2012年四川省高考数学试题(文科)word版含答案

合集下载

2012年普通高等学校招生全国统一考试(四川卷)文科数学及答案-推荐下载

2012年普通高等学校招生全国统一考试(四川卷)文科数学及答案-推荐下载


距离为( )
A B
D
P
O
C
A. R arccos 2 4
B. πR 4
C. R arccos 3 3
D. πR 3
11.方程 ay b2 x2 c 中的 a,b, c 2, 0,1, 2,3,且 a,b, c 互不相同,在所有这些方程所表示的曲线中,
不同的抛物线共有( )
A.28 条
y
y
y
y
1
O1
x
1
1
O
x
1
O1
x
1
1
O
x
A
B
C
D
5.如图,正方形 ABCD 的边长为 1,延长 BA 至 E ,使 AE 1 ,连结 EC, ED ,则 sin CED ( )
D
C
A. 3 10 10
B. 10 10
6.下列命题正确的是( )
C. 5 10
D. 5 15
E
A
B
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
10 (1)若在任意时刻至少有一个系统不发生故障的概率为 49 ,求 p 的值;
50 (2)求系统 A 在 3 次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.
18.(本小题 12 分)已知函数 f x cos2 x sin x cos x 1 .
2 2 22
(1)求函数 f x 的最小正周期和值域;
周长的最大值是 12,则该椭圆的离心率是________
16.设 a,b 为正实数.现有下列命题:
①若 a2 b2 1,则 a b 1 ;②若 1 1 1,则 a b 1 ; ba

四川省高考文科数学试卷及答案文数

四川省高考文科数学试卷及答案文数

2012年普通高等学校招生全国统一考试(四川卷)数学(文史类)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R 表示球的半径()()()P A B P A P B?球的体积公式如果事件A在一次试验中发生的概率是p,那么343V Rp=在n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b=,{,,}B b c d=,则A B=()A、{}bB、{,,}b c d C、{,,}a c d D、{,,,}a b c d2、7(1)x+的展开式中2x的系数是()A、21B、28C、35D、423、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A、101B、808C、1212D、20124、函数(0,1)xy a a a a=->≠的图象可能是()5、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b都是非零向量,下列四个条件中,使||||a ba b=成立的充分条件是()A 、||||a b =且//a bB 、a b =-C 、//a bD 、2a b =8、若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A 、12B 、26C 、28D 、339、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年全国统一高考数学试卷(文科)(新课标)(含解析版)

2012年全国统一高考数学试卷(文科)(新课标)(含解析版)

2012年全国统一高考数学试卷(文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i3.(5分)在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为()A.﹣1B.0C.D.14.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=﹣x+y的取值范围是()A.(1﹣,2)B.(0,2)C.(﹣1,2)D.(0,1+)6.(5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.188.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.πB.4πC.4πD.6π9.(5分)已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.B.C.D.10.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4D.811.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)12.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为()A.3690B.3660C.1845D.1830二.填空题:本大题共4小题,每小题5分.13.(5分)曲线y=x(3lnx+1)在点(1,1)处的切线方程为.14.(5分)等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=.15.(5分)已知向量夹角为45°,且,则=.16.(5分)设函数f(x)=的最大值为M,最小值为m,则M+m=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(Ⅰ)证明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【考点】18:集合的包含关系判断及应用.【专题】5J:集合.【分析】先求出集合A,然后根据集合之间的关系可判断【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选:B.【点评】本题主要考查了集合之间关系的判断,属于基础试题.2.(5分)复数z=的共轭复数是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】利用复数的分子、分母同乘分母的共轭复数,把复数化为a+bi的形式,然后求法共轭复数即可.【解答】解:复数z====﹣1+i.。

2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解

2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解

a2 b2 c c c
|PF|∈[a-c,a+c]
b2 于是 ∈[a-c,a+c] c
即 ac-c2≤b2≤ac+c2
ac c 2 a 2 c 2 ∴ 2 2 2 a c ac c
w_w w. k#s5_u.c o* m
c 1 a c 1或 c 1 a 2 a
个单位长度,再把所得各点的 10
横坐标伸长到原来的 2 倍(纵坐标不变) ,所得图像的函数解析式是高^考#资*源^网 (A) y sin(2 x

10
) )
(B) y sin(2 x

5
)
(C) y sin( x
1 2

10
(D) y sin( x
1 2

20
)
解析:将函数 y sin x 的图像上所有的点向右平行移动 式为 y=sin(x-
w_w w. k#s5_u.c o*m
y 80 70 (15,55)
(A)甲车间加工原料 10 箱,乙车间加工原料 60 箱 (B)甲车间加工原料 15 箱,乙车间加工原料 55 箱 (C)甲车间加工原料 18 箱,乙车间加工原料 50 箱
(D)甲车间加工原料 40 箱,乙车间加工原料 30 箱高^考#资*源^网 解析:解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱
40 1 800 20 160 320 200 120 8, 16 , 10 , 6 20 20 20 20
故各层中依次抽取的人数分别是 答案:D
(5)函数 f ( x) x mx 1的图像关于直线 x 1 对称的充要条件是
2
(A) m 2
(B) m 2

2012年四川文科高考数学试卷

2012年四川文科高考数学试卷

2012年普通高等学校招生全国统一考试(四川卷)数学(文科)参考公式:如果事件互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b =,{,,}B b c d =,则A B = ( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d[答案]D[解析]集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d 四个元素,所以}{d c b a B A 、、、=[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识. 2、7(1)x +的展开式中2x 的系数是( )A 、21B 、28C 、35D 、42 [答案]A[解析]二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、= 21C x 272=∴的系数为[点评]高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

范文四川省高考文科数学试卷及答案文数

范文四川省高考文科数学试卷及答案文数

2012年普通高等学校招生全国统一考试(四川卷)数 学(文史类)参考公式:如果事件互斥,那么 球的表面积公式如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b =,{,,}B b c d =,则AB =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d 2、7(1)x +的展开式中2x 的系数是( )A 、21B 、28C 、35D 、423、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A 、101 B 、808 C 、1212 D 、20124、函数(0,1)x y a a a a =->≠的图象可能是( )5、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )ABCD6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、||||a b =且//a b B 、a b =- C 、//a b D 、2a b =8、若变量,x y 满足约束条件3,212,21200x y x y x y x y -≥-⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩,则34z x y =+的最大值是( )A 、12B 、26C 、28D 、339、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

完整word版,2012年四川省高考数学试卷(文科)答案与解析

2012年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•四川)设集合A={a,b},B={b,c,d},则A∪B=()A.{b} B.{b,c,d} C.{a,c,d} D.{a,b,c,d}考点:并集及其运算.专题:计算题.分析:由题意,集合A={a,b},B={b,c,d},由并运算的定义直接写出两集合的并集即可选出正确选项.解答:解:由题意A={a,b},B={b,c,d},∴A∪B={a,b,c,d}故选D.点评:本题考查并集及其运算,是集合中的基本计算题,解题的关键是理解并能熟练进行求并的计算.2.(5分)(2012•四川)(1+x)7的展开式中x2的系数是()A.21 B.28 C.35 D.42考点:二项式定理.专题:计算题.分析:由题设,二项式(1+x)7,根据二项式定理知,x2项是展开式的第三项,由此得展开式中x2的系数是,计算出答案即可得出正确选项解答:解:由题意,二项式(1+x)7的展开式中x2的系数是=21故选A点评:本题考查二项式定理的通项,熟练掌握二项式的性质是解题的关键3.(5分)(2012•四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101 B.808 C.1212 D.2012考点:分层抽样方法.专题:计算题.分析:根据甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12求出每个个体被抽到的概率,然后求出样本容量,从而求出总人数.解答:解:∵甲社区有驾驶员96人,在甲社区中抽取驾驶员的人数为12∴每个个体被抽到的概率为=样本容量为12+21+25+43=101∴这四个社区驾驶员的总人数N 为=808故选B.点评:本题主要考查了分层抽样,分层抽样是最经常出现的一个抽样问题,这种题目一般出现在选择或填空中,属于基础题.4.(5分)(2012•四川)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.专题:函数的性质及应用.分析:通过图象经过定点(1,0),排除不符合条件的选项,从而得出结论.解答:解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选C.点评:本题主要考查指数函数的图象和性质,通过图象经过定点(1,0),排除不符合条件的选项,是一种简单有效的方法,属于中档题.5.(5分)(2012•四川)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B.C.D.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的图像与性质.分析:法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.解答:解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.故选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.故选B.点评:本题综合考查了正弦定理和余弦定理,属于基础题,题后要注意总结做题的规律.6.(5分)(2012•四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行考点:命题的真假判断与应用;空间中直线与平面之间的位置关系.专题:简易逻辑.分析:利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D.解答:解:A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.故选C.点评:本题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属基础题.7.(5分)(2012•四川)设、都是非零向量,下列四个条件中,使成立的充分条件是()A.且B.C.D.考点:充分条件;平行向量与共线向量.专题:简易逻辑.分析:利用向量共线的充要条件,求已知等式的充要条件,进而可利用命题充要条件的定义得其充分条件解答:解:⇔⇔与共线且同向⇔且λ>0,A选项和C选项中和可能反向,B选项不符合λ>0.故选D.点评:本题主要考查了向量共线的充要条件,命题的充分和必要性,属基础题.8.(5分)(2012•四川)若变量x,y满足约束条件,则z=3x+4y的最大值是()A.12 B.26 C.28 D.33考点:简单线性规划.专题:计算题.分析:先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数z=3x+4y的最大值.解答:解:作出约束条件,所示的平面区域,作直线3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点C时z最大由可得C(4,4),此时z=28故选C点评:本题主要考查了线性规划的简单应用,解题的关键是,明确目标函数的几何意义9.(5分)(2012•四川)已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M (2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A.B.C.4D.考点:抛物线的简单性质.专题:计算题.分析:关键点M(2,y0)到该抛物线焦点的距离为3,利用抛物线的定义,可求抛物线方程,进而可得点M的坐标,由此可求|OM|.解答:解:由题意,抛物线关于x轴对称,开口向右,设方程为y2=2px(p>0)∵点M(2,y0)到该抛物线焦点的距离为3,∴2+=3∴p=2∴抛物线方程为y2=4x∵M(2,y0)∴∴|OM|=故选B.点评:本题考查抛物线的性质,考查抛物线的定义,解题的关键是利用抛物线的定义求出抛物线方程.10.(5分)(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为()A.B.C.D.考点:反三角函数的运用;球面距离及相关计算.专题:计算题.分析:由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.解答:解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=,E为BQ的中点,AE==,AP==,AP2=OP2+OA2﹣2OP•OAcos∠AOP,,cos∠AOP=,∠AOP=arccos,A、P两点间的球面距离为,故选A.点评:本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.11.(5分)(2012•四川)方程ay=b2x2+c中的a,b,c∈{﹣2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.28条B.32条C.36条D.48条考点:排列、组合及简单计数问题;抛物线的标准方程.专题:计算题;压轴题.分析:方程变形得,若表示抛物线,则a≠0,b≠0,然后进行排列.解答:解:方程变形得,若表示抛物线,则a≠0,b≠0,先排a,b,有种,c有种,所以表示抛物线的曲线共有,又因为当b=±2时,b2都等于4,所以重复的抛物线有种,所以不同的抛物线有﹣=32条.故选B.点评:此题难度很大,若采用排列组合公式计算,很容易忽视重复的9条抛物线.列举法是解决排列、组合、概率等非常有效的办法,要能熟练运用.12.(5分)(2012•四川)设函数f(x)=(x﹣3)3+x﹣1,{a n}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=()A.0B.7C.14 D.21考点:数列与函数的综合.专题:计算题;压轴题.分析:根据f(x)=(x﹣3)3+x﹣1,可得f(x)﹣2=(x﹣3)3+x﹣3,构造函数g(x)=f (x)﹣2,从而g(x)关于(3,0)对称,利用f(a1)+f(a2)+…+f(a7)=14,可得g(a1)+g(a2)+…+g(a7)=0,从而g(a4)为g(x)与x轴的交点,由此可求a1+a2+…+a7的值.解答:解:∵f(x)=(x﹣3)3+x﹣1,∴f(x)﹣2=(x﹣3)3+x﹣3,令g(x)=f(x)﹣2∴g(x)关于(3,0)对称∵f(a1)+f(a2)+…+f(a7)=14∴f(a1)﹣2+f(a2)﹣2+…+f(a7)﹣2=0∴g(a1)+g(a2)+…+g(a7)=0∴g(a4)为g(x)与x轴的交点因为g(x)关于(3,0)对称,所以a4=3∴a1+a2+…+a7=7a4=21,故选D.点评:本题考查数列与函数的综合,考查函数的对称性,考查数列的性质,需要一定的基本功.二、填空题(本大题共4个小题,每小题4分,共16分.把答案填在答题纸的相应位置上.)13.(4分)(2012•四川)函数的定义域是(﹣∞,).(用区间表示)考点:函数的定义域及其求法.专题:计算题.分析:结合函数的表达式可得不等式1﹣2x>0的解集即为所求.解答:解:∵1﹣2x>0∴x<∴函数的定义域为(﹣∞,)故答案为(﹣∞,)点评:本题主要考查了根据函数的解析式求函数的定义域,属常考题,较易.解题的关键是根据函数的解析式得出1﹣2x>0的解集即为所求!14.(4分)(2012•四川)如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.考点:异面直线及其所成的角.专题:计算题.分析:以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.解答:解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.点评:本题考查空间异面直线的夹角求解,采用了向量的方法.向量的方法能降低空间想象难度,但要注意有关点,向量坐标的准确.否则容易由于计算失误而出错.15.(4分)(2012•四川)椭圆为定值,且的左焦点为F,直线x=m 与椭圆相交于点A、B,△FAB的周长的最大值是12,则该椭圆的离心率是.考点:椭圆的简单性质.专题:计算题;压轴题.分析:先画出图象,结合图象以及椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.解答:解:设椭圆的右焦点E.如图:由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB ﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△FAB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△FAB的周长的最大值是4a=12⇒a=3;∴e===.故答案:.点评:本题主要考察椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.16.(4分)(2012•四川)设a,b为正实数,现有下列命题:①若a2﹣b2=1,则a﹣b<1;②若,则a﹣b<1;③若,则|a﹣b|<1;④若|a3﹣b3|=1,则|a﹣b|<1.其中的真命题有①④.(写出所有真命题的编号)考点:命题的真假判断与应用.专题:简易逻辑.分析:①将a2﹣b2=1,分解变形为(a+1)(a﹣1)=b2,即可证明a﹣1<b,即a﹣b<1;②③可通过举反例的方法证明其错误性;④若a>b,去掉绝对值,将a3﹣b3=1分解变形为(a﹣1)(a2+1+a)=b3,即可证明a﹣b<1,同理当a<b时也可证明b﹣a <1,从而命题④正确.解答:解:①若a2﹣b2=1,则a2﹣1=b2,即(a+1)(a﹣1)=b2,∵a+1>a﹣1,∴a﹣1<b <a+1,即a﹣b<1,①正确;②若,可取a=7,b=,则a﹣b>1,∴②错误;③若,则可取a=9,b=4,而|a﹣b|=5>1,∴③错误;④由|a3﹣b3|=1,若a>b>0,则a3﹣b3=1,即a3﹣1=b3,即(a﹣1)(a2+1+a)=b3,∵a2+1+a>b2,∴a﹣1<b,即a﹣b<1若0<a<b,则b3﹣a3=1,即b3﹣1=a3,即(b﹣1)(b2+1+b)=a3,∵b2+1+b>a2,∴b﹣1<a,即b﹣a<1∴|a﹣b|<1,∴④正确.故答案为①④.点评:本题主要考查了不等式的证明方法,间接证明和直接证明的方法,放缩法和举反例法证明不等式,演绎推理能力,有一定难度,属中档题.三、解答题(本大题共6个小题,共74分.解答应写出必要的文字说明,证明过程或演算步骤.)17.(12分)(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.考点:n次独立重复试验中恰好发生k次的概率;互斥事件的概率加法公式;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为,可求p的值;(Ⅱ)利用相互独立事件的概率公式,即可求得结论.解答:解:(Ⅰ)设“至少有一个系统不发生故障”为事件C,则∴;(Ⅱ)设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D,那么P(D)==.点评:本题主要考查相互独立事件、独立重复试验、互斥事件的概念与计算,考查运用概率知识与方法解决实际问题的能力.18.(12分)(2012•四川)已知函数.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)若,求sin2α的值.考点:三角函数中的恒等变换应用;二倍角的正弦;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(Ⅰ)将化为f(x)=cos(x+)即可求得f (x)的最小正周期和值域;(Ⅱ)由可求得cos(α+)=,由余弦函数的二倍角公式与诱导公式可求得sin2α的值.解答:解:(Ⅰ)由已知,f(x)=﹣sin cos﹣=(1+cosx)﹣sinx﹣=cos(x+).∴函数f(x)的最小正周期为2π,值域为[﹣,].(Ⅱ)由(Ⅰ)知,f(α)=cos(α+)=,∴cos(α+)=,∴sin2α=﹣cos(+2α)=﹣cos2(α+)=1﹣2=1﹣=.点评:本题考查三角函数的性质、两角和的正(余)弦公式等基础知识,考查运算能力,考查化归与转化等数学思想,属于中档题.19.(12分)(2012•四川)如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,点P在平面ABC内的射影O在AB上.(Ⅰ)求直线PC与平面ABC所成的角的大小;(Ⅱ)求二面角B﹣AP﹣C的大小.考点:用空间向量求平面间的夹角;直线与平面所成的角;二面角的平面角及求法.专题:综合题.分析:解法一(Ⅰ)连接OC,由已知,∠OCP为直线PC与平面ABC所成的角.设AB中点为D,连接PD,CD.不妨设PA=2,则OD=1,OP=,AB=4.在RT△OCP中求解.(Ⅱ)以O为原点,建立空间直角坐标系,利用平面APC的一个法向量与面ABP的一个法向量夹角求解.解法二(Ⅰ)设AB中点为D,连接CD.以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.利用与平面ABC的一个法向量夹角求解.(Ⅱ)分别求出平面APC,平面ABP的一个法向量,利用两法向量夹角求解.解答:解法一(Ⅰ)连接OC,由已知,∠OCP为直线PC与平面ABC所成的角.设AB中点为D,连接PD,CD.因为AB=BC=CA,所以CD⊥AB,因为∠APB=90°,∠PAB=60°,所以△PAD为等边三角形,不妨设PA=2,则OD=1,OP=,AB=4.所以CD=2,OC===在RT△OCP中,tan∠OCP===.故直线PC与平面ABC所成的角的大小为arctan.(Ⅱ)由(Ⅰ)知,以O为原点,建立空间直角坐标系.则=(1,0,),=(2,2,0).设平面APC的一个法向量为=(x,y,z),则由得出即,取x=﹣,则y=1,z=1,所以=(﹣,1,1).设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=(0,1,0),则cosβ===.故二面角B﹣AP﹣C的大小为arccos.解法二:(Ⅰ)设AB中点为D,连接CD.因为O在AB上,且O为P在平面ABC 内的射影,所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因为AB=BC=CA,所以CD⊥AB,设E为AC中点,则EO∥CD,从而OE⊥PO,OE⊥AB.如图,以O为坐标原点,OB,OE,OP所在直线分别为x,y,z轴建立空间直角坐标系O﹣xyz.不妨设PA=2,由已知可得,AB=4,OA=OD=1,OP=,CD=2,所以O(0,0,0),A(﹣1,0,0),C(1,2,0),P(0,0,),所以=(﹣1,﹣2,)=(0,0,)为平面ABC的一个法向量.设α为直线PC与平面ABC所成的角,则sinα===.故直线PC与平面ABC所成的角大小为arcsin(Ⅱ)由(Ⅰ)知,=(1,0,),=(2,2,0).设平面APC的一个法向量为=(x,y,z),则由得出即,取x=﹣,则y=1,z=1,所以=(﹣,1,1).设二面角B﹣AP﹣C的平面角为β,易知β为锐角.而面ABP的一个法向量为=(0,1,0),则cosβ===.故二面角B﹣AP﹣C的大小为arccos.点评:本题考查线面关系,直线与平面所成的角、二面角等基础知识,考查思维能力、空间想象能力,并考查应用向量知识解决数学问题能力.20.(12分)(2012•四川)已知数列{a n}的前n项和为S n,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列的前n项和最大?考点:数列递推式;数列的函数特性;数列的求和.专题:计算题.分析:(I)由题意,n=1时,由已知可知a1(λa1﹣2)=0,分类讨论:由a1=0,及a1≠0,结合数列的和与项的递推公式可求(II)由a1>0且λ=100时,令,则,结合数列的单调性可求和的最大项解答:解(I)当n=1时,∴a1(λa1﹣2)=0若取a1=0,则S n=0,a n=S n﹣S n﹣1=0∴a n=0(n≥1)若a1≠0,则,当n≥2时,2a n=,两式相减可得,2a n﹣2a n﹣1=a n∴a n=2a n﹣1,从而可得数列{a n}是等比数列∴a n=a1•2n﹣1==综上可得,当a1=0时,a n=0,当a1≠0时,(II)当a1>0且λ=100时,令由(I)可知∴{b n}是单调递减的等差数列,公差为﹣lg2∴b1>b2>…>b6=>0当n≥7时,∴数列的前6项和最大点评:本题主要考查了利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,还考查了一定的逻辑运算与推理的能力.21.(12分)(2012•四川)如图,动点M与两定点A(﹣1,0)、B(1,0)构成△MAB,且直线MA、MB的斜率之积为4,设动点M的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设直线y=x+m(m>0)与y轴交于点P,与轨迹C相交于点Q、R,且|PQ|<|PR|,求的取值范围.考点:直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:(Ⅰ)设出点M(x,y),表示出两线的斜率,利用其乘积为4,建立方程化简即可得到点M的轨迹方程;(Ⅱ)直线y=x+m与4x2﹣y2﹣4=0(x≠±1)联立,消元可得3x2﹣2mx﹣m2﹣3=0,结合题设(m>0)可知,m>0且m≠1设Q,R的坐标,求出x R,x Q,利用,即可确定的取值范围.解答:解:(Ⅰ)设M(x,y),则k MA=,k MB=∵直线MA、MB的斜率之积为4,∴∴4x2﹣y2﹣4=0又x=±1时,必有一个斜率不存在,故x≠±1综上点M的轨迹方程为4x2﹣y2﹣4=0(x≠±1)(Ⅱ)直线y=x+m与4x2﹣y2﹣4=0(x≠±1)联立,消元可得3x2﹣2mx﹣m2﹣4=0①∴△=16m2+48>0当1或﹣1是方程①的根时,m的值为1或﹣1,结合题设(m>0)可知,m>0且m≠1设Q,R的坐标分别为(x Q,y Q),(x R,y R),∵|PQ|<|PR|,∴x R=,x Q=,∴==∵m>0且m≠1∴,且≠4∴,且∴的取值范围是(1,)∪(,3)点评:本题以斜率为载体,考查直线、双曲线、轨迹方程的求解,考查思维能力,运算能力,考查思维的严谨性.22.(14分)(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.圆锥曲线的综合;导数在最大值、最小值问题中的应用.考点:综合题;压轴题.专题:分析:(Ⅰ)根据抛物线与x轴正半轴相交于点A,可得A(),进一步可求抛物线在点A处的切线方程,从而可得f(n);(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n+1,即知,a n≥2n+1对所有n成立,当a=3,n≥1时,a n=3n=(1+2)n≥1+=2n+1,当n=0时,a n=2n+1,由此可得a的最小值;(Ⅲ)由(Ⅰ)知f(k)=a k,证明当0<x<1时,,即可证明:>.解答:解:(Ⅰ)∵抛物线与x轴正半轴相交于点A,∴A()对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵f(n)为该抛物线在点A处的切线在y轴上的截距,∴f(n)=a n;(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n+1 即知,a n≥2n+1对所有n成立,特别的,取n=1得到a≥3当a=3,n≥1时,a n=3n=(1+2)n≥1+=2n+1当n=0时,a n=2n+1∴a=3时,对所有n都有成立∴a的最小值为3;(Ⅲ)由(Ⅰ)知f(k)=a k,下面证明:>首先证明:当0<x<1时,设函数g(x)=6x(x2﹣x)+1,0<x<1,则g′(x)=18x(x﹣)当0<x<时,g′(x)<0;当时,g′(x)>0故函数g(x)在区间(0,1)上的最小值g(x)min=g()=>0∴当0<x<1时,g(x)>0,∴由0<a <1知0<a k <1,因此,从而=>6(a+a 2+…+a n )==点评: 本题考查圆锥曲线的综合,考查不等式的证明,考查导数的几何意义,综合性强,属于中档题.。

2012年四川高考数学试题和答案(文科)1

绝密*启用前2012年普通高等学校招生全国统一考试(新课标卷)文科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2。

问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动。

用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3。

回答第Ⅱ卷时。

将答案写在答题卡上。

写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1、已知集合A={x |x 2-x -2〈0},B={x |-1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C)A=B (D )A ∩B=(2)复数z =错误!的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =错误!x +1上,则这组样本数据的样本相关系数为(A)-1 (B)0 (C)12(D )1 (4)设F 1、F 2是椭圆E :错误!+错误!=1(a >b >0)的左、右焦点,P 为直线x =错误!上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )错误! (B )错误! (C )错误! (D )错误!5、已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A)(1-错误!,2) (B)(0,2) (C )(错误!-1,2) (D)(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则(A)A+B 为a 1,a 2,…,a N 的和(B)A +B 2为a 1,a 2,…,a N 的算术平均数 (C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18开始A=xB=x x >A否输出A ,B 是 输入N ,a 1,a 2,…,a N结束x <Bk ≥Nk =1,A =a 1,B=a 1k =k+1x =a k是否 否是(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为(A)错误!π(B)4错误!π(C)4错误!π(D)6错误!π(9)已知ω〉0,0〈φ<π,直线x=错误!和x=错误!是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A)错误!(B)错误!(C)错误!(D)错误!(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4错误!,则C的实轴长为(A)错误!(B)2错误!(C)4 (D)8(11)当0〈x≤错误!时,4x<log a x,则a的取值范围是(A)(0,错误!)(B)(错误!,1)(C)(1,错误!)(D)(错误!,2) (12)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为(A)3690 (B)3660 (C)1845 (D)1830第Ⅱ卷本卷包括必考题和选考题两部分。

【专家解析】2012年高考数学(文)真题精校精析(四川卷)(纯word书稿)

2
17.[2012· 四川卷] 某居民小区有两个相互独立的安全防范系统(简称系统)A 和 B, 1 系统 A 和系统 B 在任意时刻发生故障的概率分别为10和 p. (1)若在任意时刻至少有一个系统不发生故障的概率为 49 ,求 p 的值; 50
(2)求系统 A 在 3 次相互独立的检测中不发生故障的次数大于发生故障的次数的概 率. 1 17.解:(1)设“至少有一个系统不发生故障”为事件 C,那么 1-P( C )=1-10· p 49 =50.
们不平行,A 错. 对于 B,当三个点在同一条直线上,且该直线平行于一个平面时,不能保证两个平 面平行;或者当其中两个点在平面一侧,第三点在平面异侧,且它们到平面距离相等,
2
也不能保证两个平面平行,故 B 错. 对于 C,记平面外的直线为 a,两平面记为 αβ,它们的交线为 l.过 a 作平面 γ 与平 面 α 相交于 b,并使得 b 不在 β 内,由 a∥α,可知 a∥b,又 a∥β,故 b∥β.过 b 的平面 α 与 β 相交于 l,由线面平行的性质定理可得:b∥l,再由公理可得:a∥l.C 正确. 对于 D,观察一个正方体共顶点的三个面,即可知 D 错误. a b 7.[2012· 四川卷] 设都是非零向量.下列四个条件中,使|a|=|b|成立的充分条件是 ( ) A.||=||且∥ C.∥ D.= B.=-
1 1 2 由b-a=1 且 ab 是正实数,可得 a-b=ab,不能保证小于 1,如 b=3,a=2, 4 此时 a-b=ab=3>1.②错误. 由| a- b|=1,取 a=4,b=1 可知|a-b|=3>1,故③错误. 由|a3-b3|=1,不妨设 a>b,即 a3-b3=1,于是 a3=1+b3,因为 ab 都是正实数, 故 a3=1+b3>1⇒a>1, 于是(a-b)(a2+ab+b2)=1⇒a-b= 1 <1,从而④正确. a +ab+b2

2012年四川省高考文科数学试卷及答案word版

2012年四川省高考文科数学试卷及答案word版2012年普通高等学校招生全国统一考试(四川卷)数学(文史类)参考公式:如果事件互斥,那么球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么其中R 表示球的半径()()()P A B P A P B ? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 343V R p =在n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径 ()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=…第一部分(选择题共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b =,{,,}B b c d =,则A B =()A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d2、7(1)x +的展开式中2x 的系数是()A 、21B 、28C 、35D 、423、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为()A 、101B 、808C 、1212D 、20124、函数(0,1)x y a a a a =->≠的图象可能是()5、如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC 、ED则sin CED∠=()A 、10B 、10C、10D6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行7、设a、b都是非零向量,下列四个条件中,使||||a ba b=成立的充分条件是()A、||||a b=且//a b B、a b=-C、//a b D、2a b=8、若变量,x y满足约束条件3,212,212x yx yx yxy-≥-+≤+≤≥,则34z x y=+的最大值是()A、12B、26 C、28 D、339、已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点0(2,)My。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(四川卷)
数 学(文史类)
参考公式:
如果事件互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24S R p =
如果事件相互独立,那么 其中R 表示球的半径
()
()()P A B P A P B ? 球的体积公式
如果事件
A 在一次试验中发生的概率是p ,那么 343
V R p =
在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)(0,1,2,,)k k
n k n n P k C p p k n -=-=…
第一部分 (选择题 共60分)
注意事项:
1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{,}A a b =,{,,}B b c d =,则A B = ( )
A 、{}b
B 、{,,}b c d
C 、{,,}a c d
D 、{,,,}a b c d 2、7
(1)x +的展开式中2
x 的系数是( )
A 、21
B 、28
C 、35
D 、42
3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人。

若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )
A 、101
B 、808
C 、1212
D 、2012 4、函数(0,1)x y a a a a =->≠的图象可能是( )
5、如图,正方形ABCD的边长为1,延长BA至E,使1
AE=,连接EC、ED则sin CED
∠=()
A B C D
6、下列命题正确的是()
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
7、设a
、b
都是非零向量,下列四个条件中,使
||||
a b
a b
=
成立的充分条件是()A、||||
a b
=
且//
a b
B、a b
=-
C、//
a b
D、2
a b
=
8、若变量,x y满足约束条件
3,
212,
212
x y
x y
x y
x
y
-≥-

⎪+≤
⎪⎪
+≤

⎪≥


⎪⎩
,则34
z x y
=+的最大值是(

A、12
B、26
C、
28 D、33
9、已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点0
(2,)
M y。

若点M到该抛物线焦点的距离为3,则||
OM=()
A、
B、C、4
D、
10、如图,半径为R的半球O的底面圆O在平面α内,过点O作
平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45
角的平面与半球面相交,所得交线上到平面α的距离最大的点为
B,该交线上的一点P满足60
BOP
∠= ,则A、P两点间的球面
距离为()
A、R
B、
4
R
π
C、R
D、
3
R
π
11、方程22
ay b x c
=+中的,,{2,0,1,2,3}
a
b c∈-,且,,
a b c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()
A、28条
B、32条
C、36条
D、48条
12、设函数3()(3)1f x x x =-+-,{}n a 是公差不为0的等差数列,
127()()()14f a f a f a ++⋅⋅⋅+=,则127a a a ++⋅⋅⋅+=( )
A 、0
B 、7
C 、14
D 、21
第二部分 (非选择题 共90分)
注意事项:
(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。

答在试题卷上无效。

(2)本部分共10个小题,共90分。

二、填空题(本大题共4个小题,每小题4分,共16分。

把答案填在答题纸的相应位置上。

) 13
、函数()f x =
____________。

(用区间表示) 14、如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________。

15、椭圆
22
21(5
x y a a +=为定值,
且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______。

16、设,a b 为正实数,现有下列命题:
2
2
,则1a b -<; ,则1a b -<; 1=,则||1a b -<; 1,则||1a b -<。

____________。

(写出所有真命题的编号)
三、解答题(本大题共6个小题,共74分。

解答应写出必要的文字说明,证明过程或演算分)
某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为
1
10
和p 。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
49
50
,求p 的值; (Ⅱ)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率。

18
、(本小题满分12分)
已知函数2
1()cos
sin cos 2222
x x x f x =--。

(Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若()10
f α=,求
sin 2α的值。

N
A 1
19、(本小题满分12分)
如图,在三棱锥P ABC -中,90APB ∠=

60PAB ∠=
,AB BC CA ==,点P 在平面ABC 内的射影O 在AB 上。

(Ⅰ)求直线PC 与平面ABC 所成的角的大小; (Ⅱ)求二面角B AP C --的大小。

20、(本小题满分12分)
已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。

(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设10a >,100λ=,当n 为何值时,数列1
{lg }n
a 的前n 项和最大?
21、(本小题满分12分)
如图,动点M 与两定点(1,0)A -
M A B ∆,且直线MA
轨迹为C 。

(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线y x =+相交于点Q R 、,且
22、(本小题满分14分已知a 为正实数,n 为自然数,
抛物线2
2
y x =-+与x 轴正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距。

(Ⅰ)用a 和n 表示()f n ; (Ⅱ)求对所有n 都有
()1()11
f n n
f n n -≥++成立的a 的最小值;
(Ⅲ)当01a <<时,比较
111
(1)(2)(2)(4)()(2)
f f f f f n f n ++⋅⋅⋅+---与
(1)(1)
6(0)(1)
f f n f f -+-
的大小,并说明理由。

相关文档
最新文档