线性规划和整数规划经济中的应用the models 论文

合集下载

基于整数线性规划和混合整数线性规划的投资组合优化

基于整数线性规划和混合整数线性规划的投资组合优化

1引言线性规划是用来寻求变量处于线性关系时的有效方法,在项目选择、投资组合优化、季节收益预测等问题中有多种应用。

整数规划与线性规划非常相似,但它要求所有或部分变量是整数。

某些情况下,整数规划更可取,如二元变量的管理决策。

部分决策变量为整数的模型,称为混合整数规划。

本文将会研究整数线性规划在投资组合优化中的应用。

模型A ,即整数线性规划(ILP )模型可以看作NP 完全问题中的0-1背包问题,通过模型A 找出可选入投资组合的股票。

另一个模型是混合整数线性规划(MILP ),这里使用的是有限资产平均绝对偏差(LAMAD )模型的演变来确定投资所选股票的确切数量,分配最合适的权重,以达到风险最小化、回报最大化的效果。

本文采用3种算法求解:分支剪界算法、动态规划算法和贪心算法。

分支剪界算法用CPLEX 12.6实现,动态规划算法和贪心算法在Eclipse 标准4.4平台上,用Java 语言实现,所采用的股票信息和数据由NASDAQ 和yahoo finance 网站获取。

2算法介绍以下介绍的算法都可以归属于启发法的范畴。

启发法是指不以找到问题的最佳或最确切的解决方案为目标的技术,而是找到一个足够可信的解决方案的方法。

直觉判断、刻板印象和常识都属于这个“范畴”。

它非常适用于在计算或搜索过于详尽和不实际的情况下,通过心理捷径来加快得到满意解决方案的过程,以减轻作出决策的认知负担。

它有常见的几种策略:第一种是将问题的目标状态进行切分,然后通过实现子目标逐渐实现总的目的;第二种是从最终目标状态逆向去寻找达到这个状态的途径;第三种是逐步收缩初始状态和目标状态的距离的方法。

元启发式是指导搜索过程的策略或上层方法论,元启发式的目标是有效地探索搜索空间,以找到最接近的最优解。

启发式依赖于问题,用于确定特定问题的“足够好”的解决方案,而元启发式就像一种设计模式,可以应用于更广泛的问题。

启发式方法特别适用于混合整数规划,因为混合整数规划太大而无法求解最优,而线性规划较为松弛,可以在合理的时间内求解。

线性规划与整数规划理论及应用研究

线性规划与整数规划理论及应用研究

线性规划与整数规划理论及应用研究线性规划是一种优化问题,它通过求解数学函数的最大值或最小值,来找到能够满足约束条件的变量值。

线性规划的应用非常广泛,包括生产排程、运输问题、财务管理等领域。

整数规划则是线性规划的一种扩展形式,它要求变量值是整数。

本文将介绍线性规划及整数规划的理论和应用研究。

线性规划理论线性规划的数学表达式为:$\max_{x \in \mathbb{R}^n} c^Tx$$ s.t. Ax \leq b ; $其中$x$是$n$维实向量,$c$是$n$维实向量,$A$是$m \times n$的实矩阵,$b$是$m$维实向量。

这个表达式的含义是,求出在满足约束条件$Ax \leq b$的同时,使得$c^Tx$达到最大值的$x$。

约束条件是对$x$的限制,使得$x$满足可行性条件。

线性规划存在的前提是可行性条件的存在,即在约束条件$Ax \leq b$下,存在至少一个$x$可以满足。

如果可行性条件不存在,则线性规划无解。

线性规划的求解可以使用线性规划算法进行,例如单纯形法、内点法等。

其中最常用的算法是单纯形法。

单纯形法的基本思想是从一个初始解开始,通过不断地找到更优的解,来逐步逼近最优解。

具体来说,单纯形法通过找到松弛条件的目标函数最优解对应的松弛变量,来进行解的更新。

线性规划应用线性规划在实际生产、物流等领域被广泛应用。

例如,在生产调度中,线性规划可以用来优化生产过程中的时间排程、机器分配等问题,从而达到最大化生产效率、最小化生产成本的目的。

在物流领域,线性规划可以用来优化物流运输路线,从而最小化运输成本。

另外,线性规划还可以应用于制定食物饮品配方,通过确定每种原料的数量和配比,来达到制作具有某种特定功能的食物饮品的目的。

此外,线性规划还可以用于网络资源规划、金融风险管理等领域。

整数规划理论整数规划是线性规划的一种扩展形式,它要求变量值是整数。

整数规划的数学表达式为:$\max_{x \in \mathbb{Z}^n} c^Tx$$s.t. Ax \leq b ;$其中$x$是$n$维整数向量,$c$是$n$维实向量,$A$是$m \times n$的实矩阵,$b$是$m$维实向量。

线性规划模型的求解及应用毕业论文

线性规划模型的求解及应用毕业论文

毕业论文(设计)课题名称线性规划模型的求解及应用业数学与应用数学(S)2010级数学2班指导教师________________________________ 学生姓名______________________________隹木期大学数务处word文档可自由复制編辑线性规划模型的求解及应用佳木斯大学理学院数学系2014年6月线性规划是运筹学的一个重要分支,它辅助人们进行科学管理,是国际应用数学、经济、计算机科学界所关注的垂要研究领域.线性规划主要研究有限资源最佳分配问题,即如何对有限的资源进行最佳地调配和最有利地使用,以便最充分发挥资源的效能来获取最佳的经济效益.线性规划运用数学语言描述某些经济活动的过程,形成数学模型,以一定的算法对模型进行计算,为制定最优计划方案提供依据•其解决问题的关键是建立符合实际情况的数学模型,即线性规划模型.在各种经济活动中,常采用线性规划模型进行科学、定量分析, 安排生产组织与计划,实现人力物力资源的最优配置,获得最佳的经济效益.目前,线性规划模型被广泛应用与经济管理、交通运输、工农业生产等领域.本文主要介绍线性规划的两种基本解法即图解法和单纯形法,并讨论了这两种方法的优缺点和在一些实际问题屮的应用.关键词:线性规划:图解法:单纯形法:数学模型:应用AbstractLinear progianmiing is an iinpoilant branch of operations research, which assist people to scientific management is an important area of research iiitemationally applied mathematics, economics, computer science conmiunity^s concerns. The main study of linear programming optimal allocation of limited resomces, namely liow to limited resoiuces optimally deploy and most advantageously used in order to most hilly effective resources to get the best value for money.Linear progianmiing using mathematical language to describe the process of certain economic activities, the fonnation of mathematical models to a certain algorithm to calculate the model toword文档可自由复制編辑provide a basis for the fonnulation of the optimal plan for. The key to solve the problem is to create a mathematical model in line with the actual situation, namely linear progranmiing model. In various economic activities, often using linear progianuning model for scientific, quantitative analysis, organization and planning for production to achieve the optimal allocation of hiunan and material resources, to get the best value for money. At present, the linear progianmiing model is widely used in economic management, tiansportation, industrial and agricultural production and other fields.This paper describes two basic solution that giaphical method for linear programming and the simplex method, and discuss the advantages and disadvantages of both methods and applications in a number of practical problems・Key words:Linear Programming: Graphic method; simplex method; mathematical model;Application摘要........................................................................... Abstract .................................................................................................................................第1章绪论 ....................................................................1.1线性规划的基本概念......................................................1.1.1线性规划简介........................................................1.1.2线性规划由來的时间简史..............................................1.2线性规划的研究目的及意义................................................第2章线性规划问题的数学模型..................................................2.1线性规划模型的建立......................................................2.2线性规划模型的求解方法..................................................2.2.1图解法..............................................................2.2.2单纯形法............................................................ 第3章线性规划在实际问题中的应用..............................................3.1线性规划在企业管理中的应用 ..............................................3.1.1线性规划在企业管理中的应用范围......................................3.1.2如何实现线性规划在企业管理中的应用..................................3.2线性规划在企业生产计划中的应用 ..........................................33线性规划在运输问题中的应用............................................... 结论........................................................................... 參考文献.......................................................................第[章绪论1.1.1线性规划简介线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支, 它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备利新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题•满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.1.1.2线性规划由来的时间简史法国数学家J. - B. - J.傅里叶和C.瓦莱一普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意.1939年苏联数学家fl.B.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视.1947年美国数学家G. B. Dantzing提出求解线性规划的单纯型法,为这门学科奠定了基础.1947年美国数学家J. von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域, 扩大了它的应用范围和解题能力.1951年美国经济学家T. C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖.50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法.例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析利参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B•丹齐克和P.沃尔夫提出分解算法等.线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究.由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX, OPHEIE, UMPIRE等,可以很方便地求解几「个变量的线性规划问题.1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法.1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法. 用这种方法求解线性规划问题在变屋个数为5000时只要单纯形法所用时间的1/50.现已形成线性规划多项式算法理论.50年代后线性规划的应用范用不断扩人.建立线性规划模型的方法第2章线性规划问题的数学模型2.1线性规划模型的建立线性规划是合理利用、调配资源的一种应用数学的方法•它的基本思路是在满足一定的约束条件下,使预定的目标达到最优•它的研究内容可归纳为两个方面:一是系统的任务资源数量己定,精细安排,用最少的资源去实现这个任务:二是资源数量己定,如何合理利用、调配,使任务完成的最多.前者是求极小,后者是求极大.线性规划的一般定义如下:对于求取一组变量Xj (j=l,2,-,n),使之既满足线性约束条件,又使具有线性特征的目标函数取得极值的一类最优化问题称为线性规划问题.线性规划模型建立需具备以下条件:一是最优目标.问题所要达到的目标能用线性函数來描述,且能够使用极值(最大或最小)来表示.二是约束条件•达到目标的条件是有一定限制的,这些限制可以用决策变量的线性等式或线性不等式來表示.三是选择条件,有多种方案可以供选择,以便从中找出最优方案.线性规划问题的一般数学模型如下:max(或min) Z = c1x l + c2x2 ------- 1- c n x n(1)r a1I x1 + a.2x2 + -+a.B x n< (=,b t+a22x2 4-- + a2a x c < (=,>) h2s.t. / : :: ⑵a:x l+a m2x2+ - + a mn x n 兰(=,>)b maV x:x2 ........... x n > 0(< 0)Xj (j = 1,2,“n) 称为决策变量word文档町“由复制编辑bj(j = 1,2, ...,n) 称为约束右端系数屯(}= 1,2,= 1,2, ...r n) 称为约束系数 其中式(1)为目标函数,式(2)称为约束条件•由于目标函数和约束条件内容和形式上的差别,线性规划问题有多种表达式,为了便 于讨论和制定统一的算法,规定标准形式如下:(1) 标准形式 iaxz = CiXj+C?%+••• + %£a n x i + + ・• • + a in\ =b 】a 21X l • • • + + ・•・ + ** * • • • a 2n X n =■ + 3^X3+ •••+ a nm\ =X )n 0 (j = 1,…,n)(2) £记号简写式nmax z =工 C J X Jj ・i■n E a u x j =b : (i = l ,2,.・.m)[Xj=O (j =1,2,...41)(3) 矩阵形式max z = CXjAX = b(X>O式中c=(C v ...,c n ), X= (xp.— xj 311 a 12 …a lnL 0A= 321 a 22 …a 2n ,b = b, ■ ,0 = 0• • • • • • ••• • • • • • ••• a ml a m2 …a mn b 3 0■ Cj(j = 1,2,…,n)称为1=1标函数系数max z = CXf Pkbn x>o式中C, X, b, 0的含义与矩阵的表达式相同,而Pj = [a ir a 2?-^a mj]0 = 12 …,n)即 A= (p 1,p 2r»>p n )将非标准形式化为标准形式的情况(3种基本情况)(1) 目标函数为求极小值minZ=CA ;则作 Z=-CX,即 maxZ^-CX(2) 右端项小于0只需要将两端同乘(-1),不等号改变方向,然后再将不等式改为等式(3) 约束条件为不等式 若约束条件为“兰”则在不等式左侧增加一个非负松驰变最,使其转化为若约束条件为“X”,则在不等式左侧减去一个非负剩余变量(也称松驰变暈),使其转化 为 “ =” •2.2线性规划模型的求解方法线性规划可以在一定条件下合理安排人力、物力等资源,使经济效果达到最好.一般 来说,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问 题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变星、 约束条件、目标函数是线性规划的三要素.然而图解法不适合解大规模的线性规划的问 题,局限性比较大.但对于只有两个或考三个变量的线性规划问题,可以用图解法求最优 解,也就是作出约束条件的可行域,利用图解的方法求出最优解,其特点是过程简洁、 图形清晰,简单易懂•下面仅做只有两个变量的线性规划问题.只含两个变量的线性规划问题,可以通过在平而上作图的方法求解,步骤如下:(4)向量形式 2. 2.1 解法(1)以变量X】为横坐标轴,X:为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系.由变量的非负性约束性可知,满足该约束条件的解均在第一象限内.(2)图示约束条件,找出可行域(所有约束条件共同构成的图形).(3)画出目标函数等值线,并确定函数增大(或减小)的方向.(4)可行域中使目标函数达到最优的点即为最优解.卜面举出一个实例来说明:例1•某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56假设生产每种产品都需要用两种木料,生产一张圆桌和一个衣柜分别所需木料如下表所示.每生产一张圆桌可获利60元,生产一个衣柜可获利100元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆束x张,生产衣柜y个,利润总额为n元,则由已知条件得到的线性规划模型为:max z = 60x+ 100y,s.t. 0.18x+ 0.009y <72,0.08x+0.28y < 56,x>0,y>0.图2-1这是二维线性规划,可用图解法解,先在xy坐标平面上作出满足约束条件的平面区域,即可行域S,如上图所示.再作直线l:60x-F100y=0,即l:3x+5y=O,把直线1半移至的位置时,直线经过可行域上点M,且与原点距离最远,此时z=60x+100y取最大值,为了得到M点坐标解方程组(°层+。

线性规划论文 (5)

线性规划论文 (5)

线性规划论文简介线性规划是数学规划领域的一种重要方法,用于优化线性目标函数在一系列线性约束条件下的取值。

由于其广泛的应用性和高效的计算方法,线性规划在工程、经济、物流等领域中被广泛应用。

背景线性规划的出现与发展源于对优化问题的研究。

在过去的几十年中,随着计算机技术的进步和算法的优化,线性规划在实践中得到了广泛的应用。

线性规划的主要优点是能够处理大规模的问题,并且提供了一种可行的方式来解决复杂的决策问题。

定义和模型线性规划问题的一般形式可以表示为:最大化(或最小化)目标函数:Z = c₁x₁+ c₂x₂ + ... + cₙxₙ在约束条件下:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,x₁, x₂, ..., xₙ是决策变量,c₁, c₂, ..., cₙ是目标函数的系数,a₁₁, a₁₂, ..., aₙₙ是约束条件的系数,b₁, b₂, ..., bₙ是约束条件的右侧常数。

算法和求解线性规划问题的求解可以使用多种算法,包括单纯形法、内点法等。

这些算法基于不同的思想和技巧,通过迭代计算来逼近最优解。

其中,单纯形法是最常用的算法之一,它通过不断地改变基变量和非基变量的组合来寻找最优解。

内点法则是近年来发展起来的一种新的算法,通过在可行域内部搜索最优解。

应用领域线性规划在众多领域中都有广泛的应用。

以下是线性规划常见的应用领域:生产计划与调度通过线性规划,可以优化生产计划和调度问题。

通过设置合理的约束条件和目标函数,可以最大程度地提高生产效率,减少生产成本。

运输与物流规划线性规划在运输和物流规划中也得到了广泛应用。

通过优化物流路径和运输计划,可以降低运输成本,提高物流效率。

金融与投资管理在金融领域中,线性规划可以用于优化投资组合和资产配置,以最大化收益或降低风险。

线性规划论文线性规划 论文

线性规划论文线性规划 论文

数学建模论文摘要:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题的数学理论和方法。

本文讨论了在企业的各项管理活动如计划、生产、运输、技术等方面各种限制条件的组合选择出最为合理的一般计算方法。

重在通过MATLAB程序设计来实现,建立线性规划模型求得最佳结果。

关键词:MATLAB 线性规划编程线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型。

简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

涉及更多个变量的线性规划问题不能用初等方法解决整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。

从约束条件的构成又可细分为线性,二次和非线性的整数规划。

MATLAB自身并没有提供整数线性规划的函数,但可以使用荷兰Eindhoven 科技大学Michel Berkelaer等人开发的LP_Solve包中的MATLAB支持的mex 文件。

此程序可求解多达30000个变量,50000个约束条件的整数线性规划问题,经编译后该函数的调用格式为[x,how]=ipslv_mex(A,B,f,intlist,Xm,xm,ctype)其中,B,B表示线性等式和不等式约束。

和最优化工具箱所提供的函数不同,这里不要求用多个矩阵分别表示等式和不等式,而可以使用这两个矩阵表不等式、大于式和小于式。

如我们在对线性规划求解中可以看出,其目标函数可以用其系数向量f=[-2,-1,-4,-3,-1]T 来表示,另外,由于没有等式约束,故可以定义Aep和Bep为空矩阵。

由给出的数学问题还可以看出,x的下界可以定义为xm=[0,0,3.32,0.678,2.57]T,且对上界没有限制,故可以将其写成空矩阵此分析可以给出如下的MATLAB命令来求解线性规划问题,并立即得出结果为x=[19.785,0,3.32,11.385,2.57]T,fopt=-89.5750。

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析

运筹学与优化中的整数规划与线性规划对比分析运筹学与优化是一门研究如何利用数学方法来优化决策的学科。

在运筹学与优化领域中,整数规划和线性规划是两种常用的数学模型。

本文将对整数规划和线性规划进行比较和分析,探讨它们在应用中的异同点以及各自的优势和劣势。

首先,我们来看整数规划。

整数规划是一种求解含有整数变量的优化问题的数学方法。

在整数规划中,决策变量必须取整数值,这导致整数规划比线性规划要更加复杂。

整数规划可以用来解决很多实际问题,例如生产调度问题、资源分配问题和路线选择问题等。

整数规划的一个重要应用领域是物流运输问题。

在物流运输中,有时需要决定在某一段时间内应该购买多少辆卡车,以满足快速变化的运输需求。

这个问题可以被建模为一个整数规划问题,目标是最小化成本或最大化利润。

与整数规划相比,线性规划是一种在决策变量可以取任意实数值的情况下求解优化问题的方法。

线性规划在运筹学与优化中被广泛应用。

线性规划的求解方法相对较为简单,可以通过线性规划软件来求解。

线性规划常被用来解决资源分配问题、产品混合问题和生产计划问题等。

一个典型的线性规划问题是生产计划问题,其中目标是最大化产量或最小化生产成本,同时满足一系列约束条件,例如原料和人力资源的限制。

整数规划和线性规划在应用中有一些明显的异同点。

首先,整数规划相对于线性规划来说更加复杂,因为整数规划需要考虑决策变量取整数值的限制。

这使得整数规划的问题规模更大,求解难度更高。

其次,整数规划可以更好地描述某些实际问题,例如一些离散决策问题,而线性规划更适用于某些具有连续决策变量的问题。

此外,整数规划常常需要更长的计算时间来求解,而线性规划则可以在较短的时间内得到结果。

尽管整数规划和线性规划在应用中有一些区别,它们也有一些共同之处。

首先,整数规划和线性规划都是数学模型,通过最大化或最小化某个特定的目标函数来进行决策。

其次,整数规划和线性规划都可以通过数学方法来求解。

虽然整数规划的求解方法相对复杂一些,但仍然可以被有效地求解出来。

整数规划及应用论文摘要

整数规划及应用论文摘要整数规划是一种数学规划问题,其目标是在给定一组约束条件下,寻找满足所有约束条件并能够优化目标函数的整数解。

整数规划及其应用广泛用于各个领域,例如物流、生产计划、卫生系统、网络设计等。

整数规划问题可以形式化地表示为:max/min Z = c₁x₁+ c₂x₂+ ... + cₙxₙsubject to:a₁₁x₁+ a₁₂x₂+ ... + a₁ₙxₙ≤b₁a₂₁x₁+ a₂₂x₂+ ... + a₂ₙxₙ≤b₂...aₙ₁x₁+ aₙ₂x₂+ ... + aₙₙxₙ≤bₙx₁, x₂, ..., xₙ为决策变量,其中x₁, x₂, ..., xₙ取值为整数,c₁, c₂, ..., cₙ为系数,分别表示目标函数中各决策变量的权重,a₁₁, a₁₂, ..., aₙₙ为系数,表示约束条件中各决策变量的权重,b₁, b₂, ..., bₙ为约束条件的常数项。

整数规划问题相较于线性规划问题更加复杂,这是因为整数规划问题的整数约束使得问题的解空间变得离散且有限。

这导致了整数规划问题通常具有更多的局部极小值,并且通常更难以寻找全局最优解。

为了解决整数规划问题,研究人员已经开发了多种求解方法。

其中一种常用的方法是分支定界法,该方法基于问题解空间的分支和界限来逐步缩小搜索范围,直到找到最优解。

另一种常用的方法是启发式搜索算法,例如遗传算法和模拟退火算法,这些算法通过模拟自然进化和金属加工过程来搜索最优解。

整数规划在实际应用中具有广泛的应用价值。

例如,在物流领域,整数规划可以用于优化调度问题,以最小化成本并满足交付时间要求。

在生产计划领域,整数规划可以用于优化生产线的调度,以最大化产能利用率并满足交付量需求。

在卫生系统中,整数规划可以用于优化医院的资源分配,以最大化医疗服务的覆盖范围和质量。

在网络设计中,整数规划可以用于优化网络拓扑结构,以最小化通信成本并确保网络连接的可靠性和容错性。

总之,整数规划是一种强大的数学工具,用于在给定约束条件下优化目标函数。

线性规划问题在经济生活中的应用

函数 是 线 性 规 划 的 三要 素 。
题 提 供 理 论 基 础 与 方法 而 应 运 而 生 的 、实 用性 强 的 学 科 。
进 行 科 学 管 理 的 一 种 数 学 方 法 一 经 在
济 管理 、交 通 运 输 、 工 农 业 生 产 等 经 济 活 动 中 ,提 高 经济 效 果 是 人 们 不 可 缺 少 的要 求 , 而提 高 经 济 效 果一 般 通
较快 、应 用广泛 、方法较成熟的一个重要
分 支 ,它 是辅 助 人 们 进 行 科 学 管理 的 一 种
数学方法。在经济管理 、交通运输 、工农 业生产等经济活动中,提高经济效果是人 们不可缺少的要求 ,而提高经济效果一般 通过两种途径 :一是技术方面的改进 ,例
如 改 善 生 产 工 艺 ,使 用 新 设 备 和 新型 原 材
二, 画出约束条件所表示的可行域;第三, 在可行域内求目标函数的最优解及最优值。
关键词 :线性 规 划 问题 筹学
数 学模 型

线 性规 划 问题 是数 学 的一 个重 要分 支 , 它们 所 研 究 的 问题 是 讨 论 在 众 多 的 方 案 中 什 么样 的方 案 是最 优 的 、 以及 怎 么 找 出这
普曼斯把线性规划应用到经济领域 , 为此
与康托罗维奇一起获 1 7 5年 诺 贝 尔 经 济 9
束 条 件 下 的 最 大 值 或 最 小 值 的 问题 , 统 称 为 线 性 规 划 问题 。 文章 根 据 线 性
规 划 问题 在 现 实 生 活 中 的 意 义进 行 相 关 讨 论 与 探 究 , 介 绍 了线 性 规 划 问题
过 两 种 途 径 : 一 是 技 术 方 面 的 改 进 , 例

数学中的线性规划与整数规划

数学中的线性规划与整数规划线性规划和整数规划是数学中两个重要的优化问题。

它们在实际生活和工业生产中有着广泛的应用。

本文将简要介绍线性规划和整数规划的概念、应用以及解决方法。

一、线性规划线性规划是一种优化问题,其目标是在给定的约束条件下,找到一个线性函数的最大值或最小值。

线性规划可以用来解决诸如资源优化分配、生产计划、物流运输等问题。

首先,我们来定义线性规划的标准形式:```最大化: c^Tx约束条件:Ax ≤ bx ≥ 0```其中,`c`是一个n维列向量,`x`是一个n维列向量表示决策变量,`A`是一个m×n维矩阵,`b`是一个m维列向量。

上述的不等式约束可以包括等式约束。

通过线性规划,我们希望找到一个满足所有约束的向量`x`,使得目标函数`c^Tx`达到最大或最小值。

解决线性规划问题的方法有多种,例如单纯形法、内点法等。

其中,单纯形法是应用广泛的一种方法。

它通过不断地移动顶点来搜索可行解的集合,直到找到最优解为止。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量`x`必须取整数值。

整数规划可以更准确地描述实际问题,并且在某些情况下具有更好的可解性。

例如,在生产计划问题中,决策变量可以表示生产的数量,由于生产数量必须为整数,因此整数规划更适用于此类问题。

整数规划的求解相对于线性规划更加困难。

由于整数规划问题是NP困难问题,没有多项式时间内的高效算法可以解决一般情况下的整数规划问题。

因此,为了获得近似最优解,通常需要使用一些启发式算法,如分支定界法、割平面法等。

三、线性规划与整数规划的应用线性规划和整数规划在实际生活和工业生产中有着广泛的应用。

以下列举几个常见的应用领域:1. 生产计划:通过线性规划和整数规划,可以确定产品的生产量、原材料的采购量以及生产时间表,以实现最佳的生产效益。

2. 物流运输:线性规划和整数规划可以用来优化货物的配送路线和运输方案,减少物流成本,提高配送效率。

离散优化中的线性规划与整数规划

离散优化中的线性规划与整数规划离散优化是运筹学领域中的关键分支,旨在解决基于离散决策变量的优化问题。

在离散优化中,线性规划和整数规划是两个重要的方法。

本文将介绍这两种规划方法的定义、应用和解决技术,并探讨它们在离散优化中的应用领域。

1. 线性规划线性规划是一种用于解决线性约束下的目标最优化问题的方法。

它的基本思想是将问题转化为一个线性目标函数和一组线性约束条件。

线性规划的数学模型可以表示为:\[\begin{align*}\text{最小化}\quad & c^Tx \\\text{约束条件}\quad & Ax \leq b \\\text{以及}\quad & x \geq 0\end{align*}\]其中,$c$ 是目标函数的系数向量,$x$ 是决策变量向量,$A$ 是约束条件的系数矩阵,$b$ 是约束条件的右侧向量。

线性规划方法可以通过单纯形法、内点法等算法进行求解。

它在供应链管理、市场营销、资源分配等多个领域有着广泛的应用。

例如,在生产计划中,线性规划可以帮助确定最佳生产数量和产品组合,以最大化利润或者满足资源约束。

2. 整数规划整数规划是线性规划的扩展,它将决策变量限制为整数。

整数规划解决的问题更贴近实际情况,因为在许多实际问题中,决策变量只能是整数值。

整数规划的数学模型可以表示为:\[\begin{align*}\text{最小化}\quad & c^Tx \\\text{约束条件}\quad & Ax \leq b \\\text{以及}\quad & x \in Z^n\end{align*}\]其中,$Z^n$ 表示整数集。

与线性规划类似,整数规划也可以使用各种算法进行求解,如分支定界法、割平面法等。

虽然整数规划的求解过程更加困难,但它在许多实际问题中非常有用。

例如,在项目管理中,整数规划可以帮助确定最佳的资源分配方案、工作安排等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OTTO-VON-GUERICKE UNIVERSITY MAGDEBURGFACULTY OF ECONOMICS AND MANAGEMENTDEPARTMENT OF INTERNATIONAL ECONOMICSMASTER OF BUSINESS ADMINISTRATIONSome Applications of Linear Programming inEconomicMaster ThesisContents1 Introduction............................................................................................................................ - 1 -2 Linear Programming .............................................................................................................. -3 -2.1 What is a Linear Programming? ..................................................................................... - 3 -2.2 How to apply a linear programming ............................................................................... -4 -2.2.1 A linear function ...................................................................................................... - 4 -2.2.2 Graphical method..................................................................................................... - 5 -2.2.3 Simplex method ..................................................................................................... - 11 -3 The LINDO computer package ............................................................................................. - 22 -3.1Introduction LINDO software .................................................................................. - 22 -3.2 Economic applications of LINDO software .................................................................... - 24 -3.2.1How to formulate planting plans, in order to make the maximum output? ... - 25 -3.2.2 How to formulate planting plans, in order to make the greatest profits? ............ - 31 -4 An integer programming problem and relationships between integer and linear programming ................................................................................................................................................ - 35 -4.1 Formulating integer programming problems ............................................................... - 36 -4.2 Branch and bound method ........................................................................................... - 37 -4.3 The 0-1 integer programming ....................................................................................... - 42 -Summary ................................................................................................................................. - 45 -References............................................................................................................................... - 46 -List of figureF IGURE 1G RAPHICAL SOLUTION (7)F IGURE 2M ULTIPLE OPTIMAL SOLUTIONS (10)F IGURE 3LINDO OUTPUT FOR E XAMPLE 2 (22)F IGURE 4LINDO OUTPUT FOR E XAMPLE 2 (23)F IGURE 5LINDO SOLVER STATUS (23)F IGURE 6LINDO MODEL (26)F IGURE 7T HE FIRST PART OF OUTPUT (27)F IGURE 8T HE SECOND PART OF OUTPUT (29)F IGURE 9 (32)F IGURE 10 (33)F IGURE 11 (34)F IGURE 12B RANCH-AND-BOUND TREE FOR E XAMPLE 2 (37)F IGURE 13 (40)F IGURE 14B RANCH-AND-BOUND TREE FOR E XAMPLE 4 (41)F IGURE 15B RANCH-AND-BOUND TREE FOR E XAMPLE 5 (44)List of tableT ABLE 1 (6)T ABLE 2A DJACENT CPF SOLUTIONS FOR EACH CPF SOLUTION OF THE E XAMPLE 1 (9)T ABLE 3T HE INITIAL SIMPLEX TABLEAU (16)T ABLE 4T HE I TERATIVE PROCESS (17)T ABLE 5 (18)T ABLE 6S PECIFIC EXPLANATION SIMPLEX TABLEAU (19)T ABLE 7D ETERMINE THE ENTERING AND LEAVING VARIABLE (20)T ABLE 8T HE ITERATION FOR E XAMPLE 2 (21)T ABLE 9T HE YIELD OF THE DIFFERENT CORPS IN DIFFERENT FARMLAND (KG / HM^2) (24)T ABLE 10C ROPS PLANTING AREA (HM^2) (25)T ABLE 11C ROPS TOTAL OUTPUT(KG) (25)T ABLE 12 (39)T ABLE 13 (42)1 IntroductionThe linear programming method was first developed by Leonid Kantorovich in 19391. It is a fundamental branch of operations research; it is widely used in the existing science and technology. Linear programming (LP or linear optimization) is a tool to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. This mathematical model method can help decision makers to solve practical problems and choose the best policy. Through efficient management system for quantitative analysis, quantify the fiscal management system; provide solutions for decision makers to choose an optimal plan in order to achieve the best economic results.Most of the models described in this thesis will be optimization models. Generally, components of an optimization model include.1.Objective functionThere is a linear function that is to be optimized (maximized or minimized) in a linear programming model. This function is referred to as the model’s objective function. Of course, to maximize the process yield we need to find the all constraints and decision variables make our objective function as large as possible.2.Decision variablesThe variables in a given model which values are subject to manipulation by satisfying all constraints and influence the performance of the system are called decision variables. Linear programming is able to discuss of how to determine the value that maximize (or minimize) an objective function.3.Constraints1L.V. Kantorovich: A new method of solving some classes of extremal problems, Doklady Akad Sci USSR, 28, 1940, 211-214.There is a restriction on the permissible values of the decision variables of a given LP problem are called constraints2.In our life, calculation of the LP model, some of the optimal solution might be a decimal, and for some specific problems, the decision variables must be an integer. For example, it is necessary to assign people, machines, and vehicles to activities in integer quantities. There should be a special way to solve them.We will use integer programming which is a branch of LP, in order to solve the special problems.Finally this thesis studies the knowledge of how to apply linear and integer programming in economic problems, discuss the establishment of model, and explain the LINDO output.2Wayne L. Winston (1975) Operations Research Applications and Algorithms, 5 editions, 2004, 22 Linear Programming2.1 What is a Linear Programming?Linear programming is a special class of mathematical programming models in which the objective functions and the constraints can be expressed as linear functions of the decision variables. In our daily life, company or factory production, management and other economic activities will face a problem of what is the best solution and decision. So components of an economic model will be including.1.Objective functionIt represents some principal objective criterion or goal that measures the effectiveness of the system (such as maximizing profits or productivity, or minimizing cost or consumption).2.Decision variablesThey represent quantities that are, in some sense, controllable inputs to the system being modeled.3.ConstraintsThere is always some practical limitation on the availability of resources (time, materials, machines, or manpower) for the system, and such constraints are expressed as linear inequalities or equations involving the decision variables3.An economic model applies to a linear programming theory and methods to analyze and solve. There are under a set of constraints, a mathematical method for finding an optimal solution (maximum or minimum) and value.3Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 252.2 How to apply a linear programmingLinear programming is a branch of mathematical programming and is the most commonly used operations research methods. In various economic activities, a linear programming problem is generally figuring out how to best allocate limited resources, in order to best leverage the resources to obtain the best performance of the economic benefits. Linear programming prepares a program of activities or model in order to achieve optimal results. That is how to select the best decision variables solution in order to achieve the specified goals.2.2.1 A linear functionIn general, if c1,c2,…,c n are real numbers, then the function Z of the real variables x1, x2,…, x n defined bynZ=c1x1+c2x2+⋯+c n x n=∑c j x jj=1If Z is a linear function and if b is a real number, thenZ=bis called a linear equation andZ≤bZ≥bare called linear inequalities. They are both referred to as linear constraints. So, a linear programming problem is the problem of maximizing (or minimizing) a linear function subject to a finite number of linear constraints. We shall usually attach different subscripts i to different constraints and different subscripts j to different variables4. So we can get LP problems of the following form:4Vašek Chvátal (1946) Linear Programming, 1 editions, 6nMaximize Z=∑c j x j(objective function)j=1subject ton∑a ij x j≤b i (constraints)j=1x j≥0(Non−negative constraints)( j=1,2,…,n; i=1,2,…,m)When x j satisfies all constraints of an LP problem are said to constitute a feasible solution of that problem. But x j can’t satisfy all constraints of an LP problem are called infeasible solution. If a set of feasible solution can make our objective function maximize (or minimize), these solution are called an optimal solution; the corresponding value of the objective function Z is called the optimal value of the problem.After the introduction of the linear function, we have three basic components to establish a linear programming model:.1.Decision variables that we seek to determine x j,( j=1,2,…,n)2.Objective function that we aim to optimize (Z)3.Constraints that we need to satisfy52.2.2 Graphical methodThis section deals with the graphical solution of a two-variable linear programming. Though a two-variable problem hardly exists in practice, the treatment provides concrete ideas for the development of the general solution algorithm presented in Example 2.Example 1 Graphical method to solve a linear programming problem5Hamdy A. Taha, Operations Research An Introduction, seventh edition, Prentice Hall, New York (USA), 2010, 12A factory produces two types A andB of stainless steel from two raw materials – iron and carbon. The following Table 1 provides the basic data of the problem:No constraints factory productivity in our data so is ignored. The factory wants to determine the best product mix of iron and carbon that maximizes the total daily profit. How much profit the factory can get?Formulation Example 1Step1 Decision variables that we seek to determine x j,(j=1,2,…,n) We need to determine the amounts to be produced by iron and carbon. Thus, thedecision variables of the model are defined as:x1=Tons produced daily of ironx2=Tons produced daily of carbonStep2 Objective function that we aim to optimize (Z)Profit per part multiplied the quantity of production is equal to total profit, letting Z represents the total daily profit (100€). The objective function of the company is expressed asMaximize Z=2x1+3x2(1-1)Step3 Constraints that we need to satisfyRaw material restrictions are expressed as(Usage of a raw material by both goods)≤(Maximum raw material availability) From the data of the problem, the daily availabilities of raw materials iron and carbon are limited to 12 and 8 tons, so we have:{Usage of raw material IRON per day: 2x1+2x2≤12Usage of raw material CARBON per day: x1+2x2≤8(1-2)An implicit restriction is that the decision variables x1and x2cannot assume negative values. The non-negative constraints x1,x2≥0, account for this requirement.Finally, combining the non-negative constraints x1,x2≥0with objective function (1-1) and constraints (1-2) yields the following optimization model:Maximize Z=2x1+3x2 (objective function)subject to (s.t.){2x1+2x2≤12 (input Iron constraint) x1+2x2≤8 (input Carbon constraint)x1,x2≥0 (Non−negative constraints)“subject to” (s.t.) means that the values of the decision variables x1 and x2must satisfy all constraints and all sign restrictions.Graphical Example 1Step.1 Determination of the feasible solution spaceAny values of x1and x2that satisfy all the constraints of the model constitute a feasible solution. Then each inequality constraint defines a half-plane in the two dimensions, and the intersection of these half-planes comprises the feasible space for this case6, as showed by shaded area in Figure 1.Figure 1 Graphical solution6Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 25The feasible space (or feasible region) for the problem is the set of all such points that satisfies the problem constraints. The points labeled A, B, C and D are called corner-point of the feasible space.In Figure 1, we can easily find the point (x1, x2) = (2, 1) tons per day, is a feasible solution because it does not violate any of the constraints, including the non-negativity restrictions. Total daily profit is Z(2,1)=2x1+3x2=2∗2+3∗1=9. But when (x1, x2) = (0, 4) and Z(0,4)=12>Z(2,1)=9. The feasible space includes numerous solutions, which one is the best?Step.2 Draw an isoprofit lineThe feasible space consists of an infinite number of points, any point within or on the boundary ABCD of the space is feasible, in the sense that it satisfies all the constraints. The need for a systematic procedure to identify the optimal solution is obvious. When we moving the objective function (profit function) Z=2x1+3x2, the function have the same slope of -2/3 and have the same Z value, such a line is called an isoprofit line in max problems.Step.3 Move parallel the isoprofit line to determine an optimal solutionThis line is tangent to the feasible space at one of the corner point. The last point in the feasible space that contacts an isoprofit line is an optimal solution to the LP. In Figure 1, the red line represents the objective function, the optimal objective function value is Z∗=2∗4+3∗2=14at the optimal point C(x1, x2)=(4,2).Corner-point feasible solutionsHere, each constraint boundary is a line that forms the boundary of what is permitted by the corresponding constraint. The points of intersection are the corner-point solutions of the problem. The four points that lie on the corners of the feasible space A, B, C and D are the corner-point feasible solutions (CPF). However, (0, 6) (8, 0) are called corner-point infeasible solutions. In Figure 1, each corner-point solution lies at the intersection of two constraint boundaries. (Although a corner-pointsolution is defined in terms of n constraint boundaries whose intersection gives this solution, it also is possible that one or more additional constraint boundaries pass through this same point7. A to B and A to D, they share one constraint boundary. Thus, point A has two adjacent CPF solutions.Optimality test: Shift curve Z to point B in the Figure 1, point B has adjacent CPF C. Consider any linear programming problem that possesses at least one solution. If a CPF solution has no adjacent CPF solutions that are better, when we increasing the Z curve to point C (as measured by Z), then it must be an optimal solution.The graphical solution to find an optimal solution is very intuitive, if an optimal solution exists, it occurs at an extreme point of the feasible space. This fundamental property of a linear programming problem is the foundation of a general solution method called the simplex method. Because only the finitely many corner points need to be tested, an optimal solution may be found systematically by considering the objective function values at the extreme points8. It also gives concrete ideas for the development and interpretation of sensitivity analysis in a linear programming9. The sensitivity analysis is concerned with how changes in a linear programming problem’s parameters affect the linear programming problem’s optimal solution. We will be described next.When market conditions are changed, the carbon profit increase, we have to change the carbon’s parameter: i.e. the per carbon profit c2=4instead of c2=3. We get a new objective functionZ new=2x1+4x27Hillier Lieberman, Introduction to Operations Research, Seventh Edition, MacGraw-hill, United States, 2010, 1108Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 309Hamdy A. Taha, Operations Research An Introduction, seventh edition, Prentice Hall, New York (USA), 2010, 11The Figure 1 becomes Figure 2, the isoporfit line of original objective function (blue) rotation to new objective function (red).Figure 2 Multiple optimal solutions“By replacing the original data by more pessimistic or optimistic estimates of the unknown quantities, we may create a number of variations on the original theme. Since each of these new LP problems might possibly represent the actual situation, it is useful to find out how the optimal solutions vary with the changes in the data. It may be, for example, that the optimal solution is particularly sensitive to changes in only a small set of parameters; if possible, these parameters should then be estimated with greater accuracy. Other variations on the original theme arise when new variables and/or constraints are introduced. New variables may appear when new products are developed. Similarly, new constraints may result from new production policies. It may also happen that a new constraint actually had to be satisfied from the beginning but was simply forgotten in the original formulation. Investigations of such changes are referred to as sensitivity analysis.”10Market circumstance may fluctuate. Supplies of raw materials and demands for finished products are often unknown in advance, like per carbon profit from 3€ changes to 4€. Furthermore,production may be influenced by a variety of accidental events such 10Vašek Chvátal (1946) Linear Programming, 1 editions, 148as technology improvements or machine breakdowns. No matter how much raw iron used, there is always a value of carbon materials, making an optimal Z new in the feasible space. Sensitivity analysis provides efficient computational techniques to study the dynamic behavior of the optimal solution resulting from making changes in the parameters of the model. LINDO software will be used later to help us answer these questions. In Figure 2 the original optimal solution C (4, 2) becomes into an infinite number of optimal solutions, Maximize Z new=16.2.2.3 Simplex methodPreparation for the simplex methodWe are necessary to express the LP problem in standard form. Because of “A line function” section, for a linear program with n variable and m constraints, we will use the following standard form:Maximize Z=c1x1+c2x2+⋯+c n x nsubject toa11x1+a12x2+⋯+a1n x n=b1a21x1+a22x2+⋯+a2n x n=b2… … … … … … … … … … … …a m1x1+a m2x2+⋯+a mn x n=b mx1,x2,…x n,b1,b2,…,b m≥0Then the optimization problem can be expressed succinctly asnMaximize Z=∑c j x jj=1n∑a ij x j=b ij=1j=1,2,…,n; i=1,2,…,m; x j,b i≥0;Solutions of linear systemsWe now have a system of linear equations ∑a ij x j n j=1=b i which consisting of n unknowns and m equations. The n unknowns include the original decision variables and any other variables that may have been introduced in order to achieve standard form. ∑a ij x j n j=1=b i to find a basic solution: We choose a set of n −m variables (the non -basic variables ) and set each of these variables equal to zero. Then we solve for the value of the remaining n −(n −m )=m variables (the basic variables ) that satisfy ∑a ij x j n j=1=b i .Note that not all of the solutions satisfy all problem constraints and non -negativity constraints. Those that do not comply with these requirements are infeasible solutions . The ones that do meet the restrictions are called basic feasible solutions . An optimal basic feasible solution is a basic feasible solution that optimizes the objective function. The basic feasible solutions correspond precisely to the corner -points of the feasible space (as defined in our earlier discussion of graphical solutions).11In graphical method we see that in going from one canonical from to the next, we have proceeded from one basic feasible solution to a better adjacent basic feasible solution. The procedure used to go from one basic feasible solution to a better adjacent basic feasible solution is called an iteration of the simplex algorithm 12.To describe the mechanics of the algorithm, we must specify how an initialfeasible solution is obtained, how a transition is made to a better basic feasible solution, and how to recognize an optimal solution. From any basic feasible solution, we have the assurance that, if a better solution exists at all, then there is an adjacent solution(Corner -point feasible solutions) that is better than the current one. This is the principle on which the simplex method is based; thus, an optimal solution is accessible from any starting basic feasible solution.1311Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 32 12 Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 14513 Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 33How to convert linear inequalities to a standard form and special cases of standard form converting:(1)An original objective function is minimize Z, then let Z′equal to –Z, therefore, the minimize Z objective function becomes:Z=c1x1+c2x2+⋯+c n x n→min!↔Z′=–Z=−c1x1−c2x2−⋯−c n x n→max!(2) If a constraint is given by a11x1+a12x2+⋯+a1n x n≤b1.Less-than-or-equal inequalities require the introduction of variables that we will call slack variables. Then we add a non-negative slack variable x n+1, and new inequality becomes:a11x1+a12x2+⋯+a1n x n+x n+1=b1(3) If a constraint is given by a11x1+a12x2+⋯+a1n x n≤b1.Greater-than-or-equal constraints are modified by introducing surplus variables. Then we subtract a non-negative surplus variable x n+1(Also be referred to slack variables) is:a11x1+a12x2+⋯+a1n x n−x n+1=b1(4) Under special circumstances, for example x j are arbitrary value, if the variables x j unconstrained, we set x j=x j′−x j′′, x j′≥0,x j′′≥0, and replace the variables in the model. Then in any solution, the sign of the values of x j are dependent on the relative values of x j′ and x j′′.Then we get:x j′>x j′′↔x j>0x j′=x j′′↔x j=0x j′<x j′′↔x j<0In the above situation, each constraint condition adds slack variable in linear inequalities left-hand. Set x i=x1,x2…x m are basic variables, x j=x m+1,x m+2…x nnon-basic variables. a m+1,a m+2,…,a n the parameters of non- basic variables. The new formula can be expressed as:Maximize Z=c1x1+c2x2+⋯+c n x n{x1 +a1m+1x m+1+⋯+a1n x n=b1 x2 ++a2m+1x m+1+⋯+a2n x n=b2……………………x m+a nm+1x m+1+⋯+a mn x n=b1mx1,x2…x n≥0(2−1)The simplex algorithmSimplex method is an iterative algorithm that begins with an initial feasible solution, repeatedly move to a better solution, and stops when an optimal solution has been found and, therefore, no improvement can be made. In order to apply such an approach, from formula (2-1) consider a feasible canonical form with the basic variables x i=x1,x2…x m and the non-basic variables x j=x m+1,x m+2…x n:{x1=b1−a1m+1x m+1−⋯−a1k x k−⋯−a1n x n x2=b2−a2m+1x m+1−⋯−a2k x k−⋯−a2n x n……………………x l=b lm−a lm+1x m+1−⋯−a lk x k−⋯−a ln x n……………………x m=b1m−a nm+1x m+1−⋯−a mk x k−⋯−a mn x nx1,x2…x n≥0(2−2)Then the form can be expressed succinctly as:x i=b i−a i,m+1x m+1−a i,m+2x m+2−⋯−a i,n x n=b i−∑a ij x j(i=1,2,…,m)nj=m+1We remind the basic solution, which each non-basic variable has the value zero, x i0=(b1,b2,…,b m),x j=(0,0,…,0), so we can getZ0=∑c imi=1x i0=∑c i b imi=1Substituting the above expressions into the objective function:Z =c 1x 1+c 2x 2+⋯+c n x n =∑c i x i (basic variables )+∑c j x j mj=m+1m i=1(non −basic variables)=∑c i b i m i=1+∑(c j −z j )x j n j=m+1=Z 0+∑(c j −z j )x j nj=m+1The c j −z j is coefficient of non - basic variable x i . When entering a variable into the basis, if its value would increase by one unit. By means of the coefficients in the objective row we can give the following optimality criterion.(1) x 0 is an optimal solution, when c j −z j ≤0,Z ≤Z 0.(2) If c j −z j <0, we have a unique optimal solution.(3) If c j −z j ≤0, and for a non -basic variable x k we have c j −z j =0, the linear programming problem has infinitely optimal solutions.(4) If the non -basic variable x m+k we have c j −z j >0, and the coefficient corresponding the non -basic variable solution a i,m+k ≤0, so there does not exist an optimal solution to the maximum problem.The c j −z j can determine whether we have a feasible solution, c j −z j is called the optimal test . Summing up the above, we can draw a simple table 3Determination of the pivot column k and row lIf our initial feasible solution is not an optimal solution, we need to find another feasible solution, which increases the objective function.From Table 3, if c j−z j>0, a unit increases in x j (j=m+1,…,k,…,n)can increase in Z value,. So we often choose the max c j−z j, which is the corresponding value of x j is entering value.From Table 3, the feasibility of the basic solution must be maintained. Then when entering a variable into the basis, compute the ratio inRight−hand side of row coefficient of entering variable in row ↔ θ=min(b ia ik,a ik>0)=b la lk(2−3)for every constraint in which the entering variable has a positive coefficient14. If the entering variable has a non-positive coefficient in a row, the row’s basic variable will remain positive for all value of the entering variable. So we set column x k(m+1≤k≤n) to be the entering variable in non-basic solution and row x l(1≤l≤m)to be the leaving variable in basic solution.Iterative processθ=min(b i′a ik′,a ik′>0)=b l′a lk′The value b i′and a ik′are correspond to the b i and a ik after the iteration.Let x k and x l be converted, our constraint equations (2-2) l-th over a lk becomes:14Michael W. Carter, Camille C.Price, Operations research: a practical introduction, 2001, 1431 a lk x l=b lma lk−a lm+1a lkx m+1−⋯−x k−⋯−a lna lkx nThen x k column, except for x k become 1, the other is zero. And according to Gauss theorem will get new l-th:−a ika lkx l=b i−b lma lka ik−(a im+1−a lm+1a lka ik)x m+1−⋯−1−⋯(a ln−a lna lka ik)x n Thus, we can get every parameter transformation relations:a ij′={a ij−a lja lka ik (l≠k)a lja lk(l=k),b i′={b i−b la lka ik (l≠k)b la lk(l=k)x k and x l be converted can be expressed as Table 4.We will use the following simple model as an illustration for describing the simplex method.Example 2 A simple transportation problemWe often encounter the problem of transport in economic activities. Our society is no shortage of labor force, therefore, the transport constraints focused on carrying capacity and profit. Here we give an example: If a train loaded with two kinds of goods --- Machine A and B. Each machine’s size, weight, gets the profits and transports restrictions shown in the following Table 5:。

相关文档
最新文档