高中数学必修三讲义 模块综合试卷
人教A版高中数学必修三试卷高一:综合模块测试(1).docx

高中数学学习材料马鸣风萧萧*整理制作必修3综合模块测试1(人教A 版必修3)一、选择题:1. 高二年级有14个班,每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是( ) A .分层抽样 B .抽签抽样 C .随机抽样 D .系统抽样 2. 五进制数(5)444转化为八进制数是( )A.(8)194B.(8)233C.(8)471D.(8)1743. 计算机执行下面的程序,输出的结果是( )a=1 b=3 a=a+bb=b aPRINT a ,b ENDA 、1,3B 、4,9C 、4,12D 、4,8 4. 甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是 ( )A.31B.41C.21 D.无法确定 5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是 ( )7 9 8 4 4 4 6 7 9 3 开始 i =1s =0i =i +1 s =s+ii ≤5? 输出s结束 ①② a 是否6. 下图是2011年我校举办“激扬青春,勇担责任”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为 ( )A.85;87B.84; 86C.84;85D.85;867. 如右图的程序框图(未完成).设当箭头a 指向①时,输出的结果s =m,当箭头a 指向②时,输出的结果s =n,则m+n= ( )A.30B.20C.15D.58. 10个正数的平方和是370,方差是33,那么平均数为( )A .1B .2C .3D .49. 读程序 甲:INPUT i =1 乙:INPUT i =1000 S =0 S =0 WHILE i <=1000 DOS =S +i S =S +i i =i +l i =i 一1 WEND LOOP UNTIL i <1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同 10. 已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是( )A.44π- B. 14 C. 34π- D. 1811. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( ) A.19B.29C.718 D.4912. 如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND -是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数,如果输入1000,输出的结果为786,则运用此方法,计算π的近似值为 ( )A.3.144B.3.141C.3.142D.3.143二、填空题:13. 语句“PRINT 37 MOD 5 ”运行的结果是____. 14. 阅读右边的流程图,若0.30.322,2,log 0.8,a b c -===则输出的数是_____; 15. 5280和2155的最大公约数是____. 16. 乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜(零点至24点)的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,则有一艘轮船停靠泊位时必须等待一段时间的概率为____(用分数表示).三.解答题:17. (本题满分12分)设数列{}{}111,n n n n a a a a n a +=-=满足,右图是求数列30前项和的算法流程图。
北师大版高中数学必修三模块综合测评(A卷)(含解析)

模块综合测评(一)必修3(北师大版·A卷)
(时间:90分钟满分:120分)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在指定答题栏内.1.对于算法的三种基本逻辑结构,下面说法正确的是()
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可以含有上述三种逻辑结构的任意组合
解析:事实上,许多算法都不是独立的,尤其是想解决一些复杂的问题,必须综合使用多种结构,并且没有结构数量的限制.当然一个程序如果使用的结构太多也会让人混淆的,所以在编写程序时要注意尽量使用简单、容易理解的结构.
答案:D
2.下列说法错误的是()
A.在统计里,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动性越大
解析:本题主要考查统计中的几个定义,A选项是统计中最基本的定义,C和D都是对几个概念含义的叙述,都是正确的.我们知道,平均数是反映一组数据的平均值,也是一组数据的期望值,它不是一组数据中的最大和最小值,所以B是错误的.。
人教A版高中数学必修三试卷高一:综合模块测试(1).docx

开始 i =1s =0 i =i +1 s =s+i i ≤5? 输出s 结束① ② a 是 否 必修3综合模块测试1(人教A 版必修3)一、选择题:1. 高二年级有14个班,每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是( ) A .分层抽样 B .抽签抽样 C .随机抽样 D .系统抽样 2. 五进制数(5)444转化为八进制数是( )A.(8)194B.(8)233C.(8)471D.(8)1743. 计算机执行下面的程序,输出的结果是( )a=1 b=3 a=a+bb=b a PRINT a ,b ENDA 、1,3B 、4,9C 、4,12D 、4,8 4. 甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是 ( )A.31B.41C.21 D.无法确定 5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是 ( )6. 下图是2011年我校举办“激扬青春,勇担责任”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为 ( )A.85;87B.84; 86C.84;85D.85;867. 如右图的程序框图(未完成).设当箭头a 指向①时,输出的结果 s =m,当箭头a 指向②时,输出的结果s =n,则m+n= ( )A.30B.20C.15D.5 8. 10个正数的平方和是370,方差是33,那么平均数为( )A .1B .2C .3D .49. 读程序甲:INPUT i =1 乙:INPUT i =1000 S =0 S =0 WHILE i <=1000 DOS =S +i S =S +i i =i +l i =i 一1 WEND LOOP UNTIL i <1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同10. 已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是( )A.44π- B. 14 C. 34π- D. 1811.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( ) A.19B.29C.718 D.4912. 如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND -是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数,如果输入1000,输出的结果为786,则运用此方法,计算π的近似值为 ( )A.3.144B.3.141C.3.142D.3.143二、填空题:13. 语句“PRINT 37 MOD 5 ”运行的结果是____. 14. 阅读右边的流程图,若0.30.322,2,log 0.8,a b c -===则输出的数是_____; 15. 5280和2155的最大公约数是____. 16. 乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜(零点至24点)的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,则有一艘轮船停靠泊位时必须等待一段时间的概率为____(用分数表示). 三.解答题:17. (本题满分12分)设数列{}{}111,n n n n a a a a n a +=-=满足,右图是求数列30前项和的算法流程图。
高中数学人教A版必修三 模块综合测评 Word版含答案

模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.问题:①有1 000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ【解析】本题考查三种抽样方法的定义及特点.【答案】 B2.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,互斥事件的个数是()①至少有一个白球;都是白球.②至少有一个白球;至少有一个红球.③恰好有一个白球;恰好有2个白球.④至少有1个白球;都是红球.A.0B.1C.2D.3【解析】 由互斥事件的定义知,选项③④是互斥事件.故选C. 【答案】 C3.在如图1所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )图1A .6B .8 C.10D .14【解析】 由甲组数据的众数为14,得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10,故选C.【答案】 C4.101110(2)转化为等值的八进制数是( ) A .46 B .56 C.67D .78【解析】 ∵101110(2)=1×25+1×23+1×22+1×2=46,46=8×5+6,5=8×0+5,∴46=56(8),故选B.【答案】 B5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下:(单位:cm)甲:9.0,9.2,9.0,8.5,9.1,9.2; 乙:8.9,9.6,9.5,8.5,8.6,8.9.据以上数据估计两人的技术的稳定性,结论是() A.甲优于乙B.乙优于甲C.两人没区别D.无法判断【解析】x甲=16(9.0+9.2+9.0+8.5+9.1+9.2)=9.0,x乙=16(8.9+9.6+9.5+8.5+8.6+8.9)=9.0;s2甲=16[(9.0-9.0)2+(9.2-9.0)2+(9.0-9.0)2+(8.5-9.0)2+(9.1-9.0)2+(9.2-9.0)2]=0.34 6,s2乙=16[(8.9-9.0)2+(9.6-9.0)2+(9.5-9.0)2+(8.5-9.0)2+(8.6-9.0)2+(8.9-9.0)2]=1.04 6.因为s2甲<s2乙,所以甲的技术比乙的技术稳定.【答案】 A6.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图2所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是()图2A.110B.310C.610D.7 10【解析】从中任意选1名学生,他参加活动次数为3的概率是30100=310.【答案】 B7.(2014·北京高考)当m=7,n=3时,执行如图3所示的程序框图,输出的S值为()图3 A.7 B.42C.210 D.840【解析】程序框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k =k -1=5=5,S =5×42=210; k =k -1=4<5,输出S =210.故选C. 【答案】 C8.已知函数f (x )=x 2-x -2,x ∈[-5,5],那么在区间[-5,5]内任取一点x 0,使f (x 0)≤0的概率为( )A .0.1B .23 C.0.3D .25【解析】 在[-5,5]上函数的图象和x 轴分别交于两点(-1,0),(2,0),当x 0∈[-1,2]时,f (x 0)≤0.P =区间[-1,2]的长度区间[-5,5]的长度=310=0.3.【答案】 C9.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )【导学号:28750073】 A.19 B .29 C.49D .89【解析】 法一:设2个人分别在x 层,y 层离开,则记为(x ,y ).基本事件构成集合Ω={(2,2),(2,3),(2,4),…,(2,10),(3,2),(3,3),(3,4),…,(3,10),(10,2),(10,3),(10,4),…,(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.法二:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.【答案】 D10.(2016·沾化高一检测)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|P A |<1的概率为( )A.14 B .12 C.π4D .π【解析】 如图所示,动点P 在阴影部分满足|P A |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|P A |<1的概率为S ′S =π4.【答案】 C11.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数的平均数为x ,方差为s 2,则( )A .x =5,s 2<3B .x =5,s 2>3C .x >5,s 2<3D .x >5,s 2>3【解析】 由平均数和方差的计算公式可得x =5,s 2=19(3×8+0)<3,故选A.【答案】 A12.圆O 内有一内接正三角形,向圆O 内随机投一点,则该点落在正三角形内的概率为( )A.338π B .334πC.32πD .3π【解析】 设圆O 的半径为r ,则圆O 内接正三角形的边长为3r ,设向圆O 内随机投一点,则该点落在其内接正三角形内的事件为A ,则P (A )=S 正三角形S 圆=34(3r )2πr 2=334π.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.合肥市环保总站发布2014年1月11日到1月20日的空气质量指数(AQI),数据如下:153,203,268,166,157,164,268,407,335,119,则这组数据的中位数是________.【解析】 将这10个数按照由小到大的顺序排列为119,153,157,164,166,203,268,268,335,407,第5和第6个数的平均数是166+2032=184.5,即这组数据的中位数是184.5.【答案】 184.514.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如图4所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.图4【解析】 成绩优秀的频率为1-(0.005+0.025+0.045)×10=0.25,所以成绩优秀的学生有0.25×400=100(名).【答案】 10015.在由1,2,3,4,5组成可重复数字的二位数中任取一个数,如21,22等表示的数中只有一个偶数“2”,我们称这样的数只有一个偶数数字,则组成的二位数中只有一个偶数数字的概率为________.【解析】 由1,2,3,4,5可组成的二位数有5×5=25个,其中只有一个偶数数字的有14个,故只有一个偶数数字的概率为1425.【答案】 142516.执行如图5所示的程序框图,输出的a 值为________.图5【解析】 由程序框图可知,第一次循环i =2,a =-2;第二次循环i =3,a =-13;第三次循环i =4,a =12;第四次循环i =5,a =3;第五次循环i =6,a =-2,所以周期为4,当i =11时,循环结束,因为i =11=4×2+3,所以输出a 的值为-13.【答案】 -13三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知算法如下所示:(这里S1,S2,…分别代表第一步,第二步,…)(1)指出其功能;(用数学式子表达) (2)画出该算法的算法框图.S1 输入x .S2 若x <-2,执行S3;否则,执行S6. S3 y =2x +1. S4 输出y . S5 执行S12.S6 若-2≤x <2,执行S7;否则执行S10. S7 y =x . S8 输出y. S9 执行S12. S10 y =2x -1. S11 输出y . S12 结束.【解】 (1)该算法的功能是:已知x 时, 求函数y =⎩⎪⎨⎪⎧2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(2)算法框图是:18.(本小题满分12分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.【解】记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=112.由题意知,事件A1,A2,A3,A4彼此互斥.(1)取出1球为红球或黑球的概率为:P(A1∪A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为:法一:P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二:P(A1∪A2∪A3)=1-P(A4)=1-112=1112.19.(本小题满分12分)某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a、b的值;(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.【解】(1)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:660×30=3人,第4组:660×20=2人,第5组:660×10=1人,所以第3、4、5组应分别抽取3人、2人、1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为915=35.20.(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 【导学号:28750074】【解】(1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,所以大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10个,设恰有一名观众年龄在20至40岁为事件A ,则A 中含有基本事件6个:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),所以P (A )=610=35.21.(本小题满分12分)图6某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A ,B 两个小组所有同学所得分数(百分制)的茎叶图如图6所示,其中B 组一同学的分数已被污损,但知道B 组学生的平均分比A 组学生的平均分高1分.(1)若在B 组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求|m -n |≤8的概率.【解】 (1)A 组学生的平均分为94+88+86+80+775=85(分),∴B 组学生平均分为86分.设被污损的分数为x ,则91+93+83+x +755=86,解得x =88, ∴B 组学生的分数分别为93,91,88,83,75,其中有3人的分数超过85分.∴在B 组学生随机选1人,其所得分超过85分的概率为35.(2)A 组学生的分数分别是94,88,86,80,77,在A 组学生中随机抽取2名同学,其分数组成的基本事件(m ,n )有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77),共10个.随机抽取2名同学的分数m ,n 满足|m -n |≤8的基本事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77),共6个.∴|m -n |≤8的概率为610=35.22.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ;(2)利用(1) 中所求出的直线方程预测该地2016年的粮食需求量.【解】 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面求回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b =∴a=-y-b-x=3.2,由上述计算结果,知所求回归直线方程为y-257=b(x-2 010)+a=6.5(x-2 010)+3.2,即y=6.5(x-2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为6.5×(2 016-2 010)+260.2=6.5×6+260.2=299.2(万吨).。
人教A版高中数学必修三试卷高一:综合模块测试(21)

高中数学学习材料金戈铁骑整理制作必修3综合模块测试21(人教A 版必修3)第I 卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择一个符合题目要求的选项.1.在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4)A .(1)(2)B .(1)(2)(3)C .(2)(4)D .(2)(3)2.求得459和357的最大公约数是( )A .51B .17C . 9D .33.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的41,且样本容量为160,则中间一组的频数为( ) A .40B .0.2C .32D .0.254.从一批产品中取出三件,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A .A 与C 互斥B .B 与C 互斥C .任两个均互斥D .任两个均不互斥5.用秦九韵算法计算多项式15823)(35=+-+=x x x x x f 在时的值时,3V 的值为( )A .3B .5C .-3D .26.一个容量为n 的样本,分成若干组,已知某个体的频数和频率分别为40,0.125,则n 的值为( ) A.640 B.320 C.240 D.1607.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,则点),(b a 在直线5=+y x 左下方的概率为( )A .61B .65C .121 D .1211 8.如下图,图中的程序输出的结果是( ).A .113B .179C .73D .2099.如下图中的算法输出的结果是( )A .127B .63C .61D .3110.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)( )A .31B .21C .38D .85 第Ⅱ卷( 共70分)二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上。
高中数学模块综合测试课件a必修3a高一必修3数学课件

第三十页,共四十九页。
18.(12 分)某种产品的广告费支出 x 与销售额 y(单位:百万 元)之间有如下对应数据:
x2 4 5 6 8 y 30 40 60 50 70 (1)画出散点图; (2)求回归直线方程; (3)试预测广告费支出为 10 百万元时,销售额多大?
解:(1)根据表中所列数据可得散点图如下:
12/7/2021
第二十页,共四十九页。
第Ⅱ卷(非选择题,共 90 分) 二、填空题(每小题 5 分,共 20 分) 13.某课题组进行城市空气质量调查,按地域把 24 个城市 分成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层抽
样方法抽取 6 个城市,则甲组中应抽取的城市数为 1 .
解析:甲组中应抽取的城市数为264×4=1(个).
(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共 10 种,其中和
为 5 或 7 的情况有:(1,4),(2,3),(2,5),(3,4)共 4 种,所以所求
概率为140=25.
12/7/2021
第十八页,共四十九页。
12.某公司共有职工 8 000 名,从中随机抽取了 100 名,调 查上、下班乘车所用时间,得下表:
12/7/2021
第二十一页,共四十九页。
14.下图是样本容量为 200 的频率分布直方图,根据样本的
频率分布直方图估计,样本数据落在[6,10)内的频数为 64 ,数 据落在[2,10)内的概率约为 0.4 .
12/7/2021
第二十二页,共四十九页。
解析:在[6,10)内的频率为 0.08×4=0.32, 所以,其频数为 200×0.32=64. 落在[2,10)内的概率约为(0.02+0.08)×4=0.4.
高中数学人教A版必修三课时作业:模块综合测试卷Word版含答案
解析:85(9)=8×9+5=77,210(6)=2×62+1×6+0=78,1000(4)=1×43=64,111111(2)=1×25+1×24+1×23+1×22+1×2+1=63,故选B.8.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.22B.22πC.16D.16π答案:D解析:满足条件的点在半径为a 的18球内,所以所求概率为p =18×43πa 3a 3=π6,选D.9.阅读如图所示的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6答案:B解析:因为该程序框图执行4次后结束,所以输出的i 的值等于4.10.某班级有50名学生,其中30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测试中的成绩,五名男生的成绩分别是86,94,88,92,90五名女生的成绩分别为88,93,93,88,93,下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数解析:根据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断C.A,不是分层抽样,因为抽样比不同.B,不是系统抽样,因为随机询问,抽样间隔未知.C,五名男生成绩的平均数是x=86+94+88+92+905=90,五名女生成绩的平均数是y=88+93+93+88+935=91,五名男生成绩的方差为s21=15(16+16+4+4+0)=8,五名女生成绩的方差为s22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.11.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ答案:B解析:本题考查三种抽样方法的定义及特点.12.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是()A.110 B.3 10C.610 D.7 10答案:B解析:从中任意选1名学生,他参加活动次数为3的概率是30 100=310.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 07 44 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 42 99 66 02 79 54答案:785、567、199、507、175解析:首先找到第8行第7列的数7向右读第一个三位数785,然后是916>799舍去,接着是955,同样舍去,接着读取567、199,然后是810>799舍去,接着是507、175,所以最先检查的5袋牛奶的编号为785、567、199、507、175.14.如下图所示的框图表示算法的功能是________.答案:求和S=1+2+22+23+…+26415.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案:24,23解析:甲的平均数为:18+19+20+22+23+21+20+35+31+3110=24,乙的平均数为:19+17+11+21+24+22+24+30+32+3010=23.16.执行如图所示的程序框图,若P=0.8,则输出的n=________.答案:4三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为了对某课题进行研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人)高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B、C抽取的人中选2人作专题发言,求这2人都来20.(12分)有一容量为50的样本,数据的分组及各组的频数如下:[10,15),4;[15,20),5;[20,25),10;[25,30),11;[30,35),9;[35,40),8;[40,45],3.(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)估计总体在[20,35)之内的概率.解:(1)样本频率分布表:分组频数频率[10,15)44 50[15,20)51 10[20,25)101 5[25,30)1111 50[30,35)99 50[35,40)84 25[40,45]33 50(2)频率分布直方图与折线图如下:第11页共11页。
北师大版高中数学必修三模块综合测评(A卷)(含解析).docx
模块综合测评(一)必修3(北师大版·A卷)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在指定答题栏内.1.对于算法的三种基本逻辑结构,下面说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合解析:事实上,许多算法都不是独立的,尤其是想解决一些复杂的问题,必须综合使用多种结构,并且没有结构数量的限制.当然一个程序如果使用的结构太多也会让人混淆的,所以在编写程序时要注意尽量使用简单、容易理解的结构.答案:D2.下列说法错误的是()A.在统计里,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动性越大解析:本题主要考查统计中的几个定义,A 选项是统计中最基本的定义,C 和D 都是对几个概念含义的叙述,都是正确的.我们知道,平均数是反映一组数据的平均值,也是一组数据的期望值,它不是一组数据中的最大和最小值,所以B 是错误的.答案:B3. 如图是2011年海南中学十大歌手年度总决赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:去掉93与79,剩下五个数的平分数与方差分别为85,1.6. 答案:C4.把12个人平均分成两组,每组任意指定正、副组长各1人,则甲被指定为正组长的概率为( )A.112B.16C.14D.13解析:12个人被平均分成两组,每组6人,则甲必被分到其中一组,在该组6个人中,甲被选为正组长的概率是16.答案:B5.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余部分相同)上爬来爬去,它最后随意停在黑色地板砖上的概率为( )A.13B.23C.14D.18解析:其概率等于黑色地板砖块数与全部地板砖块数的比值. 答案:A6.运行下图所示的程序,如果输出结果为sum =1 320,那么判断框中应填( )A .i ≥9B .i ≥10C .i ≤9D .i ≤10解析:执行该程序,结合题目所给选项,不难发现应该选B.答案:C7.2013年度有12万名学生参加大学学科的能力测验,各学科成绩采用15级分,数学学科测验成绩分布图如图所示,请问有多少考生的数学成绩级分高于11级分?选出最接近的数目()A.4 000人B.10 200人C.15 000人D.20 000人解析:人数约为120 000×(2.5%+3.5%+1%+1.5%)=10 200.答案:B8.下面程序段能分别正确显示1!、2!、3!、4!的值的一个是()解析:本题主要考查For 循环语句的使用及理解,这里的B 中n =1语句不能放在内循环体内,应放在内循环体外;C 中只能输出4!.答案:A9.已知函数f (x )=ax 2-bx -1,其中a ∈(0,2],b ∈(0,2],在其取值范围内任取实数a 、b ,则函数f (x )在区间[1,+∞]上为增函数的概率为( )A.12B.13C.23D.34解析:若函数f (x )在区间[1,+∞)上为增函数,则⎩⎨⎧a >0,b2a ≤1,即⎩⎪⎨⎪⎧a >0,b ≤2a .又a ∈(0,2],b ∈(0,2],如图所示,当点(a ,b )位于四边形OABC (包括边界)上时满足题意,所以所求概率为P =4-12×1×24=34. 答案:D10.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下(单位:cm):甲:9.0,9.2,9.0,8.5,9.1,9.2; 乙:8.9,9.6,9.5,8.5,8.6,8.9.据以上数据估计两人的技术的稳定性,结论是( ) A .甲优于乙 B .乙优于甲 C .两人没区别D .无法判断解析:x 甲=16(9.0+9.2+9.0+8.5+9.1+9.2)=9.0, x 乙=16(8.9+9.6+9.5+8.5+8.6+8.9)=9.0;s 2甲=16[(9.0-9.0)2+(9.2-9.0)2+(9.0-9.0)2+(8.5-9.0)2+(9.1-9.0)2+(9.2-9.0)2]=0.346,s 2乙=16[(8.9-9.0)2+(9.6-9.0)2+(9.5-9.0)2+(8.5-9.0)2+(8.6-9.0)2+(8.9-9.0)2]=1.046.因为s 2甲<s 2乙,所以甲的技术比乙的技术稳定.答案:A第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中横线上.11.某公司共有1 000名员工,下设若干部门,现采用分层抽样方法从全体员工中抽取一个容量为80的样本,已知广告部被抽取了4个员工,则广告部的员工人数是__________.解析:设广告部有员工n 人, 则801 000=4n ,n =50. 答案:5012.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为__________.解析:由已知质量在497.5~501.5 g 的样本数为5袋,故质量在497.5~501.5 g的概率为520=0.25.答案:0.2513.某企业职工的月工资数统计如下:经计算,该企业职工月工资的平均值为1 565元,中位数是________元,众数是________元;如何选取该企业的月工资代表数呢?企业法人主张用平均值,职工代表主张用众数,监管部门主张用中位数;请你站在其中一立场说明理由:___________________ _____________________________________________________.答案:1 200900“企业法人为了显示本企业职工的收入高,用少数人的高工资来提高平均数,故主张用平均值1 565元作为该企业的月工资代表数”(或“职工代表以每月拿900元的人最多,故主张用众数900元作为该企业的月工资代表数”;或“监管部门认为月工资在中位数附近的人数比较集中,以此来制定有关政策,可以维护多数人的利益,故主张用中位数作为该企业的月工资代表数”.)14.某种电子元件在某一时刻是否接通的可能性是相同的,有3个这样的电子元件,则出现至少有一个接通的概率为__________.解析:设电子元件接通记为1,不通记为0.设A表示“3个电子元件至少有一个接通”,显然A表示“3个电子元件都没有接通”,Ω表示“3个电子元件的状态”,则Ω={(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1),(0,0,0)}.Ω由8个基本事件组成,而且这些基本事件的出现是等可能的,A ={(0,0,0)}.事件A 由1个基本事件组成,因此P (A )=18,∵P (A )+P (A )=1,∴P (A )=1-P (A )=1-18=78.答案:78三、解答题:本大题共4小题,满分50分.解答应写出文字说明、证明过程或演算步骤.15.(12分)为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别 频数 频率 [145.5,149.5) 1 0.02 [149.5,153.5) 4 0.08 [153.5,157.5) 20 0.40 [157.5,161.5) 15 0.30 [161.5,165.5) 8 0.16 [165.5,169.5) m n 合 计MN(1)求出表中m ,n ,M ,N 所表示的数; (2)画出频率分布直方图;解:(1)M=10.02=50,m=50-(1+4+20+15+8)=2;N=1,n=250=0.04.(6分)(2)如图:(12分)16.(12分)经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:排队人数012345人及5人以上概率0.100.160.300.300.100.04(1)求至多2人排队等候的概率是多少?(2)求至少3人排队等候的概率是多少?解:记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C.∴P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56;(6分)(2)记“至少3人排队等候”为事件H,则G与H为对立事件.∴P(H)=1-P(G)=1-0.56=0.44.(12分)17.(12分)已知算法如下表所示:(这里S1,S2,…分别代表第一步,第二步,…)(1)指出其功能(用数学式子表达);(2)画出该算法的算法框图.S1输入x.S2若x<-2,执行S3;否则,执行S6.S3y=2x+1.S4输出y.S5执行S12.S6若-2≤x<2,执行S7;否则执行S10.S7y=x.S 8 输出y .S 9 执行S 12.S 10 y =2x -1.S 11 输出y .S 12 结束.解:(1)该算法的功能是:x 已知时,求函数y =⎩⎪⎨⎪⎧ 2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(6分)(2)算法框图是:(12分)18.(14分)佛山市在每年的春节后,市政府都会发动公务员参与到植树活动中去.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,测出的高度如下(单位:厘米):甲:37,21,31,20,29,19,32,23,25,33;乙:10,30,47,27,46,14,26,10,44,46.(1)根据抽测结果,完成下面的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度的平均值为x,将这10株树苗的高度依次输入按程序框图进行的运算,输出的S大小为多少?并说明S的统计学意义.解:(1)茎叶图如图.统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(注:可以从中选两个作答)(7分)(2)由题可得x=27,再由程序框图知输出S=35.S表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量,S值越小,表示长得越整齐;S值越大,表示长得越参差不齐.(14分)。
高中数学 模块综合复习与测试 必修3 试题
湖沟中学2021-2021年度高一数学测试卷高一数学〔必修3〕满分是150分, 考试时间是是120分钟参考公式:用最小二乘法求线性回归方程系数公式x b y a xn x yx n yx b n i i ni ii -=--=∑∑==,1221样本数据x 1,x 2,…,x n 的HY 差])()()[(122221x x x x x x ns n-++-+-= ,其中x 是平均值一、选择题:本大题一一共11小题,每一小题5分,一共60分,在每一小题给出的四个答案中,只有一项是哪一项符合题目要求的,请把正确答案的字母填在答题卡中。
1、以下给出的赋值语句中正确的选项是〔 〕A .3=A B.M= -M C.B=A=2 D.x+y=0 2、以下结论不正确的选项是.......〔 〕 A .事件A 是必然事件,那么事件A 发生的概率是1B .几何概型中的m 〔m 是自然数〕个根本领件的概率是非零的常数C .任何事件发生的概率总是区间[0,1]上的某个数D .概率是随机的,在试验前不能确定3、 把黑、红、白3张纸牌分给甲、乙、丙三人,那么事件“甲分得红牌〞与“乙分得红牌〞是〔 〕A .对立事件B .互斥但不对立事件C .不可能事件D .必然事件4、在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样法从中抽取容量为20的样本,那么应抽取三级品的个数为〔 〕 A .2 B .4 C .6 D .105、右边程序,假如输入的x 值是20,那么输出的y 值是〔 〕 A .100 B .50 C .25 D .1506、假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:假设由资料可知y 对x 呈线性相关关系,那么y 与x 的线性回归方程y =bx+a 必过的点是( )A .(2,2)B .(1,2)C .(3,4)D .(4,5)7、统计某校1000名学生的数学程度测试成绩,得到样本频率分布直方图如下图,假设满分是为100分,规定不低于60分为及格,那么及格率是A .20%B .25%C .6%D .80%8、抛掷一枚质地均匀的硬币,假如连续抛掷1000次,那么第999次出现正面朝上的概率是〔 〕 A 、1999B.11000C.9991000D.129、左图给出的是计算201614121++++ 的值的一个程序框图,其中判断框内应填入的条件是( )A 、9<iB 、9≤iC 、10<iD 、10≤i10、种植某种树苗,成活率为9.0,现采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率,先由计算机产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果。
人教A版高中数学必修三试卷模块综合测评.doc
模块综合测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.(2012辽宁高考,文10)执行如图所示的程序框图,则输出的S值是( )A.4B.C.D.-1解析:初始:S=4,i=1,第一次循环:1<6,S==-1,i=2;第二次循环:2<6,S=,i=3;第三次循环:3<6,S=,i=4;第四次循环:4<6,S==4,i=5;第五次循环:5<6,S==-1,i=6.6<6不成立,此时跳出循环,输出S值,S值为-1.故选D.答案:D2.把十进制数15化为二进制数为( )A.1011B.1001(2)C.1111(2)D.1101解析:由除k取余法可得15=1111(2).答案:CINPUT a,bIF a>b THENm=aELSEm=bEND IFPRINT mENDC.3D.4解析:∵a=2,b=3,且2<3,∴m=3.答案:C4.(2012山东高考,文4)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差解析:由s=,可知B样本数据每个变量增加2,平均数也增加2,但(x n-)2不变,故选D.答案:D5.下列有四种说法:①概率就是频率;②分层抽样时,每个个体被抽到的可能性不一样;③某厂产品的次品率为3%,是指“从该厂产品中任意地抽取100件,其中一定有3件次品”;④从一批准备出厂的灯泡中随机抽取15只进行质量检测,其中有1只是次品,说明这批灯泡中次品的概率为.其中正确说法的个数是( )A.0B.1C.2D.3答案:A6.(2012辽宁高考,文11)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为( )A. B.C. D.解析:此概型为几何概型,由于在长为12cm的线段AB上任取一点C,因此总的几何度量为12,满足矩形面积大于20cm2的点在C1与C2之间的部分,如图所示.因此所求概率为,即,故选C.答案:C7.一枚硬币连掷2次,恰好出现一次正面的概率是…( )A. B.C. D.0解析:列举出所有基本事件,找出“只出现一次正面”包含的结果;一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而“只有一次出现正面”包含(正,反),(反,正)2个,故其概率为.答案:A8.(2012福建高考,文6)阅读下图所示的程序框图,运行相应的程序,输出的s值等于( )A.-3B.-10C.0D.-2解析:(1)k=1,1<4,s=2×1-1=1;(2)k=2,2<4,s=2×1-2=0;(3)k=3,3<4,s=2×0-3=-3;(4)k=4,直接输出s=-3.答案:A9.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4当x=2时的函数值是( )A.26B.62C.14D.33解析:根据秦九韶算法,把多项式改写成如下形式:f(x)=(((2x+3)x+0)x+5)x-4,按从内到外的顺序依次计算一次多项式当x=2时的值:v 0=2,v1=2×2+3=7,v2=7×2+0=14,v3=14×2+5=33,v4=33×2-4=62,所以,当x=2时,多项式的值等于62.答案:B10.从2008名学生中选取50名学生参加英语比赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人中再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率( )A.不全相等B.均不相等C.都相等,且为D.都相等,且为答案:C11.已知样本:10 8 6 10 13 8 10 12 11 78 9 11 9 12 9 10 11 12 12那么频率为0.3的范围是( )A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.5解析:在7.5~9.5内的值为8,9,频数为6,所以频率为=0.3.答案:B12.暑假中的一天小华准备用简单随机抽样的方法从6套模拟题中抽取其中的两套来训练,则第二套模拟题“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是( ).A. B.C. D.解析:第二套模拟题不管第几次被抽到的概率都是,在“整个抽样过程中被抽到”包括“第一次被抽到”和“第二次被抽到”,因此概率为.答案:C二、填空题(每小题4分,共16分)13.在三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为.解析:如图,在三棱锥S-ABC中,任选两条棱,所有选法有:(SA,SB),(SA,SC),(SA,AC),(SA,AB),(SA,BC),(SB,SC),(SB,AC),(SB,AB),(SB,BC), (SC,AC),(SC,AB),(SC,BC),(AB,AC),(AB,BC),(AC,BC)共15种.其中异面直线的有:(SA,BC),(SC,AB),(SB,AC)共3种.∴P=.答案:14.将一枚骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率是.解析:基本事件总数为36,点(x,y)在圆x2+y2=27的内部记为事件D,D包含17个事件,所以P(D)=.答案:15.(2012天津高考,文3改编)阅读下边的程序框图,运行相应的程序,则输出S的值为.解析:n=1,S=0+31-30=2,n=2;n=2<4,S=2+32-31=8,n=3;n=3<4,S=8+33-32=26,n=4;4≥4,输出S=26.答案:26年降[100,150) [150,200) [200,250) [250,300] 水量/mm概率0.21 0.16 0.13 0.12范围内的概率是.解析:设年降水量在[200,300](mm),[200,250)(mm),[250,300](mm)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,∴P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.25三、解答题(本大题共6小题,满分74分.解答时应写出文字说明、证明过程或演算步骤)17.(12分)同时抛掷四枚均匀硬币.求:(1)“恰有2枚正面向上”的概率;(2)“至少有2枚正面向上”的概率.解:设掷一枚硬币“正面朝上”用1表示,“反面朝上”用0表示,掷四枚硬币的结果用(x1,x2,x3,x4)表示,其中x i(i=1,2,3,4)仅取0,1两个值,那么该试验的可能结果有:(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0),(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0),(0,1,1,1),(1,0,1,1,1),(1,1,0,1),(1,1, 1,0),(1,1,1,1),共16种.(1)记“恰有2枚正面朝上”为事件A,那么A发生,只需(x1,x2,x3,x4)中两个取1,另外两个取值为0即可,故包含(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0)6种情况,所以P(A)=.(2)记“至少2枚正面朝上”为事件B,则B包含的基本事件有:(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0),(0,1,1,1),(1 ,0,1,1),(1,1,0,1),(1,1,1,0),(1,1,1,1),共11种,所以P(B)=.18.(12分)已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取一点M,求使四棱锥M-ABCD的体积小于的概率.解:设M到平面ABCD的距离为h,则四棱锥M-ABCD的体积V=Sh=×1×h=,所以h=.故只需点M到平面ABCD的距离小于即可.所以满足点M到平面ABCD的距离小于的点组成以ABCD为底,高为的不含上下底面的长方体,如图所示,即为长方体ABCD-EFGH.所以所求概率为P=.19.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6甲27 38 30 37 35 31 乙33 29 38 34 28 36(2)求甲、乙二人这6次测试最大速度的标准差,并说明谁参加这项重大比赛更合适.解:(1)=33,=33.(2)s甲=,s乙=,因为,s甲>s乙,所以乙的成绩更稳定,乙参加比赛更合适.20.(12分)(2012山东高考,文18)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.21.(12分)(2012湖南高考,文17)某超市为了解顾客的购物量及结算时间等信息,(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 解:(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”,将频率视为概率得P (A 1)=,P (A 2)=,P (A 3)=.因为A=A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件, 所以P (A )=P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3) =.故一位顾客一次购物的结算时间不超过2分钟的概率为.22.(14分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为×5=×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3),5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”.则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.要完成下列两项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为()A.①简单随机抽样;②系统抽样B.①分层抽样;②简单随机抽样C.①系统抽样;②分层抽样D.①②都用分层抽样考点抽样方法的综合应用题点三种抽样方法的辨析答案 B解析①中总体由差异明显的几部分构成,宜采用分层抽样;②中总体中的个数较少,样本容量较小,宜采用简单随机抽样.2.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是()A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球考点必然事件题点必然事件的判断答案 D解析从6个篮球、2个排球中任选3个球,A,B是随机事件,C是不可能事件,D是必然事件,故选D.3.把“二进制”数101 101(2)化为“八进制”数是()A.40(8)B.45(8)C.50(8)D.55(8)考点k进位制化十进制题点其它进制之间的互化答案 D解析∵101 101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故选D.4.方程x 2+x +n =0,n ∈(0,1)有实数根的概率为( ) A.12 B.13 C.14D.34考点 几何概型的综合应用 题点 几何概型与方程的综合应用 答案 C解析 方程x 2+x +n =0有实数根,则Δ=1-4n ≥0,得0<n ≤14,所以所求概率P =14-01-0=14. 5.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成五组:第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30,0.15,0.10,0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是( ) A.50,0.15 B.50,0.75 C.100,0.15 D.100,0.75 考点 频率分布表 题点 求指定组的频率 答案 C解析 由已知得第二小组的频率是1-0.30-0.15-0.10-0.05=0.40,频数为40, 设共有参赛学生x 人,则x ×0.4=40,∴x =100. 成绩优秀的概率为0.15,故选C.6.某赛季,甲、乙两名篮球运动员都参加了10场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示.若甲运动员得分的中位数为a ,乙运动员得分的众数为b ,则a -b 的值是( )A.7B.8C.9D.10 考点 中位数题点 求茎叶图中的中位数 答案 A解析 ∵甲运动员得分的中位数为a ,∴a =19+172=18.∵乙运动员得分的众数为b ,∴b =11,∴a -b =18-11=7.故选A.7.执行如图所示的程序框图,若输出的结果为3,则可输入的实数x 值的个数为( )A.1B.2C.3D.4 考点 程序框图的综合应用 题点 解读程序框图求输入条件 答案 C解析 若x ≤2,则x 2-1=3,∴x =±2. 若x >2,则log 2x =3,∴x =8.故选C.8.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会地进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )A.12B.14C.316D.16 答案 C解析 按规则,小青蛙跳动一次,可能的结果共有4种,跳动三次,可能的结果共有16种,而三次跳动后首次跳到5的只有3-1-3-5,3-2-3-5,3-4-3-5,3种可能,所以,它在第三次跳动后,首次进入5处的概率是316.9.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( ) A.65 B.65C. 2D.2 考点 方差与标准差 题点 求方差 答案 D解析 ∵样本的平均数为1, 即15×(a +0+1+2+3)=1,∴a =-1. ∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.10.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|P A |<1的概率为( ) A.14 B.12 C.π4 D.π 考点 几何概型计算公式 题点 与面积有关的几何概型 答案 C 解析 如图,动点P 在阴影部分满足|P A |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|P A |<1的概率为S ′S =π4.11.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y 4.54 3 2.5由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^等于( )A.10.5B.5.15C.5.2D.5.25 考点 回归直线 题点 求线性回归方程 答案 D解析 由于回归直线必经过点(x ,y ),而x =2.5,y =3.5, ∴3.5=-0.7×2.5+a ^,∴a ^=5.25.12.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110B.715C.815D.1315考点 概率与统计问题的综合题型 题点 概率与频率分布直方图的综合 答案 C解析 根据频率分布直方图,可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品件数在[10,15)内的2人分别是A ,B ,生产产品件数在[15,20)内的4人分别为C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.2位工人不在同一组的结果有(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共8种.故选取的2位工人不在同一组的概率为815.二、填空题(本大题共4小题,每小题5分,共20分)13.如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.考点三种结构的综合应用题点由输入条件求输出结果答案 4解析当输入x=4.5时,由x=x-1,得x=3.5,而3.5<1不成立,执行i=i+1后i=2;再执行x=x-1后x=2.5,而2.5<1不成立,执行i=i+1后i=3;此时执行x=x-1后x=1.5,而1.5<1不成立,执行i=i+1后i=4;继续执行x=x-1后x=0.5,0.5<1,因此输出i为4.14.将参加数学竞赛的1 000名学生编号如下:0001,0002,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0015,则第40个号码为________.考点系统抽样的方法题点指定区间段中抽取的号码答案0795解析根据系统抽样方法的定义,得第40个号码对应15+39×20=795,即得第40个号码为0795.15.如图所示,分别以A,B,C为圆心,在△ABC内作半径为2的扇形(图中的阴影部分),在△ABC内任取一点P,如果点P落在阴影内的概率为13,那么△ABC的面积是________.考点 几何概型计算公式 题点 与面积有关的几何概型 答案 6π解析 由题意可知,阴影部分的扇形面积为一个以2为半径的半圆的面积,所以2πS △ABC =13,所以S △ABC =6π.16.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________. 考点 概率与统计问题的综合题型 题点 概率与随机抽样的综合 答案715解析 总体平均数为16(5+6+7+8+9+10)=7.5,设事件A 表示“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个.事件A 包含的结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7个. 所以所求的概率为P (A )=715.三、解答题(本大题共6小题,共70分)17.(10分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)计算甲班的样本方差;(2)现从乙班10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.考点 概率与统计问题的综合题型 题点 概率与茎叶图的综合解 (1)x =158+162+163+168+168+170+171+179+179+18210=170(cm).甲班的样本方差s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2] =57.2.(2)设“身高为176 cm 的同学被抽中”为事件A .从乙班10名同学中随机抽取两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有4个基本事件:(181,176),(179,176),(178,176),(176,173).所以P (A )=410=25.18.(12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品. (1)求恰好有一件次品的概率; (2)求都是正品的概率; (3)求抽到次品的概率. 考点 几类常见的古典概型 题点 与顺序无关的古典概型解 将6件产品编号,abcd (正品),ef (次品),从6件产品中选2件,其包含的基本事件为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.(1)设恰好有一件次品为事件A ,事件A 包含的基本事件为ae ,af ,be ,bf ,ce ,cf ,de ,df ,共有8种, 则P (A )=815.(2)设都是正品为事件B ,事件B 包含的基本事件数为6,则P (B )=615=25.(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,则P (C )=1-P (B )=1-25=35.19.(12分)甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两货轮中有一艘在泊位停靠时,另一艘货轮必须等待的概率. 考点 数形结合思想在求概率中的应用 题点 数形结合思想在几何概型中的应用 解 设甲、乙两货轮到达泊位的时刻分别为x ,y . 则{0≤x ≤24,0≤y ≤24,|x -y |≤6. 作出如图所示的区域.正方形的面积S 正=242. 阴影部分的面积S 阴=242-182. ∴P =S 正S 阴=242-182242=716.即两货轮中有一艘在泊位停靠时,另一货轮必须等待的概率为716.20.(12分)已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0. (1)若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率; (2)若a ∈[2,6],b ∈[0,4],求方程没有实根的概率. 考点 古典概型与几何概型 题点 古典概型和几何概型的综合解 (1)a ,b 是一枚骰子掷两次所得到的点数,总的基本事件(a ,b )共有36个. 设事件A 表示“方程有两正根”,则{ Δ≥0,a -2>0,16-b 2>0,即{(a -2)2+b 2≥16,a >2,-4<b <4,则事件A 包含的基本事件有(6,1),(6,2),(6,3),(5,3),共4个, 故方程有两正根的概率为P (A )=436=19.(2)试验的全部结果构成的区域Ω={(a ,b )|2≤a ≤6,0≤b ≤4},其面积为S Ω=4×4=16.设事件B表示“方程无实根”,则事件B 的对应区域为{2≤a ≤6,0≤b ≤4,Δ<0,即{2≤a ≤6,0≤b ≤4,(a -2)2+b 2<16,如图所示,其面积S B =14×π×42=4π,故方程没有实根的概率为P (B )=4π16=π4.21.(12分)雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气 “元凶”,PM2.5日均值越小,空气质量越好.国家环境标准设定的PM2.5日均值(微克/立方米)与空气质量等级对应关系如表:PM2.5日 均值(微克 /立方米) 0~3535~7575~115115~150150~250250以上空气质量等级 1级优2级良3级轻度污染4级中 度污染5级重 度污染6级严 重污染由城市环境监测网获得4月份某5天甲、乙两市市区的PM2.5日均值,用茎叶图表示,如图所示.(1)试根据统计数据,分别写出两市的PM2.5日均值的中位数,并从中位数角度判断哪个城市市区的空气质量较好;(2)考虑用频率估计概率的方法,试根据统计数据,估计甲市某一天空气质量等级为3级轻度污染的概率;(3)分别从甲、乙两市的统计数据中任取一个,试求这两市空气质量等级相同的概率. 考点 概率与统计问题的综合题型 题点 概率与茎叶图的综合解 (1)甲市5天数据由小到大排列为59,83,87,95,116,乙市5天数据由小到大排列为66,68,85,88,98,∴甲市的中位数是87,乙市的中位数是85, ∴乙市的空气质量较好.(2)根据题中统计数据得,在这5天中甲市空气质量等级为3级轻度污染的频率为35,则估计甲市某一天的空气质量等级为3级轻度污染的概率为35.(3)设事件A :分别从甲市和乙市的统计数据中任取一个,这两市的空气质量等级相同. 由题意可知,分别从甲市和乙市的统计数据中任取一个,共有25个结果,分别记为: (59,66),(59,68),(59,85),(59,88),(59,98), (83,66),(83,68),(83,85),(83,88),(83,98), (87,66),(87,68),(87,85),(87,88),(87,98), (95,66),(95,68),(95,85),(95,88),(95,98), (116,66),(116,68),(116,85),(116,88),(116,98). 两市空气质量等级相同的为:(59,66),(59,68),(83,85),(83,88),(83,98),(87,85),(87,88),(87,98),(95,85),(95,88),(95,98),共11个结果.∴甲、乙两市空气质量等级相同的概率为1125.22.(12分)假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:x 2345 6y 2.2 3.8 5.5 6.57.0(1)画出散点图并判断是否线性相关;(2)如果线性相关,求线性回归方程;(3)估计使用年限为10年时,维修费用是多少?考点回归直线题点回归直线的应用解(1)作散点图如下:由散点图可知是线性相关的.(2)列表如下:i 1234 5x i2345 6y i 2.2 3.8 5.5 6.57.0x i y i 4.411.422.032.542.0x=4,y=5,∑i=15x2i=90,∑i=15x i y i=112.3计算得:b^=∑i=1nx i y i-n x y∑i=1nx2i-n x2=112.3-5×4×590-5×42=1.23,所以a^=y-b^x=5-1.23×4=0.08,即得线性回归方程为y^=1.23x+0.08.(3)把x =10代入线性回归方程y ^=1.23x +0.08,得y =12.38,因此,估计使用10年维修费用是12.38万元.。