019·宝鸡中学高三第一次模拟)已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.答案 2 2解析 由题意,知四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π·⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,解得x =y =2,∴a =x 2+y 2=2 2. 答题启示1.若四面体中有三条棱两两垂直,则方法是找到三条两两互相垂直的棱,借助墙角模型补成长方体(如图),用公式 a 2+b 2+c 2=2R 求解.2.若四面体的对棱相等,则解题步骤为第一步:画出一个长方形,标出三组互为异面直线的对棱;第二步:设长方体的长宽高分别为a ,b ,c ,列出方程⎩⎪⎨⎪⎧a 2+b 2=BC 2=α2,b 2+c 2=AC 2=β2,c 2+a 2=AB 2=γ2(其中α,β,γ为常数)⇒a 2+b 2+c 2=α2+β2+γ22;第三步:根据墙角模型,a 2+b 2+c 2=2R ⇒R =a 2+b 2+c 22.对点训练1.在△ABC 中,AB =AC =2,∠BAC =90°,将△ABC 沿BC 上的高AD 折成直二面角B ′-AD -C ,则三棱锥B ′-ACD 的外接球的表面积为( )A .π B.2π C .3πD .2π答案 C解析 如图,∵AB =AC =2,∠BAC =90°,∴BC =2,则BD =DC =AD =1,由题意,得AD ⊥底面B ′DC ,又二面角B ′-AD -C 为直二面角,∴B ′D ⊥DC ,把三棱锥B ′-ACD 补形为正方体,则正方体的体对角线长为3,则三棱锥B ′-ACD 的外接球的半径为32,则其外接球的表面积为S =4π×⎝⎛⎭⎪⎫322=3π.故选C. 2.(2019·漳州质量监测)已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.答案 16 3解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R = 6.因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =2 2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=16 3.。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 7
2021版新高考数学:高考中的立体几何问题含答案
编 辑:__________________
时 间:__________________

教学资料范本
2 / 7

(对应学生用书第138页)
[命题解读] 立体几何是高考的重要内容、从近五年全国卷高考试题来看、
立体几何每年必考一道解答题、难度中等、主要采用“论证与计算”相结合的模
式、即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直、
再利用空间向量进行空间角的计算、考查的热点是平行与垂直的证明、二面角的
计算、平面图形的翻折、探索存在性问题、突出三大能力:空间想象能力、运算
能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查.
[典例示范] (本题满分12分)(20xx·全国卷Ⅲ)图1是由矩形ADEB、Rt△ABC
和菱形BFGC组成的一个平面图形、其中AB=1、BE=BF=2、∠FBC=60°、
将其沿AB、BC折起使得BE与BF重合、连接DG、如图2.

图1 图2
3 / 7

(1)证明:图2中的A、C、G、D四点共面①、且平面ABC⊥平面BCGE②;
(2)求图2中的二面角B-CG-A的大小③.
[信息提取] 看到①想到四边形ACGD共面的条件、想到折叠前后图形中的
平行关系;看到②想到面面垂直的判定定理;看到③想到利用坐标法求两平面法
向量的夹角余弦值、想到建立空间直角坐标系.
[规范解答] (1)由已知得AD∥BE、CG∥BE、所以AD∥CG、故AD、CG确
定一个平面、从而A、C、G、D四点共面.·························2分
由已知得AB⊥BE、AB⊥BC、且BE∩BC=B、
故AB⊥平面BCGE. ·····················································3分
又因为AB⊂平面ABC、
所以平面ABC⊥平面BCGE. ··········································4分
(2)作EH⊥BC、垂足为H.
因为EH⊂平面BCGE、平面BCGE⊥平面ABC、
所以EH⊥平面ABC. ···················································5分
由已知、菱形BCGE的边长为2、∠EBC=60°、可求得BH=1、EH=
3.················································································6分

以H为坐标原点、HC→的方向为x轴的正方向、建立如
图所示的空间直角坐标系H-xyz、
则A(-1、1、0)、C(1、0、0)、G(2、0、3)、

CG→=(1、0、3)、AC→=(2、-1、0). ······························8分
设平面ACGD的法向量为n=(x、y、z)、则






CG→·n=0

AC→·n=0

即x+3z=0,2x-y=0.·······································9分

所以可取n=(3、6、-3).··········································10分
又平面BCGE的法向量可取为m=(0、1、0)、

所以cos 〈n、m〉=n·m|n||m|=32.····································11分
因此、二面角B-CG-A的大小为30°. ····························12分
[易错防范]
4 / 7

易错点 防范措施
不能恰当的建立直角坐标系 由(1)的结论入手、结合面面垂直的性质及侧面菱形的边
角关系建立空间直角坐标系

建系后写不出G
点的坐标

结合折叠后棱柱的侧棱关系:CG→=BE→可求出CG→、或者

借助折叠前后直角三角形的边角关系、直接求出点G的
坐标
[通性通法] 合理建模、建系巧解立体几何问题
(1)建模——将问题转化为平行模型、垂直模型、平面化模型或角度、距离等
的计算模型;
(2)建系——依托于题中的垂直条件、建立空间直角坐标系、利用空间向量求
解.
[规范特训] 1.(20xx·江南十校二模)已知多面体
ABC-DEF、四边形BCDE为矩形、△ADE与△BCF为边长
为22的等边三角形、AB=AC=CD=DF=EF=2.
(1)证明:平面ADE∥平面BCF;
(2)求BD与平面BCF所成角的正弦值.
[解] (1)取BC、DE中点分别为O、O1、连接OA、O1A、OF、O1F.
由AB=AC=CD=DF=EF=2、BC=DE=CF=AE=AD=BF=22、
可知△ABC、△DEF为等腰直角三角形、故OA⊥BC、O1F⊥DE、CD⊥
DE、CD⊥DF、又DE∩DF=D、故CD⊥平面DEF、平面BCDE⊥平面DEF、
因为平面BCDE∩平面DEF=DE、O1F⊥DE、所以O1F⊥平面BCDE.
同理OA⊥平面BCDE;所以O1F∥OA、而O1F=OA、故四边形 AOFO1为平
行四边形、所以AO1∥OF、AO1⊄平面BCF、OF⊂平面BCF、所以AO1∥平面
BCF、又BC∥DE、故DE∥平面BCF、而AO1∩DE=O1、所以平面ADE∥平面
BCF.
(2)以O为坐标原点、以过O且平行于AC的直线作
为x轴、平行于AB的直线作为y轴、OO1为z轴建立空间
直角坐标系如图.
则有B(1、1、0)、C(-1、-1、0)、D(-1、-1、
5 / 7

2)、F(-1、1、2)、
故BD→=(-2、-2、2)、BC→=(-2、-2、0)、BF→=(-2、0、2).
设平面BCF的法向量为n=(x、y、z)、由BC→⊥n、BF→⊥n得


-2x-2y=0,

-2x+2z=0,

取x=1得y=-1、z=1、故平面BCF的一个法向量为n=(1、-1、1).

设BD与平面BCF所成角为θ、则sin θ=|cos 〈BD→、n〉|=




-2×1-2×(-1)+
2×1

3×23
=13.

故BD与平面BCF所成角的正弦值为13.
2.(20xx·河南、河北考前模拟)如图、在矩形ABCD中、AB=2、BC=3、点
E是边AD上的一点、且AE=2ED、点H是BE的中点、将△ABE沿着BE折
起、使点A运动到点S处、且有SC=SD.

(1)证明:SH⊥平面BCDE.
(2)求二面角C­SB-E的余弦值.
[解] (1)证明:取CD的中点M、连接HM、SM、
由已知得AE=AB=2、∴SE=SB=2、
又点H是BE的中点、∴SH⊥BE.
∵SC=SD、点M是线段CD的中点、∴SM⊥CD.
又∵HM∥BC、BC⊥CD、
6 / 7

∴HM⊥CD、
∵SM∩HM=M、
从而CD⊥平面SHM、得CD⊥SH、
又CD、BE不平行、∴SH⊥平面BCDE.
(2)法一:取BS的中点N、BC上的点P、使BP=2PC、连接HN、PN、
PH、
可知HN⊥BS、HP⊥BE.
由(1)得SH⊥HP、∴HP⊥平面BSE、则
HP⊥SB、
又HN⊥BS、HN∩HP=H、∴BS⊥平面
PHN、
∴二面角C-SB-E的平面角为∠PNH.
又计算得NH=1、PH=2、PN=3、

∴cos ∠PNH=13=33.
法二:由(1)知、过H点作CD的平行线GH交BC于点G、以点H为坐标原
点、HG、HM、HS所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐
标系H-xyz、则点B(1、-1、0)、C(1、2、0)、E(-1、1、0)、S(0、0、2),

∴BC→=(0、3、0)、BE→=(-2、2、0)、BS→=(-1、1、2).

设平面SBE的法向量为m=(x1、y1、z1)、
7 / 7

由m·BE→=-2x1+2y1=0,m·BS→=-x1+y1+2z1=0,
令y1=1、
得m=(1、1、0).
设平面SBC的法向量为n=(x2、y2、z2)、

由n·BC→=3y2=0,n·BS→=-x2+y2+2z2=0,
令z2=1、得n=(2、0、1).
∴cos 〈m、n〉=m·n|m|·|n|=22×3=33.

∴二面角C-SB-E的余弦值为33.

相关文档
最新文档