2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)

2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)
2010届高三数学高考二轮专题复习:数列通项的求法(教案+习题+解析)

2010年高三数学第二轮专题复习——数列通项的求法

考纲要求:

1. 了解数列的概念和几种简单的表示方法(列表、图像、通项公式);

2. 能够依据数列的前几项归纳出其通项公式;

3. 会应用递推公式求数列中的项或.通项;

4. 掌握已知n n s a 求的一般方法和步骤.

考点回顾:

回顾近几年高考,对数列概念以及通项一般很少单独考查,往往与等差、等比数列或者与数列其它知识综合考查.一般作为考查其他知识的铺垫知识,因此,如果这一部分掌握不好,对解决其他问题也是非常不利的.

基础知识过关: 数列的概念

1.按照一定 排列的一列数称为数列,数列中的每一个数叫做这个数列的 ,数列中的每一项都和他的 有关.排在第一位的数称为这个数列的第一项(通常也叫做 ).往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,

其中 是数列的第n 项,我们把上面数列简记为 . 数列的分类:

1.根据数列的项数,数列可分为 数列、 数列.

2.根据数列的每一项随序号变化的情况,数列可分为 数列、 数列、 数列、 数列.

数列的通项公式:

1.如果数列{}n a 的 可以用一个公式 来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数 .

递推公式;

1.如果已知数列{}n a 的首项(或者前几项),且任意一项1n n a a -与(或其前面的项)之间的关系可以 ,那么这个公式就做数列的递推公式.它是数列的一种表示法.

数列与函数的关系:

1.从函数的观点看,数列可以看成以 为定义域的函数()n a f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),如果f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)……

答案:

数列的概念

1.顺序 项 序号 首项 n a {}n a 数列的分类

1.有限 无限

2.递增 递减 常 摆动 数列的通项公式

1.第n 项与它的序号n 之间的关系 n a =f(n) 解析式 递推公式

1. 可以用一个公式来表示 数列与函数的关系

1. 正整数集N*(或它的有限子集{}1,2,3,n ……)

高考题型归纳:

题型1.观察法求通项

观察法是求数列通项公式的最基本的方法,其实质就是通过观察数列的特征,找出各项共同的构成规律,横向看各项之间的关系结构,纵向看各项与项数之间的关系,从而确定出数列的通项.

例1. 已知数列12,14,58-,1316,2932-

,61

64,….写出数列的一个通项公式.

分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.

解析:先看符号,第一项有点违反规律,需改写为1

2--

,由此整体考虑得数列的符号规

律是{(1)}n -;再看分母,都是偶数,且呈现的数列规律是{2}n

;最后看分子,其规律是每个分子的数比分母都小3,即

{23}n

-. 所以数列的通项公式为

23(1)

2n n

n n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一

般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可.

题型2.定义法求通项

直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.

例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2

55

a S =.求数列{}n a 的通项公式.

分析:对于数列{}n a ,已知是等差数列,所以要求其通项公式,只需要求出首项与公差即可. 解析:设数列{}n a 公差为)0(>d d

∵931,,a a a 成等比数列,∴

912

3a a a =,

即)8()2(1121

d a a d a +=+d a d 12

=? ∵0≠d , ∴d a =1………………………………①

255a S =

211)4(24

55d a d a +=??+

…………②

由①②得:

531=a ,53=

d ∴

n

n a n 5353)1(53=?-+= 点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差(公比)后

再写出通项.

题型3.应用n S 与n a 的关系求通项

有些数列给出{

n a }的前n 项和n S 与n a 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,

两式做差,再利用

11n n n a S S ++=-导出1n a +与n a 的递推式,从而求出n a 。

例3. 已知数列{}n a 的前n 项和n S 满足

1,)1(2≥-+=n a S n

n n .求数列{}n a 的通项公式. 分析:由前n 项和

n S 与n a 的关系即可求得.

解析:由1121111=?-==a a S a

当2≥n 时,有,)1(2)(211n n n n n n

a a S S a -?+-=-=-- 1122(1),n n n a a --∴=+?-

,)1(22221----?+=n n n a a ……,.2212-=a a

11221122(1)2(1)2(1)n n n n n a a ----∴=+?-+?-++?- ].)1(2[3

2

3

]

)2(1[2)

1(2

)]2()2()2[()1(21211

211--------+=----=-++-+--+=n n n n

n n n n n

经验证11=a 也满足上式,所以]

)1(2[32

12---+=n n n a

点评:利用公式

??

?≥???????-=????????????????=-21

1n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.

题型4.利用递推公式求通项

对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等

比数列问题,有时也用到一些特殊的转化方法与特殊数列. 类型1 递推公式为

)(1n f a a n n +=+

解法:把原递推公式转化为

)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例4. 已知数列

{}n a 满足

211=

a ,n n a a n n ++=+2

11

,求n a 。

解析:由条件知:

11

1)1(1121+-

=+=+=

-+n n n n n n a a n n

分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即

)()()()(1342312--+??????+-+-+-n n a a a a a a a a

)

111()4131()3121()211(n n --+??????+-+-+-=

所以

n a a n 1

11-

=-

211=

a ,n n a n 1

231121-=-+=∴

类型2 递推公式为

n n a n f a )(1=+

解法:把原递推公式转化为)(1

n f a a n n =+,利用累乘法(逐商相乘法)求解。

例5. 已知数列

{}n a 满足

321=

a ,n

n a n n

a 11+=+,求n a 。

解析:由条件知11+=+n n

a a n

n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘

之,即

1342312-??????????n n a a a a a a a a n n 1433221-??????????=n a a n 1

1=? 又

321=

a ,n a n 32

=∴

点评:由

n n a n f a )(1=+和1a 确定的递推数列{}n a 的通项可如下求得:

由已知递推式有1)1(--=n n a n f a ,

21

)2(---=n n a n f a ,???,12)1(a f a =依次向前代入,得

1)1()2()1(a f n f n f a n ???--=,

简记为

1

1

1

))((a k f a n k n -=∏=

)

1)(,1(0

1

=∏≥=k f n k ,这就是叠(迭)代法的基本模式。

类型3.递推式:

()n f pa a n n +=+1

解法:只需构造数列

{}n b ,消去()n f 带来的差异.

例6.设数列

{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

解析:设

B An b a B ,An a b n n n n --=++=则,将1,-n n a a 代入递推式,得

[]12)1(31-+---=---n B n A b B An b n n )133()23(31+----=-A B n A b n

??????+-=-=∴1

3323A B B A A ??

?==11

B A

1++=∴n a b n n 取…(1)则13-=n n b b ,又61=b ,故n n n b 32361?=?=-代

入(1)得

132--?=n a n

n 点评:(1)若)(n f 为n 的二次式,则可设

C Bn An a b n n +++=2

;(2)本题也可由1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得

2)(3211+-=----n n n n a a a a 转化为q pb b n n +=-1求之.

类型4 递推公式为n

n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或

1n n n a pa rq +=+,其中p ,q, r 均为常数)

解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以1

+n q ,得:

q q a q p q a n n n n 1

11+?=++

引入辅助数列

{}n b (其中

n n n q a b =

),得:

q b q p b n

n 1

1+=+再应用类型3的方法解决。

例7. 已知数列

{}n a 中,

651=

a ,1

1)21(31+++=n n n a a ,求n a 。

解析:在11)21(31+++=n n n a a 两边乘以1

2+n 得:1)2(32211

+?=?++n n n n a a 令n n

n a b ?=2,则1321+=+n n b b ,应用例7解法得:

n

n b )32(23-= 所以

n

n n

n n b a )

31(2)21(32-==

类型5 递推公式为

n n n qa pa a +=++12(其中p ,q 均为常数)

解法:先把原递推公式转化为

)(112n n n n sa a t sa a -=-+++

其中s ,t 满足?

?

?-==+q st p t s ,再应用前面类型3的方法求解。

例8. 已知数列

{}n a 中,11=a ,22=a ,

n n n a a a 313212+=

++,求n a 。

解析:由

n n n a a a 31

3212+=

++可转化为)(112n n n n sa a t sa a -=-+++

n n n sta a t s a -+=++12

)(???????

-==+?3132st t s ?????-==?311t s 或?????=-

=131t s

这里不妨选用?????-==311t s (也可选用???

??=-=131t s ),则

)(31

112n n n n a a a a --=-+++{}n n a a -?+1是以首项为112=-a a ,公比为31-

的等比数列,所以1

1)31

(-+-=-n n n a a ,应用类型1的方法,

分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即

2

101)3

1

()31()31(--+??????+-+-=-n n a a 311)31

(11

+--=

-n

又11=a ,所以

1)31(4347---=

n n a .

点评:已知数列的递推公式求其通项公式,应用到的方法非常多,关键是要分析清楚所给出

的递推公式形式,然后选择合理的变形.

题型5.待定系数法求通项

求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.

例9.已知数列{}n a 满足

112356n

n n a a a +=+?=,,求数列{}n a 的通项公式。 分析: 本题解题的关键是把递推关系式1235n

n n a a +=+?转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列

{5}n

n a -的通项公式,最后再求出数列{}n a 的通项公式。

解析:设11

52(5)n n n n a x a x +++?=+? ④

将1235n

n n a a +=+?代入④式,得12355225n n n n n a x a x ++?+?=+?,等式两边消去2n a ,得135525n n n x x +?+?=?,两边除以5n ,得35

2,1x x x +==-则代入④式得1152(5)n n n n a a ++-=-

由1156510a -=-=≠及⑤式得50n n a -≠,则1

1525n n n

n a a ++-=-,则数列

{5}n n a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。

点评:待定系数法求解数列的通项公式同函数中用待定系数法球函数解析式类似,它要求必

须已知或者能够由条件判断出通项公式(解析式)的结构类型.

过关训练:

通项公式的求法

一、选择题

1.已知数列

,…,则

) A .13项 B .14项 C .25项 D .26项 2.设Sn 是数列{an}的前n 项和,且Sk+Sk+1=ak+1(k ∈N+),那么此数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列

3.某油厂今年生产油5吨,计划以后每年比上一年增长16%,按照这个计划生产下去,大约经过( )年,可以使该厂的年产量达到今年的9倍.

A .13

B .14

C .15

D .16

4.在等差数列{an}中,前n 项和是Sn,若m>n,Sm=Sn,则下列式子正确的是( ) A .am=an B .am+n=0 C .

m n

2

S +=0 D .Sm+n=0

5. 若数列{a n }满足112,0;2121, 1.

2n n n n n a a a a a +?

167a =,则20a 的值为 ( )

A 67

B 57

C 37

D 17

6.若数列{an}满足1

122

1,2,(3*)n n n a a a a n n N a --===

≥∈且,则17a 等于 ( ) A.1 B.2 C.

12

D. 9872- 7.在数列{}n a 中,12211,5,n n n a a a a a ++===-,则1000a = ( ) A.5 B.-5 C.1 D.-1 8.已知数列{}n a 满足110,2n n a a a n +==+,则2010a =( )

A.2010?2009

B.2011?2010

C.2009?2008

D.2009?2009

9.已知数列{}{},n n a b 的通项公式分别为2,1n n a an b bn =+++,(a 、b 为常数)且a>b ,那么两个数列中序号与数值均相同的项的个数为 ( )

A.0

B.1

C.2

D.3

10.已知等差数列{}n a 的前三项为a-1,a+1,2a+3,则此数列的通项公式为 ( )

A.2n-5

B.2n-3

C.2n-1

D.2n+1

11.已知数列{}n a 的通项公式为2815n a n n =-+,则3 ( )

A.不是数列{}n a 中的项

B.只是数列{}n a 中的第二项

C.只是数列{}n a 中的第六项

D.是数列{}n a 中的第二项或者第六项

12.已知12,n n a a +=-则数列{}n a 是 ( )

A.递增数列

B.递减数列

C.常数列

D.摆动数列

二、填空题

13. 已知数列{}n a 满足11a =

,n a =,n N *

∈2≤n ≤8)

,则它的通项公式n a = .

14.

已知数列{}n a 满足11a =,123123(1)n n a a a a n a -=++++- (n ≥2),则{}n a 的通项

15. 已知{}n a 是首项为1的正项数列,并且22

11(1)0(1,2,3,)n n n n n a na a a n +++-+== ,则它的通项公式n a = .

16. 若{}n a 中, 13a =,且21n n a a +=(n 是正整数),则数列的通项公式n a = .

三、解答题

17. 已知数列{}n a 前n 项和2

2

14--

-=n n n a S .

(1)求1+n a 与n a 的关系;(2)求通项公式n a .

18. 数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。

19. 数列{}n a 满足23,5,21221+-==++n n a a a a n a =0,求数列{a n }的通项公式。

20. 已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。

21. 已知数列}{n a 满足:对于,N ∈n 都有.3

25

131+-=

+n n n a a a

(1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在?

22. 数列{n a }满足1221n n n a a -=+-(2)n ≥且481a =。求(1)1a 、2a 、3a (2)是否存在一个实数λ,使此数列{}2

n n a λ

+为等差数列?若存在求出λ的值及n a ;若不存在,说明理由。

答案与解析

一、选择题

1. 解:因为=n=13,则26项.

n a =

1,

1n = ,n ≥2

2. 解:因为Sk+1-Sk=ak+1,又已知Sk+Sk+1=ak+1,所以Sk=0,则a1=0,且a1+a2=0,a2=0,所以

an=0.所以数列为常数列. 答案:.C

3. 解:设经过n 年,则5(1+16%)n=45, 即(1+16%)n=9,两边取对数,nlg1.16=lg9, 所以n=1

4.8. 答案:C.

4. 解:因为m>n,Sm=Sn ,则Sm=Sn+an+1+an+1+…+am,所以 an+1+an+1+…+am=0, 则an+1+am=0, 即a1+am+n=0,所以Sm+n=0. 答案:D.

5. 解:逐步计算,可得

16

7

a =

,21251,77a =-=31031,77a =-=46,7a =51251,...77a =-= 这说明数列{a n }是周期数列, 3.T =而20362=?+, 所以207

5

a =

答案:B

6.解:由已知123456111,2,2,1,,,22

a a a a a a =====

= 789101112111,2,2,1,,,22a a a a a a ======即n a 的值以6为周期重复出现,故171

2

a =.

答案:C.

7.解:由12211,5,n n n a a a a a ++===-,可得该数列为1,5,4,-1,-5,-4,1,5,4……。由此得10001a =-. 答案:D.

8.解:20102010200920092008211()()a a a a a =-+-++……(a -a )+a =2?(2009+2008+……+2+1)=(20091)2009

2201020092

+??

=?.

答案:A.

9.解:设an+2=bn+1,所以(a-b )n+1=0,因为a>b,n>0,所以(a-b )n+1=0不成立。 答案:A.

10.解:因为a-1,a+1,2a+3成等差,所以2(a+1)=(a-1)+(2a+3),则a=0,故d=(a+1)-(a-1)=2,首项11a =-,所以23n a n =-。 答案:B.

11.解:设2815n a n n =-+=3,则n=2或者n=6.

12.解:因为120n n a a +--=-<,所以数列为递减数列. 答案:B 二、填空题 13. 解:∵

0n a =

>, ∴2211n n a a --=,则有

22211a a -=,22321a a -=,…,22

11n n a a --=.

把以上各式两边相加,得2211n a a n -=-,∵11a =,∴2n a n =,

∵0n a >,∴

n a =

答案:n a =14. 解;本题考查的数列递推公式的求解

当n ≥2时,123123(1)n n a a a a n a -=++++- =11(1)n n a n a --+-(n ≥3)

? 1n n a na -=(n ≥3)?

1

n n a n a -=(n ≥3)?13211221n n n n n a a a a

a a a a a a ---= =

(1)311n n ?-???? =

!

2

n ,其中当n =2时211a a ==, 答案:

!2

n . 15. 解:对所给的式子的左边分解因式得 11()[(1)]0n n n n a a n a na ++++-=,

∵ 10n n a a ++>,∴ 1(1)n n n a na ++=.

又∵11a =,故 121(1)21n n na n a a a -=-==== ,得公式n a =1n

. 答案:n a =

1n

16. 解::∵2

1n n a a +=,∴ 0()n a n N *>∈,两边取对数,得1lg 2lg n n a a +=.

∴ {lg }n a 是以1lg lg3a =为首项,以2为公比的等比数列. ∴ 1

1

211

lg (lg )2

lg n n n a a a

--== ,∴ 1

23

()n n a n N -*=∈.

答案: 1

23()n n a n N -*=∈ 三、解答题

17. 解:(1)由2

2

14--

-=n n n a S 得:1

112

14-++-

-=n n n a S

于是)21

21()(12

11--++-

+-=-n n n n n n a a S S 所以1112

1

-+++-=n n n n a a a n n n a a 2

1211+=?+. 上式两边同乘以1

2

+n 得:22211+=++n n n n a a

由12

1

412

1111=?-

-==-a a S a .于是数列{}

n n a 2是以2为首项,2为公差的等差数列,所以n n a n n 2)1(222=-+=12

-=?n n n

a

18. 解:由0731=-++n n a a 得3

7

311+-=+n n a a

设a )(311k a k n n +-=++,比较系数得373=--k k 解得47

-=k

∴{47-n a }是以31-为公比,以43

471471-=-=-a 为首项的等比数列

∴1)3

1(4347--?-=-n n a 1

)31(4347--?-=?n n a

19. 解:由02312=+-++n n n a a a 得0)(2112=---+++n n n n a a a a 即)n n n n a a a a -=-+++112(2,且32512=-=-a a ∴}{1n n a a -+是以2为公比,3为首项的等比数列 ∴1123-+?=-n n n a a

利用逐差法可得112111)()()(a a a a a a a a n n n n n +-++-+-=-++ =223232

3021

+?++?+?-- n n

=2)1222

(321

+++++?-- n n

=22

1213+--?

n

=123-?n

∴1231-?=-n n a

20. 解法一:由025312=+-++n n n a a a ,得

)(3

2

112n n n n a a a a -=

-+++, 且a b a a -=-12。

则数列{}n n a a -+1是以a b -为首项,

3

2

为公比的等比数列,于是 11)3

2

)((-+-=-n n n a b a a 。把n n ,,3,2,1???=代入,得

a b a a -=-12,

)32

()(23?-=-a b a a ,

234)3

2

()(?-=-a b a a ,

???

21)3

2

)((---=-n n n a b a a 。

把以上各式相加,得

])3

2()32(321)[(21-+???+++-=-n n a b a a )(3

21)32(11

a b n ---=-。

a b b a a a b a n n n 23)3

2

)((3)]()32(33[11-+-=+--=∴--。

解法二:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:

02532=+-x x 。 3

2,121=

=x x , ∴1

2

11--+=n n n Bx Ax a 1)3

2(-?+=n B A 。 又由b a a a ==21,,于是

??

?-=-=???

?

??+=+=)(32332b a B a b A B A b B

A a 故1

)

32)((323--+-=n n b a a b a 21. 解:作特征方程.3

25

13+-=

x x x 变形得,025102=+-x x 特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.

(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a

∴λ

λr p r

n a b n --+-=

)

1(11 51131

)1(531?-?-+-=

n ,8

1

21-+

-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,5

17

51--=

+=

n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,8

1

1)1(11N n n r p r n a b n ∈-+=--+-=

λλ

令,0=n b 则.7n n ?-=∴对于.0b N,n ≠∈n ∴.N ,743

558

1111

∈++=+-+

=+=

n n n n b a n

n λ (4)、显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时

}

{n a 是存在的,当

5

1=≠λa 时,则有

.N ,8

1

51)1(111∈-+-=--+-=

n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=

n n n a 且n ≥2.

∴当1

13

51--=

n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或

,:1

13

5N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在. 22. 解:(1)由4a =43221a +-=81 得3a =33;又∵3a =32221a +-=33得2a =13;

又∵2a =2

1221a +-=13,∴1a =5

(2)假设存在一个实数λ,使此数列{

}2n n

a λ

+为等差数列 即1122n n n n a a λλ--++-= 122n n n a a λ---= 212n n

λ--= 112n λ

+- 该数为常数

∴λ=1-即

1

{}

2

n

n

a-

为首项1

1

1

2

2

a-

=,d=1的等差数列

1

2

n

n

a-

=2+(1)1

n-?=n+1 ∴

n

a=(1)21

n

n+?+

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

高三数学二轮复习教学案一体化:函数的性质及应用(2)

专题1 函数的性质及应用(2) 高考趋势 1.函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想.在江苏高考文理共用卷中,函数小题(不含三角函数)占较大的比重,其中江苏08年为3题,07年为4题. 2.函数的图像往往融合于其他问题中,而此时函数的图像有助于找出解决问题的方向、粗略估计函数的一些性质。另外,函数的图像本事也是解决问题的一种方法。这些高考时常出现。图像的变换则是认识函数之间关系的一个载体,这在高考中也常出现。通过不同途径了解、洞察所涉及到的函数的性质。在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。在上述性质中,知道信息越多,则解决问题越容易。 考点展示 1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它 醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2 分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 B 2. 函数x y 1=的图像向左平移2个单位所得到的函数图像的解析式是 21 +=x y 3. 函数 )(x f 的图像与函数2)1(2---=x y 的图像关于 x 轴对称,则函数 )(x f 的解析式是 2)1(2+-x 4. 方程22 3x x -+=的实数解的个数为 2 5. 函数)1(x f y +=的图像与)1(x f y -=的图像关于 x=0 对称 函数图象对称问题是函数部分的 一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。 定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2 a b x += 对称。 定理2 函数()y f a x ω=+与函数()y f a x ω=-的图象关于直线2b a x ω -=对称 特殊地,函数y=f(a+x)与函数y=f(b-x)的图象关于直线2 b a x -= 对称。 6. 函数2 1()2 f x x x =-+定义域为[]n m ,,值域为[]n m 2,2,m n <,则m n += -2 样题剖析 例1. 已知R 上的奇函数)(x f 在),0[+∞上是单调递增函数,且2)3(=f ,若函数)(x f 的图像向右 平移1个单位后得到函数)(x g 的图像,试解不等式: 02 )(2 )(>+-x g x g ),4()2,(+∞--∞ 变式:若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 (-2,2) . 例2. 已知函数x b b ax x f 22242)(-+-=,R b a a x x g ∈---=,,)(1)(2 其中 (1) 当b=0时,若)(x f 在),2[+∞上单调递增,求a 的取值范围;1≥a (2) 求满足下列条件的所有实数对),(b a :当a 为整数时,存在0x ,使得)(0x f 是)(x f 的最大值, )(0x g 是)(x g 的最小值。 (2224b b a -+=2)1(5--=b ,502≤

高三数学第二轮复习教案《数列》

数列(第二轮复习) 1.等差(比)数列的定义 如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列. 2.通项公式 等差 a n =a 1+(n-1)d ,等比a n =a 1q n -1 3.等差(比)中项 如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab 4.重要性质: m+n=p+q ? a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ? a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列) 5.等差数列前n 项和 等比数列前n 项和 6.如果某个数列前n 项和为Sn ,则 7.差数列前n 项和的最值 (1)若a1>0,d <0,则S n 有最大值,n 可由 ???≥≥+0a 0a 1 n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ???≤≤+0a 0a 1 n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法: (1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法. (2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法. (3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法. (4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差, ()()???≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 2 1211-+=+=()() ()?????≠--==111111q q q a q na S n n

高三数学第一轮教案简易逻辑

简易逻辑 二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四 种命题及其互相关系;反证法在证明过程中的应用. 三.教学重点:复合命题的构成及其真假的判断,四种命题的关系. 四.教学过程: (一)主要知识: 1.理解由“或”“且”“非”将简单命题构成的复合命题; 2.由真值表判断复合命题的真假; 3.四种命题间的关系. (二)主要方法: 1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ?且q ?”、“p 且q ”的否定为“p ?或q ?”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等; 3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、定理、公理、公式、法则等矛盾,甚至自相矛盾. (三)例题分析: 例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假: (1)菱形对角线相互垂直平分. (2)“23≤” 解:(1)这个命题是“p 且q ”形式,:p 菱形的对角线相互垂直;:q 菱形的对角线相互平分, ∵p 为真命题,q 也是真命题 ∴p 且q 为真命题. (2)这个命题是“p 或q ”形式,:p 23<;:q 23=, ∵p 为真命题,q 是假命题 ∴p 或q 为真命题. 注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的真假,再由真值表判断复合命题的真假. 例2.分别写出命题“若220x y +=,则,x y 全为零”的逆命题、否命题和逆否命题. 解:否命题为:若220x y +≠,则,x y 不全为零 逆命题:若,x y 全为零,则220x y += 逆否命题:若,x y 不全为零,则220x y +≠ 注:写四种命题时应先分清题设和结论. 例3.命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题吗?证明你的结论. 解:方法一:原命题是真命题, ∵0m >,∴140m ?=+>, 因而方程20x x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题; 又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题. 方法二:原命题“若0m >,则20x x m +-=有实根”的逆否命题是“若2 0x x m +-=无实根,则0m ≤”.∵20x x m +-=无实根 ∴140m ?=+<即104 m <- ≤,故原命题的逆否命题是真命题. 例4.(考点6智能训练14题)已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

高三数学二轮专题复习教案――数列

高三数学二轮专题复习教案――数列

高三数学二轮专题复习教案――数列 一、本章知识结构: 二、重点知识回顾 1.数列的概念及表示方法 (1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法. (3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分

为单调数列、摆动数列和常数列. (4)n a 与n S 的关系: 11(1)(2) n n n S n a S S n -=?=? -?≥. 2.等差数列和等比数列的比较 (1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列. (2)递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,. (3)通项公式:111(1)n n n a a n d a a q n -* =+-=∈N ,,. (4)性质 等差数列的主要性质: ①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列. ②若m n p q +=+,则 () m n p q a a a a m n p q *+=+∈N ,,,.特别 地,当2m n p +=时,有2m n p a a a +=. ③ ()() n m a a n m d m n *-=-∈N ,. ④232k k k k k S S S S S --,,,… 成等差数列. 等比数列的主要性质: ①单调性:当1001 a q ??>?时,为递增数列; 当 101a q ?,, ,或 1001 a q >?? <

高三数学第一轮复习教案(1)

第1页 共64页 高考数学总复习教案 第一章-集合 考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义. §01. 集合与简易逻辑 知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; 如果B A ?,同时A B ?,那么A = B. 如果C A C B B A ???,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×) ②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ?, C A B = ? C S (C A B )= D ( 注 :C A B = ?). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

[精品]新高三数学第二轮专题复习概率与统计优质课教案

高三数学第二轮专题复习:概率与统计 高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳 本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 [10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11 (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图和累积频率的分布图 命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法

知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率 [10,15) 4 0.08 0.08 [15,20) 5 0.10 0.18 [20,25)10 0.20 0.38 [25,30)11 0.22 0.60 [30,35)9 0.18 0.78 [35,40)8 0.16 0.94 [40,45) 3 0.06 1 总计50 1 (2)频率分布直方图与累积频率分布图如下

高三数学一轮复习精品教案1:数列的综合应用教学设计

6.5数列的综合应用 考点一 等差数列与等比数列的综合问题 『典例』 (2011·江苏高考)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6 成公差为1的等差数列,则q 的最小值是________. 『解析』 因为a 1,a 3,a 5,a 7成公比为q 的等比数列,又a 1=1,所以a 3=q ,a 5=q 2,a 7=q 3.因为a 2,a 4,a 6成公差为1的等差数列,所以a 4=a 2+1,a 6=a 2+2. 法一: 因为1=a 1≤a 2≤…≤a 7,所以???? ? 1≤a 2≤a 3≤a 4,a 4≤a 5≤a 6, a 7≥a 6, 即???? ? a 2 ≤q ≤a 2 +1, a 2 +1≤q 2 ≤a 2 +2,解得 33≤q ≤ 3,故q 的最小值为 3 3. q 3 ≥a 2 +2, 法二: a 6=a 2+2≥3,即a 6的最小值为3.又a 6≤a 7,所以a 7的最小值为3即q 3≥3,解得a ≥ 3 3.故q 的最小值为3 3. 『答案』 33 『备课札记』 『类题通法』 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解. 『针对训练』 在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列; (2)求{b n }的前n 项和S n 及{a n }的通项a n . 解:(1)证明:∵b n =log 2a n ,

高三数学第一轮复习教学案

天印中学2010届高三数学第一轮复习教学案 主备人:李松 2009-12-1立体几何2) 课题:线面平行与面面平行(B 级) 【教学目标】 1. 掌握直线与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题; 2. 掌握平面与平面平行,判定定理和性质定理,并能运用它们进行论证和解决有关问题。 〖走进课本〗——知识整理 1.直线与平面的位置关系有 ; ; 三种 2.直线与平面平行的判定定理: 用符号表示为 3.直线与平面平行的性质定理: 用符号表示为 4.两个平面平行的判定定理 有符号表示为 5.两个平面平行的性质定理 有符号表示为 〖基础训练〗——提神醒脑 1.直线a ⊥平面α,直线α||b ,则a 与b 的关系是( ) A.b a || B. b a ⊥ C. b a ,一定异面 D. b a ,一定相交 2.如果直线a 平行于平面α,则( ) A.平面α内有且只有一条直线与a 平行; B. 平面α内无数条直线与a 平行; C. 平面α内不存在与a 垂直的直线; D. 平面α内有且只有一条直线与a 垂直; 3.若直线a 与平面α内无数条直线平行,则a 与α的位置关系是( ) A.α||a B. α?a C.α||a 或α?a D. α?a 4.已知直线b a ,和平面α,那么b a ||的一个必要不充分的条件是( ) A.α||a ,α||b B. α⊥a ,α⊥b C. α?b 且α||a D. b a ,与α成等角 5.以下六个命题:其中正确命题的序号是 ①两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行; ②平行于同一条直线的两个平面平行; ③平行于同一平面的两个平面平行; ④一个平面内的两相交直线与另一个平面内的两条相交直线分别平行,则这两个平面平行; ⑤与同一条直线成等角的两个平面平行; ⑥一个平面上不共线三点到另一平面的距离相等,则这两个平面平行;

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案 自主学习导引 真题感悟 1.(xx ·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断. 若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A 2.(xx·福建)直线x +3y -2=0与圆x 2 +y 2 =4相交于A 、B 两点,则弦AB 的长度等于 A .2 5 B .2 3 C. 3 D .1 解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2| 12+3 2 =1,半径r =2, ∴弦长|AB |=2r 2 -d 2 =222 -12 =2 3. 答案 B 考题分析 圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点. 网络构建

高频考点突破 考点一:直线方程及位置关系问题 【例1】(xx·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2: 2x+ay-2a-1=0平行”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [审题导引] 求出l1∥l2的充要条件,利用定义判定. [规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2, 所以“a=0”是“直线l1与l2平行”的充分条件; 当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1. 当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合, 所以a=1不满足题意,即a=0. 所以“a=0”是“直线l1∥l2”的充要条件. [答案] C 【规律总结】 直线与直线位置关系的判断方法 (1)平行:当两条直线l1和l2的斜率存在时,l1∥l2?k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2. (2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2?k1·k2=-1;若两条直线l1,l2中的一条斜率不存在,另一条斜率为0时,则它们垂直.

高三数学第一轮复习 函数的奇偶性教案 文

函数的奇偶性 一、知识梳理:(阅读教材必修1第33页—第36页) 1、 函数的奇偶性定义: 2、 利用定义判断函数奇偶性的步骤 (1) 首先确定函数的定义域,并判断定义域是否关于原点对称; (2) 确定与的关系; (3) 作出相应结论 3、 奇偶函数的性质: (1)定义域关于原点对称; (2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称; (3)为偶函数 (4)若奇函数的定义域包含0,则 (5)判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须 注意使定义域不受影响; (6)牢记奇偶函数的图象特征,有助于判断函数的奇偶性; (7)判断函数的奇偶性有时可以用定义的等价形式: 4、一些重要类型的奇偶函数 (1)、f(x)= (a>0,a) 为偶函数; f(x)= (a>0,a) 为奇函数; (2)、f(x)= (3)、f(x)= (4)、f(x)=x+ (5)、f(x)=g(|x|)为偶函数; 二、题型探究 [探究一]:判断函数的奇偶性 例1:判断下列函数的奇偶性 1. 【15年北京文科】下列函数中为偶函数的是( ) A .2sin y x x = B .2cos y x x = C .ln y x = D .2x y -= 【答案】B 【解析】 试题分析:根据偶函数的定义()()f x f x -=,A 选项为奇函数,B 选项为偶函数,C 选项定 义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B. 考点:函数的奇偶性. 2. 【15年广东文科】下列函数中,既不是奇函数,也不是偶函数的是( )

A .2sin y x x =+ B .2cos y x x =- C .122x x y =+ D .sin 2y x x =+ 【答案】A 【解析】 试题分析:函数()2 sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数 ()2cos f x x x =-的定义域为R ,关于原点对称,因为 ()()()()2 2cos cos f x x x x x f x -=---=-=,所以函数()2cos f x x x =-是偶函数;函数()122x x f x =+的定义域为R ,关于原点对称,因为()()112222x x x x f x f x ---=+=+=,所以函数()122 x x f x =+是偶函数;函数()sin 2f x x x =+的定义域为R ,关于原点对称,因为 ()()()sin 2sin 2f x x x x x f x -=-+-=--=-,所以函数()sin 2f x x x =+是奇函 数.故选A . 考点:函数的奇偶性. 3. 【15年福建文科】下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=- 【答案】D 【解析】 试题分析:函数y x = 和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇 函数,故选D . 考点:函数的奇偶性. [探究二]:应用函数的奇偶性解题 例3、【2014高考湖南卷改编】 已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( ) A. 3- B. 1- C. 1 D. 3

天津市高三数学总复习 综合专题 数列 理 (学生版)

数列(理) 考查内容:本小题主要考查等差数列与等比数列的通项公式及其前n 项和公式、 不等式证明等基础知识,考查分类讨论的思想方法,考查运算能力、 推理论证能力及综合分析、解决问题的能力。 1、在数列{}n a 中,11a =,122n n n a a +=+。 (1)设1 2 n n n a b -= 。证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S 。 2、设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (1)证明:当2b =时,{} 12n n a n --?是等比数列; (2)求{}n a 的通项公式 3、已知数列{}n a 的首项12 3 a = ,121n n n a a a +=+,1,2,3,n =…。 (1)证明:数列? ?? ?? ?-11n a 是等比数列; (2)数列? ?? ?? ?n a n 的前n 项和n S 。 4、已知数列{}n a 满足:1±≠n a ,2 11=a ,()() 2211213n n a a -=-+,记数列21n n a b -=,221n n n c a a +=-, n N *∈。 (1)证明数列 {}n b 是等比数列; (2)求数列{}n c 的通项公式; (3)是否存在数列{}n c 的不同项k j i c c c ,,,k j i <<,使之成为等差数列?若存在请求出这样的不同项 k j i c c c ,,,k j i <<;若不存在,请说明理由。 5、已知数列{}n a 、{}n b 中,对任何正整数n 都有:

11213212122n n n n n n a b a b a b a b a b n +---+++++=--L 。 (1)若数列{}n a 是首项和公差都是1的等差数列,求证:数列{}n b 是等比数列; (2)若数列{}n b 是等比数列,数列{}n a 是否是等差数列,若是请求出通项公式,若不是请说明理由; (3)若数列{}n a 是等差数列,数列{}n b 是等比数列,求证:1132 n i i i a b =<∑ 。 6、设数列{}n a 满足11a =,22a =,121 (2)3 n n n a a a --= +,(3,4,)n =L 。数列{}n b 满足11,(2,3,)n b b n ==L 是非零整数,且对任意的正整数m 和自然数k ,都有 111m m m k b b b ++-≤+++≤L 。 (1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==L ,求数列{}n c 的前n 项和n S 。 7、有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a , (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列。 (1)证明1122m d p d p d =+,n m ≤≤3,12,p p 是m 的多项式,并求12p p +的值; (2)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列),设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m c m d 的前n 项和n S 。 (3)设N 是不超过20的正整数,当n N >时,对于(2)中的n S ,求使得不等式1 (6)50 n n S d ->成立的所有N 的值。 8、数列}{n a 的通项公式为?? ? ? ?-=3sin 3cos 22 2 ππn n n a n ,其前n 项和为n S 。 (1)求n S ; (2)设n n n n S b 4 3?= ,求数列}{n b 的前n 项和n T 。 9、数列}{n a 满足}221221,2,(1cos )sin ,1,2,3,.22 n n n n n a a a a a n ππ+===++=L 满足。

高三数学第二轮复习教案 .doc

高三数学第二轮复习教案 第7讲 概率与统计问题的题型与方法(三) 七、强化训练和参考答案 1.随机变量ξ的的分布列如下,则m =(D ) A . 31 B .21 C .61 D .4 1 2.设随机变量ξ服从二项分布B (6,2 1 ),则P (ξ=3)= (A ) A .165 B .16 3 C .85 D .83 3.从签盒中有编号为1、2、3、4、5、6的六支签中,任意取3支,设ξ为这3支签的号码之中最大的一个,则ξ的的数学期望为(B ) A .5 B .5.25 C .5.8 D .4.6 4.某射手射击时击中目标的概率为0.7,设4次射击击中目标的次数为随机变量ξ,则P (ξ≥1)等于(D) A .0.9163 B .0.0081 C .0.0756 D .0.9919 5.在简单随机抽样中,某一个个体被抽到的可能性是(C ) A .与第几次抽样有关,第一次抽的可能性最大 B .与第几次抽样有关,第一次抽的可能性最小 C .与第几次抽样无关,每次抽到的可能性相等 D .与第几次抽样无关,与抽取几个样本有关 6.一个年级有12个班,每个班有50名学生,随机编为1~50号,为了了解他们在课外的兴趣爱好要求每班是40号学生留下来进行问卷调查,这里运用的抽样方法是(D ) A .分层抽样 B .抽签法 C .随机数表法 D .系统抽样法 7.当一个样本的容量不大时,我们估计总体的标准差σ的常用量是(C )

A .s B .s 2 C .s * D .s *2 8.从总体中抽一个样本,2、3、4、8、7、6,则样本平均数为x =(B ) A .4 B .5 C .6 D .6.5 9.从总体中抽一个样本,3、7、4、6、5,则样本方差s *2为(B ) A .2 B .2.5 C .5 D .3 10.下面哪有个数不为总体特征数的是(B ) A .总体平均数 B .总体方差 C .总体标准差 D .总体样本 11.为了抽查某城市汽车尾气排放执行标准情况,在该城市的主干道上采取抽取车牌末位数字为5 的汽车检查,这种抽样方法称为(C ) A .简单随机抽样 B .随机数表法 C .系统抽样法 D .分层抽样法 12.已知n 个数据为x 1,x 2,…,x n ,那么])()()[(1 1 22221x x x x x x n n -++-+--Λ是指(D ) A .s B .s * C .s 2 D .s *2 13.总体方差σ2的的估计量为(B ) A .x B .s 2 C .s D .s * 14.已知容量为40的样本方差s 2=3.9,那么s *=(B ) A .4 B .2 C . 2 D .1 15.设15000件产品中有1000件废品,从中抽取150件进行检查,查得废品的数学期望为(B ) A .20 B .10 C .5 D .15 16.某一计算机网络,有几个终端,每个终端在一天中使用的概率p ,则这个网络中一天平均使用的终端个数为(B ) A .np (1-p ) B .np C .n D .p (1- p ) 17.下列说法正确的是:(D ) A .甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样 B .期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好 C .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习情况甲班比乙班好 D .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习情况甲班比乙班好 18.某射击运动员射击所得环数ξ的分布列如图所示,则P (ξ=8)= (D )

相关文档
最新文档