矩形波导TE10波II
波导中微波的模式

波导中微波的模式波导是一种用来传输微波信号的导波结构,由金属壁面构成,中间空腔内充满介质。
在波导中,微波信号通过内部的反射而传播,产生各种模式。
不同模式具有不同的传播特性和分布特点,对于波导设计和应用都非常重要。
本文将介绍波导中常见的几种微波模式。
1.矩形波导模式:矩形波导是最常见的一种波导类型,由金属矩形管道组成。
在矩形波导中,有许多不同的模式,包括正交模式(TE模式)和纵向模式(TM模式)。
(1)TE模式:TE模式是横向电场模式,在矩形波导中,电场垂直于波导的横截面方向。
TE模式的特点是不含有磁场分量,只有电场分量。
TE模式分为TE10,TE20,TE01等不同的阶次。
(2)TM模式:TM模式是纵向磁场模式,在矩形波导中,磁场沿波导的横截面方向。
TM模式的特点是不含有电场分量,只有磁场分量。
TM模式也分为TM10,TM20,TM01等不同的阶次。
矩形波导模式的分布特点是波束在波导内壁上反射,形成驻波模式。
TE和TM模式可以共存,交替出现。
2.圆形波导模式:圆形波导是由金属圆管构成的波导结构。
圆形波导模式与矩形波导模式类似,也有TE模式和TM模式,但其阶次的确定方式略有不同。
(1)TE模式:TE模式是横向电场模式,电场沿着圆柱壁面方向。
TE 模式中的波动电场与壁面垂直,并且没有磁场分量。
(2)TM模式:TM模式是纵向磁场模式,磁场沿着圆柱壁面方向。
TM 模式中的波动磁场与壁面垂直,并且没有电场分量。
与矩形波导不同的是,圆形波导模式的阶次由径向模式数目(m)和角向模式数目(n)两个参数共同确定。
例如,TE11模式表示径向和角向模式都为13.表面波模式:除了矩形和圆形波导模式外,波导中还存在一种特殊的模式,称为表面波模式。
表面波模式是指波在波导壁面上沿着壁面传播的模式,不进一步传播到波导的深处。
表面波模式包括射线波、栅波和电磁波导模式。
射线波模式是指波束沿着表面传播,而不发散或收敛;栅波模式是指波束被壁面上的栅格结构所限制;电磁波导模式是指在电磁波导中,电磁波束是由电和磁场的耦合形成的。
轴向提取矩形波导TE10模虚阴极振荡器

第18卷第2期强激光与粒子束Vol.18,No.2 2006年2月HIGH POWER LASER AND PARTICLE BEAMS Feb.,2006文章编号:1001-4322(2006)02-0253-04轴向提取矩形波导TE10模虚阴极振荡器*杜广星,钱宝良,王弘刚(国防科学技术大学光电科学与工程学院,长沙410073)摘要:轴向提取矩形波导TE10模虚阴极振荡器可以不需要模式转换器或弯曲过渡波导而直接通过天线轴向辐射微波,从而使微波源及其辐射系统更加紧凑。
粒子模拟结果表明,在400keV,8.9kA的束流条件下,轴向提取矩形波导TE10模虚阴极振荡器在2.12GHz处可以获得功率为500MW的高功率微波输出,功率效率为14%,频率、模式纯净。
这些结果为相同波段同类装置的小型化提供了一条可能的技术途径。
关键词:轴向提取;高功率微波;虚阴极振荡器;矩形波导中图分类号:TN752.5 文献标识码:A虚阴极振荡器作为一种高功率微波源,具有无外加磁场、结构简单、阻抗较低、产生微波功率高等特点,在国际上一直很受关注[1-3],近20多年来,人们通过理论分析、粒子模拟、实验研究等手段对虚阴极振荡器开展了大量的研究工作,这些研究工作表明,如果不进行结构上的改进,其束-波转换效率仍然很低。
一般认为,通过预调制电子束[3-4],使虚阴极在谐振腔中形成[5]准光腔虚阴极[6],引入下游微波至虚阴极振荡区的反馈[7]及对虚阴极振荡进行锁频[8],可以有效提高虚阴极振荡器的束-波转换效率。
Jiang Weihua等人在文献[3]中提出利用预调制腔提高虚阴极振荡器的相互作用效率,并得到了十分有用的结果。
他们随后在文献[9]中利用反馈机制把同轴虚阴极的器件效率提高了一倍多,效率超过了5%。
最近Jiang Weihua等人又提出了另一种新结构虚阴极振荡器[10],他们利用谐振腔结构,把虚阴极振荡器的效率提高到了10%以上,为这一器件的发展提供了一条好的技术途径。
《电磁场与微波技术教学课件》2.2 矩形波导

n m n j z H y 2 H0 cos x sin y e b a b Kc
n m n j z Ex j 2 H 0 cos x sin y e b a b Kc
* (5)由 S E H ,在z向有实功率,传输能量;在横向是虚功率,
只存储能量。
§2.2 矩形波导
2.截止波长和简并波形 截止波数:
n 2 2 2 m Kc Kx Ky a b
2 2
m n Kc a b
§2.2 矩形波导
通解也可以写成下面的形式 X A cos( K x x x ) (2-70) Y B cos( K y y y ) (2-71)
A、φx、 B、 φy 、Kx、Ky为待定常数 (6个) 当考虑纵向行波传输规律时,电场强度可写成
Ez ( x, y, z) X ( x)Y ( y)Z ( z) E0 cos(Kx x x ) cos(K y y y )e jz (2-72)
内表面上的切向磁场强度 横向磁场决定纵向电流; 纵向磁场决定横向电流
§2.2 矩形波导
H10波各波导壁上的面电流密度为:
在x=0窄壁上
ˆz ˆH 0 cos(t z) J y ˆH z y J S n H x
在x=a窄壁上
ˆz ˆH 0 cos cos(t z) J y ˆH z y J S n H x
m, n 0
§2.2 矩形波导
分析: (1) m、n为自然数,分别表示常量沿x轴和y轴出现的 半周期数; (2) 不同的m、n对应一种波型TEmn,m、n不能同时为零, 但有一个可以取零。 最低次波型为TE10(a>b)或TE01 (a<b)。
标准矩形波导

标准矩形波导标准矩形波导是一种常见的波导类型,广泛应用于微波和毫米波领域。
它具有简单的结构和良好的传输性能,因此在通信、雷达、无线电等领域得到了广泛的应用。
本文将介绍标准矩形波导的基本结构、工作原理和特点。
1. 基本结构。
标准矩形波导由金属矩形管和金属盖板组成。
矩形管的截面形状通常为矩形,其长宽比通常为1:2或1:1.5。
矩形管内部空间被金属盖板分割成上下两个空间,上空间为TE模式的传输空间,下空间为TM模式的传输空间。
矩形波导的工作频率取决于矩形管的尺寸和材料。
2. 工作原理。
当电磁波进入矩形波导时,会在矩形管内部产生TE和TM模式的传输。
TE模式是指电场垂直于传播方向,而TM模式是指磁场垂直于传播方向。
这两种模式在矩形波导内传播时,具有不同的传输特性,可以实现电磁波的传输和耦合。
3. 特点。
标准矩形波导具有以下特点:(1)低损耗,由于矩形波导内部是由金属构成的空间,因此能够减少电磁波的能量损耗,具有较低的传输损耗。
(2)宽带特性,矩形波导能够传输多种模式的电磁波,因此具有较宽的工作频带。
(3)抗干扰能力强,矩形波导的结构稳定,能够有效抵抗外部干扰,具有较强的抗干扰能力。
(4)易于加工和安装,矩形波导的结构简单,易于加工制造,也易于安装和维护。
4. 应用领域。
标准矩形波导广泛应用于通信、雷达、无线电等领域。
在通信系统中,矩形波导常用于微波信号的传输和耦合;在雷达系统中,矩形波导常用于天线的馈源和接收;在无线电系统中,矩形波导常用于天线的馈源和信号的传输。
5. 结语。
标准矩形波导作为一种常见的波导类型,具有简单的结构、良好的传输性能和广泛的应用前景。
随着无线通信和雷达技术的发展,矩形波导将继续发挥重要作用,并不断得到改进和应用。
希望本文能够对标准矩形波导的理解和应用有所帮助。
矩形波导 PPT

m 场量沿x轴[0,a]出现的半周期(半个纯驻波)的数目;
n 场量沿y轴[0,b]出现的半周期的数目。
④j 相位关系 Ey-Hx、Ex-Hy
z轴有功率传输
Ez-Hx、Ez-Hy
x、y轴无功率传输
所以行波状态下,沿波导纵向(z轴)传输有功功率、横向(x、
y轴)无功功率。
2) 场结构
为了能形象和直观的了解场的分布(场结构),可以 利用电力线和磁力线来描绘它。电力线和磁力线遵循 的规律:
力线上某点的切线方向
该点处场的方向
力线的疏密程度
场的强弱
电力线 发自正电荷、止于负电荷,也可以环绕着交变磁场构 成闭合曲线,电力线之间不能相交。在波导壁的内表面(假设为 理想导体)电场的切向分量为零,只有法向分量(垂直分量), 即在波导内壁处电力线垂直边壁。
磁力线 总是闭合曲线,或者围绕载流导体,或者围绕交变电 场而闭合,磁力线之间不能相交,在波导壁的内表面上只能存在 磁场的切向分量,法向分量为零。
3)相速和群速
TMmn和TEmn波型的相速和群速表示式相同:
vp
v
1(/c)2
vg v 1-c2
4)波型阻抗
TMmn和TEmn波型阻抗为:
ZTE
1
1c2
g
ZTM
1c2
g
5)尺寸选择——矩形波导的工作波型图
基于前面的定义,根据波导横截面尺寸、工作波长、 截止波长之间关系,构成矩形波导工作波型图。根据不 同要求,可利用波型图对波导的横截面尺寸和波导波长 作出选择。
TE0n和TEm0是非简并模;其余的TEmn和TMmn都存在简并模: 若a=b, 则TEmn 、TEnm、TMmn和TMnm是简并模;若a=2b,则TE01与TE20,TE02和 TE40,TE50、TE32和TM32是简并模。
矩形波导阻抗

矩形波导阻抗
矩形波导阻抗是指在微波领域中,矩形波导内部的电流和电压之比。
它是一个重要的参数,用于描述波导中的电磁波传输性能。
矩形波导阻抗的大小和形状取决于波导的几何尺寸和工作频率。
在设计和制造矩形波导时,需要根据具体的应用需求来选择合适的阻抗。
在矩形波导中,电磁波以TE或TM模式传输。
不同的模式具有不同的阻抗特性。
例如,在TE10模式下,矩形波导的阻抗为377欧姆;而在TE20模式下,阻抗为188.5欧姆。
在实际应用中,矩形波导阻抗的匹配问题是一个重要的挑战。
如果波导内部的阻抗与外部电路不匹配,将会导致功率反射和信号衰减等问题。
因此,在设计和使用矩形波导时,需要考虑阻抗匹配的问题,以确保电磁波的正常传输。
- 1 -。
第10章 波导----TE波、TM波传输系统

[
j
Ez x
H z y
]
Ey
1 kc2
[
Ez y
j
H z x
]
用电磁场的纵 向分量可以完 全表示横向分 量-----只要求出 纵向分量,就 可以得出电磁 场的全部分量
Hx
1 kc2
[
j
Ez y
H z x
]
----规则波导中 不存在TEM波
kc2 2 2
(单导体波导)
----kc截止波数
均匀介质、无源区简谐波的Maxell方程
m
a
x)
x) cos(
cos( n
b
n
b
y)
y) e jt e jt z
z
Hy Hz
kc2 H0
n c( obs()mH0
a
cos(m x) sin( n
x) cosa( n
b y)e jt z
b
y) e jt z
kc2
( m
a
)2
( n
b
)2
2 ( m )2 ( n )2 2
a
b
表示衰减的场分布,矩形波导中不能传播相应的电磁波
1、γ为虚数时,kc < k,表示沿z正向传播的电磁波
j
k 2 kc2 j
2 ( m )2 ( n )2 j
a
b
波导中能够维持TEmn或TMmn模式的传输
即要求: 2 ( m )2 ( n )2
a
b
要求波长满足
2
2
( m
a
)2
( n
边界条件
1,x 0,0 y b, Ez 0, 左璧
A0
矩形波导中可以传输的模式

矩形波导中可以传输的模式矩形波导是一种常用于微波和毫米波频段的传输介质,它可以传输多种模式。
这些模式可以根据电磁场的分布和波导尺寸的关系进行分类。
以下是常见的矩形波导中可以传输的模式。
1.矩形波导基本波模式:矩形波导的最基本模式是TE10模式和TM11模式。
这些模式具有最低的传输损耗和较高的传输速度,因为它们具有较大的有效模式尺寸。
TE10模式是电场垂直于波导中心线,磁场平行于中心线的模式。
TM11模式是磁场垂直于波导中心线,电场平行于中心线的模式。
2.矩形波导高阶模式:除了基本波模式,矩形波导还支持各种高阶模式。
这些模式具有比基本模式更复杂的电磁场分布,并且传输特性也会有所不同。
其中一些常见的高阶模式包括TE20、TE01、TE11和TE21模式。
这些高阶模式可以通过适当选择波导尺寸和频率来激发。
3.矩形波导截断模式:当波长比波导的截断波长小时,只有部分高阶模式可以在波导中传输。
这些被称为截断模式。
截断模式的传输特性与截止频率有关,频率越低,截断模式越多。
4.矩形波导共振模式:在一些特定的频率下,矩形波导会出现共振现象,即出现共振模式。
共振模式具有特定的电磁场分布和传输特性,这些特性可以用于设计滤波器和谐振器等微波器件。
常见的共振模式包括TEM 模式、TE01δ模式和TM11δ模式等。
5.矩形波导导波模式:导波模式是指通过波导传输的电磁波。
除了上述提到的TE和TM模式外,还存在一些导波模式,如混合模式和高可调模式。
这些模式在波导尺寸和工作频率的变化下会变得明显。
总而言之,矩形波导可以传输多种模式,包括基本波模式、高阶模式、截断模式、共振模式和导波模式。
这些模式的选择取决于波导尺寸、频率和应用需求。
通过合理设计和选择模式,可以实现低损耗和高效率的微波传输和射频器件设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
P
2 E0 ab r
480
1 2a
2
请注意:对非磁介质波导,
0 r
表示介质中的波长。
二、TE10波的功率和容量
在实际工程中有个功率容量问题,E0不能超过 击穿场强Emax,所以
P<Pmax 2 Emax ab r Pmax 480 1 2a
b 2
(13-4)
2 1 E0 b 2
a
0
x ds 1 cos 2
2 1 E0 ab 4
二、TE10波的功率和容量
空气波导
120
非磁介质波导
0 , 0 r
P
E ab 1 2a 480
Hx
(13-2)
很明显,
Ey Hx
1 2a
2
二、TE10波的功率和容量
根据电磁场理论
* 1 P S d Re ( Et H t ) kdxdy 2 s s
(13-3)
其中
1 S Re ( Et H t ) 是Poynting矢量。 2
TE10波主要特性
场结构
图13-2
TE10波主要特性
传播条件 波导波长
<c 2 a g
1 2a C
2
相
速
p
1 2a
2
波型阻抗
1 1 2a
2
一、TE10波的另一种表示
0.5< < 0.9 c
(13-6)
0
0.5
0.9 1.0
x
图13-4
二、TE10波的功率和容量
目前的雷达战中,对提高峰值功率容量极为重视。 因为在一定意义上,功率就是作用距离,所以增加传 输线功率容量相当重要。 气体击空的实质是场拉出游离电子在撞到气体分子 之前已具有足够的动能,再次打出电子,形成连锁反 应,以致击穿。如果在概念上,我们加大气体密度, 就不会出现很大动能的电子,所以加大气压和降低温 度是增加耐压功率的常用办法。 实验表明:对于空气耐功率近似与气压的 5/4 次方 成正比,而与绝对温度成反比。绝对湿度每增加 2.5 克/米3,耐功率下降6%。
2
(13-5)
【讨论】(1)功率容量Pmax与波导面积ab成正比。所 以,低频雷达功率容量大,此外,同样的情况波导 比同轴线功率容量大。
二、TE10波的功率和容量
(2)Pmax与
c
1 2a
2
有关
f(x) 1
设 x , f ( x) 1 x 2
很明显,x愈接近1则 功率容量愈低,且 x<0.5会出现其它模式。
第13章
矩形波导TE10波(Ⅱ )
TE10 Mode in Rectangular Waveguide (Ⅱ )
我们先回顾一下矩形波导产生的思想过程。
低频传输线的能量主要封闭在导线内部。随着 频率的提高,能量开放在导线之间的空间 (Space)。 这是由封闭→开放的第一过程。 随着频率的进一步提高,开放空间受干扰,影 响太大。又开始用枝节再一次封闭起来,使能量在 内部传输。这是由开放→封闭的第二过程,它是对 第一次的否定。但是这一次所封闭的不是导线内部, 而是空间内部。
(13-7)
一般地说,驻波系数影响安全系数,只要打四倍余地 完全足够。 此外,在传输过程中尖端棱角是最容易发生打火击 穿的地方,在高功率运用时一定要注意去掉毛刺。
不同温度时的饱和不汽密度
温度℃ 饱和不 汽密度 克 /米 3
0°
10°
20°
30°
40°
50°
4.84
9.4
17.3
30.3
51.2
83.0
二、TE10波的功率和容量
上面所讨论的认为系统传输行波,倘若传输驻波 则耐功率还会降低。如果令 Pmax 是驻波比为 ρ 时的入 射功率,则
Pmax Pmax 0 ( 1) 2 4 2
我们在上面给出的 TE10 波表达式,是以 Hz 为领矢 矢量的。然而,在实用上也常有用Ey作领矢矢量,即 设 jz E y E0 sin x e (13-1) a
利用Maxwell方程
E jH i j k j jE y i 0
二、TE10波的功率和容量
在工程中常见的气体是SF6和cd2F2。
不同气体,不同气压时耐功率实验结果(相对值) 大气压 充空气 (干 ) 充SF6 (干 ) 1.5 1.0 4.1 1.5 1.7 9.0 2.0 2.4 16.0 3.0 4.0 21.5 4.0 5.7 /
二、TE10波的功率和容量
d kdxdy 。
二、TE10波的功率和容量
y
ds z x b a 0
图 13-3
计算功率时的面积元
二、TE10波的功率和容量
2 1 E0 2 S d sin x dxdy 2 2 2 1 E0 P 2
0
a
sin x dxdy 0 2
这种做法使微波能量既在空间传输,又是封闭的。
S
S
S
低频—封闭的导线
微波低端—开放空间
高端—封闭空间
图 13-1
TE10波主要特性
场方程 H z H 0 cos a x e jz
jz E y j 2 H 0 sin x e a kc a jz H x j 2 H 0 sin x e a kc a
x
0
y
Ey
E y H k j ( H x i y j Hzk ) x
一、TE10波的另一种表示
于是最终得到
E y E0 sin x e jz a
E0 sin x e jz a 1 jz Hz j E0 cos x e a a