蛋白质芯片技术的临床应用新进展
SELDI蛋白质芯片技术在肿瘤诊断中的临床应用

w r . Bo re a enS f ae等 . 件 控 制 ae31和 i krP t r ot r ma t w 软 分 析 系统 可 以使整个 过 程变得 自动化 、 简便 化 。 主 其 要 功 能包 括 : 数据库 的建 立 、 内部信 息及 外部 信息 的
把制 备好 的蛋 白质经过 亲和 作用结 合 到芯 片的 化学 或生 物 位点 上 . 再洗 去 非特 异 结合 的蛋 白质 和缓 冲 液 中的杂质 以消 除干扰 。 待芯 片 干燥后 。 每个 位 点上 加能量 吸收 分子 (n rya sr oeue E M) 使 eeg bobm lc l, A , 之与蛋 白质 结合 为混合 晶体 . 以促 进蛋 白质 在 S L E- D 一 ’F M I — S检测 中解 吸附 和离子 化圆 I o 。根据 定 位于 芯 片表 面 的物质 性 质不 同 . 片分 为化 学 型 和生 物 芯 型两类 : 学型芯 片是基 于经 典 的层析 原理 , 过疏 化 通
时间 质谱 仪 对 体液 中各种 蛋 白质 . 包括 疾 病早期 最 微 小基 因表达 产物 如低 分子量 蛋 白质 、 肽等 。 行 多 进 动态 、 全景 的分 析 。 获得待 检标 本 中各种蛋 白的含 量 及 其 分子量 等信 息 , 制 成蛋 白质指 纹 图谱 。 绘 再通 过
计 算机 软件 将 正常人 、 亚健 康状 态人 群 、 良性疾病 和
维普资讯
江西医学检验
2o 0 7年 2月 第 2 卷 5
第 1 期
・
综 述・
S L I 白质芯片技术在肿瘤诊 断 中的临床应用 E D蛋
吕赛平综述 邹学森 审校 ’
*1 ̄类号 R 3 3 7 04 t I 7 - , 3 .3 R
SELDI蛋白质芯片技术在结直肠癌临床诊断中的应用研究

21 0 0年 第3 3卷 Nhomakorabea第 1 期
5
Ju a fL z o dc lC l g V 1 3 o r l uh uMe ia ol e n o e o. No1 2 1 3 . 0 0
警
S L I 白质芯 片技术在 结直肠癌 ED蛋 临床诊 断 中的应 用研 究
谱。分为训练集( 4 0例患 者 4 例 对照) 0 和验证集(0 患者和 3 3例 3例对照)前者用于 筛选 结直肠癌的差异蛋 白标志物并建 立人 工 ,
神 经 网络 ( NN) 断 模 型 , 者用 于 诊 断 效 度 的 盲 法 验 证 。 结 果 : 直肠 癌 患 者和 对 照 组血 清 蛋 白指 纹 图谱 共 有 18个 明 显 表 A 诊 后 结 4
达差异的蛋白峰 , 筛选质荷比( z为 2 5 、9 4 2 8 、0 6 3 8 、9 8 54 、6 76 6 m/) 9 7 2 7 、9 2 3 1 、22 5 2 、9 86 4 、6 1的 9 蛋白质峰 作为标志蛋 白(< .1 个 P 0o) 建立人工神经 网络诊断模 型 , 利用该模型对结直肠癌进行 盲法预 测 , 结果表明该诊断模型检测结直肠癌 的灵敏度 为 9.%, 4 2 特异 度为 9 . 结论 : 1 %。 3 应用蛋白芯片技 术检 测到 对结直肠癌有鉴别意 义的血 清蛋白标志物 , 可能为结直肠癌的早期诊断 提供了新的
手段 。 关键 词 结 直肠 癌 ; 白组 学 ; 面增 强 激 光 解 吸 离子 化 飞 行 时 间质 谱 (E DITOF M S 技 术 ; 工神 经 网络 蛋 表 SL - - ) 人 中 图分 类 号 R 3 . 7 53 文献标识码 A 文章 编号 10 — 69 2 L )- o 5 0 0 0 2 6 (O O 1o o - 6
蛋白质修饰检测技术及其应用

蛋白质修饰检测技术及其应用蛋白质修饰是指在翻译后修饰成熟的蛋白质分子上发生的各种化学改变。
蛋白质修饰可以调节蛋白质的结构、功能和活性,对维持细胞的正常生理功能至关重要。
因此,研究蛋白质修饰及其应用于疾病诊断、治疗和药物研发成为了当前的热点研究领域。
本文将介绍蛋白质修饰的检测技术及其在生物医学领域的应用。
一、蛋白质修饰的类型1. 磷酸化修饰:蛋白质磷酸化是目前研究最广泛的一种修饰形式。
它通过添加磷酸基团改变蛋白质的电荷和空间构型,从而影响蛋白质的功能。
常用的磷酸化修饰检测方法包括质谱分析、免疫印迹和蛋白质芯片技术。
2. 甲基化修饰:蛋白质甲基化是通过向蛋白质上的氮、氧或硫原子添加甲基基团而实现的修饰。
甲基化修饰可以调节蛋白质的稳定性、活性和亲和性。
常用的甲基化修饰检测方法有质谱分析、甲基化特异性抗体和免疫荧光染色。
3. 乙酰化修饰:蛋白质乙酰化是通过向蛋白质上的赖氨酸残基添加乙酰基团而实现的修饰。
乙酰化修饰可以调节蛋白质的稳定性、转录活性和DNA结合能力。
常用的乙酰化修饰检测方法包括质谱分析、乙酰化特异性抗体和酶活性检测。
二、蛋白质修饰检测技术1. 质谱分析:质谱分析是目前最常用的蛋白质修饰检测方法之一。
它通过测量蛋白质分子的质量和质荷比,可以鉴定和定量各种蛋白质修饰形式。
质谱分析的优点是高灵敏度和高分辨率,能够识别极低浓度的修饰产物。
2. 免疫印迹:免疫印迹是一种常用的蛋白质修饰检测技术,它利用特定抗体与目标修饰蛋白发生特异性结合,然后通过化学荧光或酶标记来检测修饰的蛋白质。
免疫印迹技术操作简便,可以同时检测多个修饰位点。
3. 蛋白质芯片技术:蛋白质芯片技术是一种高通量的蛋白质修饰检测技术。
它将多个蛋白质修饰位点的抗体固定在芯片上,然后通过与样品中的修饰蛋白发生特异性结合来进行检测。
蛋白质芯片技术可以同时检测大量的修饰位点,适用于高通量筛查和研究。
三、蛋白质修饰的应用1. 疾病诊断:蛋白质修饰在疾病诊断中发挥着重要作用。
生物芯片技术及其在医学上的应用

生物芯片技术及其在医学上的应用近年来,随着生物芯片技术的高速发展,其在医学领域中的应用越来越广泛。
生物芯片技术是指将微小的生物材料固定在芯片的表面上,以探测生物分子、细胞或组织的一种技术手段。
它的优势在于快速、准确、高通量和高灵敏度,被广泛应用于高通量基因分型、蛋白质鉴定、细胞生物分析、药物筛选、立体图像构建等领域。
一、生物芯片技术生物芯片技术是指使用微电子技术制造出小型芯片,在芯片上通过精巧的设计排列多个生物分子检测元件,可同时进行大量生物学实验,并可快速记录和分析实验结果,极大地提高了实验效率。
其中,常用的生物芯片技术有基因芯片技术、蛋白质芯片技术和细胞芯片技术。
1.基因芯片技术基因芯片技术是基于DNA、RNA的芯片技术,用于同步探测及分析大量基因DNA序列的表达情况,从而了解不同组织、不同状态下基因表达水平的变化,并寻找与特定疾病有关的基因表达水平的差异。
它的快速高通量的处理能力可为全基因组表达分析、基因突变筛查、SNP检测、基因亚型鉴定、疾病识别、药物靶标发现和新药研究等提供有力的支持。
2.蛋白质芯片技术蛋白质芯片技术是利用固相法在玻片、滤膜、微球或微芯片的表面上制备一系列纯化的特异性或全长的蛋白质样品阵列,用于快速大规模地筛选靶蛋白质,分析蛋白质相互作用、酶活性或某些组分与特定蛋白质的结合能力等。
它可用于疾病标记物的检测和筛选、蛋白功能鉴定、蛋白特异性鉴别、药物筛选等方面。
3.细胞芯片技术细胞芯片技术是利用微流控技术制作微小的通道和微型反应器,在芯片上实现细胞的悬浮、培养和观测等操作。
它可应用于各种组织细胞的轻松快捷的分离、单细胞的提取、测序和分析,可推广到药物筛选和个性化医疗等领域。
二、生物芯片技术在医学上的应用生物芯片技术的高通量、高灵敏度、高可靠性和高通用性,使其成为了医学领域中的重要工具,可应用于诊断、预后分析、治疗方案的制定和药物研究等方面。
1.疾病诊断和预后分析基因芯片技术可用于疾病的早期诊断,如乳腺癌、卵巢癌、肾癌、直肠癌等癌症的检测。
蛋白质芯片的研究与应用

维普资讯
5 0
临 沂 师 范 学 院 学 报
第 2 9卷
的发 展 ,蛋 白质 组 学 的研 究 范 围 也在 不 断完 善 和 已成 为蛋 白质 组 研 究 中 的重要 部 分 和 巨大挑 战 ,蛋 白质 问相 互作 用 的研 究 也 已被 纳 入 蛋 白质 组 学 的研 究 范畴 [. 5 1
维普资讯
第2 9卷 第 3期
Vl . 2 0 1 9 NO. 3
临 沂 师 范 学 院 学 报
J u n l fLi y o m a nv riy o r a n i r l o N U ie st
20 0 7年 6月
J n. 2 07 u 0
1 . 统技 术 的 改造 和 新 技术 的产 生 . 3传 1
蛋 白质 研 究技 术 远 比单纯 基 因技 术 复 杂 和 困难 .不 仅 仅 是 因为 氨 基 酸残 基 种 类 远 多于 核 苷 酸 残 基 (04 ,而 且 蛋 白质 有 着 复 杂 的翻 译 后修 饰 , 磷 酸 化 和 糖 基 化 等 才 能 成 为有 功 能活 性 的蛋 白质 , 2/) 如 而 且 蛋 白质 的变 化 多 ,使 分离 和 分析 蛋 白质 的难 度 增 大 .此 外 ,通 过 表达 载 体 进 行 蛋 白质 的体 外 扩 增 和 纯 化 制 备大 量 的蛋 白质 并 非 易事 . 因此 , 展 高 通 量 、 灵 敏度 、 发 高 高准 确 性 的研 究 技 术平 台是 现
(ici ) 术 . bohp 技 1. . 2蛋 白质 组学 的发 展 1
蛋 白质 本 身有 其特 殊 的 活 动 规 律 ,随 着 生 命 活 动 的进 程 表 现 出动 态 的紧 密 协 调 变 化 ;蛋 白质 在 合 成 后 具有 相对 独 立 的修 饰 、运 转 和 相 互 作 用 能力 ;同时 还 具 有 对 外 界 因素 发 生 反 应 的能 力 .况 且 基 因 的主 要 功 能 也 是通 过其 表 达 产 物 一 蛋 白质 来 实现 的 . 传 统 的 对 单个 蛋 白质进 行 研 究 的 方 式 已经 无 法 满 足 后 基 因组 时 代 的要 求 .这 是 因为 :① 生物 现
基于微流控芯片的蛋白质高灵敏快速检测技术研究共3篇

基于微流控芯片的蛋白质高灵敏快速检测技术研究共3篇基于微流控芯片的蛋白质高灵敏快速检测技术研究1蛋白质是生物体内许多重要化学反应和生命表现的基础物质,因此在生物医学、生命科学以及食品工业等领域中具有重要的应用价值。
然而,如何高效地检测蛋白质成为了研究人员关注的问题之一。
现代生命科学和医学研究中,蛋白质检测技术的发展起着决定性的作用。
传统的蛋白质检测方法在性能上存在一些问题,例如条件苛刻、过程繁琐等。
近年来,微流控芯片技术快速发展,为高灵敏度和快速检测蛋白质提供了新的可能性。
微流控芯片技术是一种将微流体学的概念应用于芯片技术中的新型技术。
由于其微小流通体积、高效率、快速响应和可重复性等特点,使得微流控芯片在生物医学和生命科学中得到广泛的应用。
与传统的检测技术相比,微流控芯片检测技术具有以下优点:①检测过程自动化,操作简便;②靶分子检测的容易性和高灵敏度;③减小样品消耗和反应污染的可能性;④实现多参数同时检测,提高检测速度和准确性。
基于微流控芯片的蛋白质检测技术,是一种利用微流控芯片对微小的蛋白质样本进行高灵敏度快速检测的技术。
这种技术主要是基于特殊的仪器设备和芯片结构,以及一系列特殊的微流控芯片加工工艺和生物学方法。
相对于传统的蛋白质检测技术,该技术拥有以下优势。
首先,快速检测。
基于微流控芯片的蛋白质检测技术采用微流控技术,可以将反应体积压缩到微米级别,缩短蛋白质检测时间,从而实现快速检测。
其次,高灵敏度。
由于微流控芯片的成像窗口积极利用了紫外线照射的特点,检出的灵敏度更高。
其次,自动化程度高,操作简单方便。
虽然微流控芯片的制作难度较大,但在实验室实验的过程中,操作简便、操作功效高,自动化程度也高。
最后,适用范围广。
基于微流控芯片的蛋白质检测技术既可用于检测单一的样品,也可以同时检测多样品的蛋白质,适用于多种蛋白质检测。
微流控芯片技术是一项前沿技术,基于其原理的蛋白质检测技术也是一个充满挑战的研究领域,其复杂性主要表现在以下方面:首先掌握微流控芯片的设计与加工技术;其次,在芯片反应域内实现靶分子的高效捕获和分离;第三,在芯片上建立靶分子检测的体系,需要一系列特殊的生物学方法和技术手段。
蛋白质科学研究的新进展
蛋白质科学研究的新进展蛋白质是构成生命体的重要组成部分之一,对于人体的正常运作和健康至关重要。
如今,随着科技的进步和研究的深入,蛋白质科学研究也在不断推进。
本文将介绍一些近年来蛋白质科学研究的新进展。
一、蛋白质结构的高清晰度成像蛋白质结构是指蛋白质分子中氨基酸残基之间的空间关系。
目前,蛋白质结构的高清晰度成像是蛋白质科学研究的热点之一。
科学家们利用X射线晶体学方法,成功解析了多种生物体系中蛋白质的三维结构,从而为药物设计和疾病治疗方面的研究提供了新的依据。
不仅如此,近年来出现了一种叫做“单颗粒电子显微镜”(cryo-EM)的新技术,能够在无需制备晶体的情况下直接解析蛋白质的结构。
该技术能够成功解析具有高度结构异质性的生物分子,这对于理解生物分子在不同环境下的行为具有重要意义。
二、蛋白质交互作用的全景分析蛋白质交互作用是指一种蛋白质与其他蛋白质或分子之间的相互作用。
如今,科学家们可以借助先进的技术手段,对蛋白质交互作用进行全景分析。
例如,质谱法是一种用于检测蛋白质与其他分子之间相互作用情况的技术。
利用这种方法,科学家们可以快速地鉴定蛋白质与其他生物分子的相互作用关系,有助于揭示蛋白质间的相互作用网络和细胞中信号传递通路的机制。
三、定点修饰方法的发展蛋白质在人体内发挥各种生物学功能的行为往往需要与其他蛋白质或小分子相互作用。
而这些交互作用往往可以通过对蛋白质进行定点修饰来实现。
在近几年的研究中,科学家们不断探索新的定点修饰方法,这些方法包括瑞利多肽修饰(RADICA)、紫外线活化氨基酸修饰(UAAC)等。
这些技术为研究蛋白质修饰、药物发现和疾病治疗提供了新的手段。
四、蛋白质结构预测的概率计算方法蛋白质结构预测是一项关键的任务,因为其结构与功能紧密相关。
随着计算方法的进步,预测精度不断提高。
但是,从蛋白质多样性和复杂度来看,预测任务仍然具有很大的挑战。
为了解决这一问题,研究者们逐渐采用基于概率计算的方法,如重重随机重构(multi-template modeling)和石墨烯垂直扫描(generalized ranking)。
生物芯片技术的现状和未来发展趋势
生物芯片技术的现状和未来发展趋势在当今信息技术高速发展的背景下,生物芯片技术已经作为新一代芯片技术之一得到了广泛关注。
生物芯片技术是指将基于一种半导体芯片工艺的微处理器与生物技术集成起来,使其能够在极小的空间范围内进行大量高效的生物学实验和测量。
本文将从生物芯片技术的现状、应用、挑战以及未来发展趋势等方面来进行探讨。
一、生物芯片技术的现状目前,生物芯片技术已经成为细胞分子生物学、病理学和药物研发等领域中最为热门的研究方向。
生物芯片技术具有高通量、高灵敏度、高精确度、迅速应用、低成本等特点,在分子生物学和医学中发挥了重要作用。
生物芯片的概念最早由美国加州大学的Kary B. Mullis提出。
1993年,美国Affymetrix公司开发了第一种高密度基因芯片,开启了生物芯片技术的先河。
随着微电子技术、生物技术和计算机技术的不断发展,生物芯片技术在红外光谱分析、单细胞分析、生物流程控制等领域得到了广泛应用。
二、生物芯片技术的应用1. 基因芯片基因芯片是将许多基于生物学的反应体系集成在一起的微小芯片,用于研究或分析基因组中的特定基因。
基因芯片技术可以在单次实验中同时检测数万个基因,为基因科学和医学研究带来了极大的便利。
目前,基因芯片已被广泛应用于人类基因组学、癌症研究、生物多样性分析等领域。
2. 蛋白芯片蛋白芯片是一种基于微流控芯片技术的高通量分析平台,用于检测和分析蛋白质分子。
蛋白质是生命体的重要组成部分,是生命科学研究和疾病诊断治疗的重要研究对象。
蛋白芯片技术的出现为蛋白质研究提供了一个全新的研究手段,已广泛应用于癌症预后、生物标志物检测等领域。
3. DNA芯片DNA芯片是由许多微小光点组成的微阵列,其中每个光点上都有一小片特定的DNA序列。
DNA芯片技术可以在非常快速、高通量的方式下对DNA进行分析。
DNA芯片可以用于检测基因突变、基因表达、基因型等,可以通过DNA芯片技术迅速、全面地诊断、筛查多种遗传病和人类基因组学。
蛋白芯片法igg
蛋白芯片法(IgG)1. 引言蛋白芯片法(IgG)是一种用于检测和研究蛋白质相互作用的技术。
在生物医学研究和临床诊断中,蛋白质相互作用扮演着重要的角色。
蛋白芯片法(IgG)通过将多种蛋白质固定在芯片上,并利用抗体与特定蛋白质相互作用的原理,实现对蛋白质相互作用的高通量分析。
本文将详细介绍蛋白芯片法(IgG)的原理、应用、优势和局限性,并展望其未来的发展方向。
2. 原理蛋白芯片法(IgG)的原理基于蛋白质的特异性相互作用。
首先,在芯片上固定多种蛋白质,可以使用不同的方法,如化学交联、光化学固定等。
然后,将待测的样品(如血清或细胞提取物)与芯片上的蛋白质相互作用。
最后,使用特异性的抗体来检测与待测样品中的蛋白质结合的蛋白质。
具体而言,蛋白芯片法(IgG)通常分为两个步骤:蛋白芯片制备和蛋白质检测。
•蛋白芯片制备:选择需要固定在芯片上的蛋白质,将其固定在芯片上的特定位置。
可以使用化学交联、光化学固定等方法实现蛋白质的固定。
•蛋白质检测:将待测样品与固定在芯片上的蛋白质相互作用,使待测样品中的蛋白质与芯片上的蛋白质结合。
然后,使用特异性的抗体来检测与待测样品中的蛋白质结合的蛋白质。
最常用的检测方法是荧光标记的二抗法,其中荧光标记的二抗与特异性抗体结合,形成荧光信号。
通过检测荧光信号的强度,可以确定蛋白质的相互作用。
3. 应用蛋白芯片法(IgG)在生物医学研究和临床诊断中具有广泛的应用。
以下是蛋白芯片法(IgG)的一些主要应用领域:3.1 蛋白质相互作用研究蛋白质相互作用是生物体内许多重要生物过程的基础。
蛋白芯片法(IgG)可以高通量地检测和分析蛋白质相互作用,帮助研究人员深入了解蛋白质的功能和调控机制。
通过蛋白芯片法(IgG),可以筛选出与特定蛋白质相互作用的潜在配体或抑制剂,为新药开发提供重要线索。
3.2 疾病标志物筛选蛋白芯片法(IgG)可以用于筛选疾病标志物,即与特定疾病相关的蛋白质。
通过比较正常样品和疾病样品中蛋白质的相互作用模式和强度,可以鉴定出与疾病相关的蛋白质。
蛋白质谱芯片
蛋白质谱芯片
蛋白质谱芯片
一、介绍
随着科技的不断进步,人们对蛋白质的研究也变得更加深入。
作为生
命体中重要的组成部分,蛋白质的研究有着广泛的应用前景。
因此,
研究蛋白质的分析方法也是科学家们一直关注的重点方向。
而蛋白质
谱芯片也因此应运而生。
二、蛋白质谱芯片基础
蛋白质谱芯片是一种高通量蛋白质分析工具,被广泛应用于蛋白质组
分析、生物标志物筛选和药物筛选等方面。
该技术的核心是将多个蛋
白质分析分区固定在芯片上,并通过质谱技术进行快速且高效的分析。
蛋白质谱芯片技术基于微流控技术,具有高通量、快速、高灵敏度和
高精度的优势。
三、蛋白质谱芯片的应用
蛋白质谱芯片技术广泛应用于蛋白质组分析、蛋白质定量和筛选生物
标志物等领域。
它可以在很短的时间内完成大量蛋白质分析和筛选,
同时具有高通量和高灵敏度等优点,可以解决传统蛋白质分析存在的
一些问题,如低通量、低灵敏度和复杂样品分析等。
四、蛋白质谱芯片的优势和挑战
蛋白质谱芯片技术具有高通量、快速、高灵敏度和高精度等优势。
与
传统蛋白质分析方法相比,蛋白质谱芯片技术更快速、精准,同时还可以完成大量的蛋白质分析和筛选。
但是,蛋白质谱芯片技术的应用还面临着一些挑战,如制备技术和样品预处理等方面的问题。
五、结论
蛋白质谱芯片技术是一种高通量、快速、高灵敏度和高精度的蛋白质分析工具。
它被广泛应用于蛋白质组分析、生物标志物筛选和药物筛选等领域。
尽管蛋白质谱芯片技术还面临着一些挑战,但随着技术的不断提升和改进,相信它将会在未来的蛋白质研究中发挥更加重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质芯片技术的临床应用新进展作者:谢林峰向俊蓓孙亚男等来源:《中国医学创新》2015年第23期【摘要】近年来,生物芯片技术日趋成熟,这其中,蛋白质芯片技术以其自动化、微型化、高灵敏度、高通量、高特异性等优点,被广泛地应用于蛋白质组学的研究中,并发挥着越来越大的作用。
同时,由于此技术能快速、准确地找到细胞与组织在不同环境与状态下蛋白质表达的差异,因此在肿瘤、传染性疾病以及自身免疫性疾病的早期诊断中具有巨大的应用潜能。
本文对蛋白质芯片技术的原理、分类与其在临床中的最新应用进展作一总结。
【关键词】蛋白质芯片;肿瘤;传染性疾病;自身免疫性疾病;早期诊断The Latest Advances of Clinical Application on Protein Chip Technology/XIE Lin-feng,XIANG Jun-bei,SUN Ya-nan,et al.//Medical Innovation of China,2015,12(23):154-156【Abstract】 In recent years,biochip technology becomes more mature.Among these,the protein chip technology is playing an increasingly important role in proteomics research for its advantages of automation,miniaturization,high sensitivity,high-throughput and high specificity.Meanwhile,because this technology can quickly and accurately find the difference of protein expression of cells and tissues in different environments and state,it has enormous application potentiality in the early diagnosis of cancer,infectious diseases and autoimmune diseases.This paper makes a summary on the principle and classification of protein chip technology and the progress in its latest clinical application.【Key words】 Protein chip; Tumor; Infectious diseases; Autoimmune diseases; Early diagnosisFirst-author’s address:Sichuan Nursing Vocational College,Chengdu 610100,Chinadoi:10.3969/j.issn.1674-4985.2015.23.054近年来,随着基因组技术的不断完善以及基因组计划的发展,人类已经获得了包括人类自身在内的3173个物种的全部基因序列(Genome Online Database,http://),这为学者提供了巨量的遗传信息资源,推动着生命科学向着更加个性化、精确化以及规模化的方向发展,为人类认识生命、治疗疾病甚至改造生命奠定了基础。
然而,基因只是携带遗传信息的DNA片段,由基因所表达出的蛋白质才具有执行生命活动的功能。
因此,机体蛋白质的结构与功能以及蛋白质表达图谱的探究成为近年来生命科学领域的研究热点[1]。
在1994年,Wilkins等提出蛋白质组的概念,它是指由一个基因组(Genome)或一个细胞、组织在特定的环境或状态下所表达的所有蛋白质。
这个新概念的提出对蛋白质的研究具有革命性的意义。
而后,随着人们对蛋白质组研究的不断深入,大规模、高通量的蛋白质分析成为必须,蛋白质芯片技术的发明与完善恰好解决了这个问题。
蛋白质芯片技术又叫蛋白质微阵列,它是一门微电子、微机械、化学等与生命科学结合的新兴技术。
其作为蛋白质组研究工具时所表现出的高通量、高灵敏度、高特异性、自动化、微型化等特点,具有比传统蛋白质组研究方法如二维凝胶电泳和酵母双杂交技术等更大的优越性[2]。
如今,蛋白质芯片技术已经广泛应用于食品、生物、医学等领域的基础性研究当中,特别是在临床医学中,蛋白质芯片技术在肿瘤、传染性疾病以及自身免疫性疾病的早期诊断以及检测病原微生物与毒素等方面发挥着巨大的应用价值与潜能[3]。
本文对蛋白质芯片技术的原理,分类与其在临床中的最新应用进展作一总结。
1 蛋白质芯片的原理蛋白质芯片是把多种不同蛋白质高密度的固定在固相载体(玻璃、硝酸纤维素膜、硅片、PVDF膜等)的表面而形成的蛋白质微阵列。
然后与酶、同位素或荧光素等活性物质标记的靶蛋白质分子进行杂交。
待其结合到芯片表面介质后,通过质谱仪、电荷偶联照相系统及CCD 扫描仪等检测芯片信号,然后用计算机分析软件对所获得的信号进行快速、准确的分析,最后得到大量的信息[4]。
该芯片技术是在基因芯片后发展而起的后基因组研究芯片技术,弥补了基因芯片运用上的局限性。
2 蛋白质芯片的分类蛋白质芯片的分类标准很多,其中以蛋白质芯片检测方法为标准可将其分为探针标记检测法芯片、无探针标记检测法芯片。
荧光检测法属于探针标记检测法,因其具有安全、简易、灵敏度高等优点成为目前应用最广泛的检测方法。
其次为非探针标记的检测方法。
如SELDI蛋白质芯片技术,又称为表面增强激光解吸离子化飞行时间质谱(surface- enhanced laser desorption/ionization -time of flight-mass spectrometry,SELDI-TOF-MS)。
它的优点是防止蛋白质与探针相互结合后可能导致的某些蛋白质变性,从而提高检测结果的准确度。
整个过程方便、快捷、准确率高。
在蛋白表型的研究、生物标志物的寻找、药物研发,特别是在临床上对肿瘤的早期诊断上发挥着重要的作用[5]。
3 蛋白质芯片在临床上的应用3.1 在肿瘤诊断中的应用目前,对肿瘤的检测与诊断已经具有了一系列比较成熟的检测方法,比如生化检查、器械检查、免疫及遗传学检查等多种方法,然而对肿瘤早期的诊断以及受多种因素影响而未出现明显临床症状的疾病,这些方法往往表现出敏感性与特异性不高的缺点。
另据统计分析表明,35%的结肠癌、50%的乳腺癌与56%的前列腺癌在转移之前无法用以上方法检出。
可喜的是,蛋白质芯片技术的发展正好弥补了以上技术的不足,因其能高灵敏度地寻找到新的肿瘤标记物,所以在肿瘤的早期诊断与监测治疗效果中发挥着重要的作用,成为临床医学领域最前沿的研究技术之一。
Lu等[6]利用SELDI-TOF-MS技术对胃癌患者与非胃癌人群血清标本进行检测,发现五个蛋白峰(m/z分别为 2046、3179、1817、1725和1929)组成的诊断模型可以作为检测胃癌的最佳标志物。
同时,单一的蛋白峰(m/z4665)的变化可以鉴别出一/二阶段的胃癌与三/四阶段的胃癌,其特异性达到91.6%,灵敏性达到95.4%;Wang 等[7]利用蛋白芯片SELDI-TOF-MS技术对结肠癌相关成纤维细胞与正常结肠间质成纤维细胞中的蛋白质表达量进行分析,结果发现在总细胞裂解物中,有4个蛋白峰(m/z分别为1142、3011、4035和4945)被检测到,在条件培养基中,两个蛋白峰(m/z为1368、1389)被检测到,这些蛋白质的改变在结肠癌微环境中起着重要的作用;Xu等[8]利用蛋白芯片SELDI-TOF-MS技术检测大肠癌患者大肠组织中蛋白质指纹图谱,分析结果发现,通过筛选不同标志物建立诊断模型,由15个蛋白峰(m/z分别为3850、3570、3651、5012、3338、6618、3904、5224、2909、5208、3645、5034、3451、8424和3628)建立的诊断组织模型诊断大肠癌组织与正常组织的敏感性与特异性均达到100%,此技术有望成为一种具有高度敏感性的检测工具;Fan等[9]利用蛋白芯片SELDI-TOF-MS技术筛选出三个蛋白峰(m/z分别为6630、8139与8942)来构建高鉴别力的诊断模型用以诊断乳腺癌,其灵敏度与特异性分别达到96.45%与94.87%。
Song等[10]建立了基于SELDI-TOF-MS技术的肺癌诊断模型,由4个蛋白峰(m/z分别为6445、9725、11 705与15 126)组成的诊断模型在鉴别肺癌患者与非肺癌者的灵敏度为93.3%(28/30),特异性为90.5%(57/63);Liu等[11]利用蛋白芯片技术鉴别特异性胰腺癌个体与健康个体,其特异性与敏感性均为91.6%;Petricoin等[12]利用SELDI-TOF-MS技术检测了非卵巢癌人群与卵巢癌患者的血清标本,结果发现其中五个蛋白质峰(m/z分别为534、989、2111、2251、2465)同时发生变化,与传统的卵巢癌标志物CA125相比,由它们组成的蛋白质指纹图谱检测早期卵巢癌的阳性预测值提高到94%,特异性为95%,敏度达到100%。
因此,在卵巢癌的早期诊断中发挥着非常重要的意义。
3.2 在传染性疾病研究中的应用现如今,对传染性疾病的检测已经有一套成熟的体系与检测方法,并取得了良好的效果。
同时,蛋白质芯片技术作为一种新开发出的优越的蛋白质分析技术,其在检测传染病病原体、研究其毒力、致病与耐药机制等方面发挥着重要的作用。
例如感染HIV的患者,联合感染HBV或HCV的情况较为常见,传统的检测方法操作步骤较繁琐,敏感度较低。
Xu等[13]开发出了一种蛋白质芯片,它能够同时检测感染者血清中的HBV、HCV、HDV、HEV与HGV的相应的抗体,大大减少了血清样品的用量,提高了检测敏感性。
Quiel等[14]利用电蛋白质芯片技术快速鉴定金黄色葡萄球菌与表皮葡萄球菌的致病因子,此方法比传统的SDS-PAG和Western immunoblotting检测方法更快速、更安全,灵敏度也更高。
同时,Zhu等[15]开发出一种Epstein-Barr病毒(EBV)蛋白芯片鉴定EBV蛋白激酶BGLF4的底物,并证明BGLF4对EBV裂解周期的影响不仅通过EBV裂解DNA的磷酸化复制于病毒蛋白,同时受BGLF4的底物EBNA1的复制功能的干扰,使EBNA1成为潜在的治疗靶向。