圆心角定理
圆心角、弧、弦、弦心距之间的关系

继续提高
弧、弦、弦心距之间的不等量关系
在同圆或等圆中,是不是弧越长,它所对的弦越长?是不是弦越长,它所对的弧越长?AB和CD是⊙O的两条弦,OM和ON分别是AB和CD的弦心距,如果AB>CD,那么OM和ON有什么关系?为什么?
5、已知:如图, ⊙O的两条直径AB⊥CD,四条弦AE//FD//CG//HB。求证:E、F、H、G四等分圆周。
1、已知:在⊙O中,弦AB所对的劣弧为圆的1/3,圆的半径为2cm。求AB的长。
2、已知AB和CD为⊙O的两条直径,弦EC//AB,弧EC的度数为40°,求∠BOD的度数。
O
B
A
D
C
E
练习
O
C
B
D
A
P
3、已知:如图, PB=PD. 求证: AB=CD 。
变式4
O
B
A
C
D
F
E
4、已知:如图, ⊙O的两条半径OA⊥OB,C、D是弧AB的三等分点。求证:CD=AE=BF。
圆心角的度数和它所对的弧的度数相等。
一般地,n°的圆心角对着n°的弧。
弧的度数
定义辨析
判断题:在两个圆中,分别有弧AB和弧CD,若弧AB和弧CD的度数相等,则有:(1)弧AB和弧CD相等; ( )(2)弧AB所对的圆心角和弧CD所对的圆心角相等。 ( )
注意:等弧的度数一定相等,但度数相等的弧不一定是等弧!
在同圆或等圆中,
O
A
B
C
A'
B'
C'
圆心角所对的弧相等, 圆心角所对的弦相等, 圆心角所对弦的弦心距相等。
推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
第16讲 圆心角、圆周角定理

OABC第16讲 圆(二)知识要点梳理:一、圆心角的定义:如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(∠AOB 是AB所对的圆心角)二、圆心角定理及推论:(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 (2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.(3)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、圆周角的定义:如图所示,∠ACB 的顶点在圆周上,像这样的角叫做圆周角(∠ACB 是AB 所对的圆周角). 四、圆周角的定理及推论:(1)定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半. (2)推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径. 五、圆的内接四边形对角互补,对角互补的四边形是圆的内接四边形经典例题:例1.如图,AB 是⊙O 的直径,∠DCB=30°,则∠ACD= °, ∠ABD= °例2、如图,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC .求证:∠ACB=2∠BACODC B ACA EFDO B例3、如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE 。
求证:∠D=∠B例4.四边形ABCD 中,AB ∥DC ,BC=b ,AB=AC=AD=a ,求BD 的长.例5、如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点恰好为BC 的中点D ,过点D 作AC DE ⊥,交AC 于点E .连接OD 、OE (1)求证:DE ⊥OD ;(2)若AB=3DE ,且48=∆ABC S ,求OE 的长。
经典练习:一、选择题.1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( )A .AB =2CD B .AB >CDC .AB <2CD D .不能确定 3.如图5,⊙O 中,如果AB =2AC ,那么( ).A .AB=ACB .AB=2AC C .AB<2ACD .AB>2ACOBA(5) 4.如图1,A 、B 、C 三点在⊙O 上,∠AOC=100°,则∠ABC 等于( ). A .140° B .110° C .120° D .130°OB2143OB(1) (2) (3) 5.如图2,∠1、∠2、∠3、∠4的大小关系是( ) A .∠4<∠1<∠2<∠3 B .∠4<∠1=∠3<∠2C .∠4<∠1<∠3<∠2D .∠4<∠1<∠3=∠26.如图3,AD 是⊙O 的直径,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,则BC 等于( ).A .3B .3C .5-123D .5二、填空题1.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.2.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.3. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于 4.如图4,A 、B 是⊙O 的直径,C 、D 、E 都是圆上的点,则∠1+∠2=_______.•O BC21EDOBCOBACED(4) (5) (6)OA CDO BP 5.如图5,已知△ABC 为⊙O 内接三角形,BC=•1,∠A=•60°,则⊙O•半径为_______.三、解答题1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N 在⊙O 上. (1)求证:AM =BN ;(2)若C 、D 分别为OA 、OB 中点,则AM MN NB ==成立吗?OBAC D N M2.如图,以ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=65°,求BE 的度数和EF 的度数.BACEDF3.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?4.如图,已知AB=AC ,∠APC=60° (1)求证:△ABC 是等边三角形.(2)若BC=4cm ,求⊙O 的面积.HGIOEDABCF30°B ANOMP OBACy xM5.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO=120°.(1)求证:AB 为⊙C 直径.(2)求⊙C 的半径及圆心C 的坐标.能力拓展1.如图所示,MN 是半径为1的⊙O 的直径,点A 在⊙O 上, ∠AMN=30°,点B 为劣弧AN 的中点,点P 是直径MN 上一动点,则PA+PB 的最小值是( ) A.2 B.1 C.2 D.222.已知在菱形ABCD 中,对角线AC 、BD 交于点E,F 为BA 延长线上一点,连接EF,以EF 为直径的⊙O 经过点D,与CD 边交于点G.(1)求∠FDE; (2)判断四边形ACDF 是什么四边形,说明理由(3)若G 为CD 中点,①求证:FD=FI ②设AC =2m ,BD =2n ,求⊙O 的面积与菱形ABCD 的面积之比.ODBAC 课后巩固:1.如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140° B. 110° C. 120° D. 130°2.如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=__________度。
中考2021数学知识点圆周角定理推论圆心角定理

中考2021数学知识点:圆周角定理推论、
圆心角定理
新一轮中考温习备考周期正式开始,中考网为列位初三考
生整理了各学科的温习攻略,主要包括中考必考点、中考常
考知识点、各科温习方式、考试答题技能等内容,帮忙列位
考生梳理知识脉络,理清做题思路,希望列位考生可以在考
试中取得优良成绩!下面是《中考2021数学知识点:圆周
角定理推论、圆心角定理》,仅供参考!
圆周角定理推论:
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角
都等于这条弧所对的圆心角的一半。
①圆周角度数定理:圆周角的度数等于它所对的弧的度
数的一半。
②同圆或等圆中,圆周角等于它所对的弧上的圆心角的
一半。
③同圆或等圆中,同弧或等弧所对的圆周角相等,相等
圆周角所对的弧也相等。
④半圆所对圆周角是直角,90°的圆周角所对的弦是直径。
⑤圆的内接四边形的对角互补,而且任何一个外角都等于它的内对角。
⑥在同圆或等圆中,圆周角相等弧相等弦相等。
圆心角定理:
圆心角的度数等于它所对的弧的度数。
理解:(概念)
等弧对等圆心角
把极点在圆心的周角等分成360份时,每一份的圆心角是1°的角.
因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样取得的弧叫做1°的弧.
圆心角的度数和它们对的弧的度数相等.
推论:
在同圆或等圆中,若是(1)两个圆心角,(2)两条弧,(3)两条弦(4)两条弦上的弦心距中,有一组量相等,那么它们所对应的其余各组量都别离相等。
圆心角怎么求

求圆心角的度数有以下三个途径:
1、已知弧长和半径
根据弧长公式:L(弧长)=(r/180)XπXn(n为圆心角度数,以下同)可得,圆心角度数n=180L/πr。
2、已知圆心角所对应的扇形面积和半径
根据扇形面积计算公式:S(扇形面积) = (n/360)Xπr^2 可得,圆心角度数
n=360S/πr^2。
3、已知弦长和半径
根据弦长的计算公式:K(弦长)=2rsin(n/2) 可得,圆心角度数n=2arcsin(K/2r)。
扩展资料
掌握圆心角的求解方法,必须以熟悉圆心角的相关性质或定理为前提:
1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等。
2、在同圆或等圆中,圆心角、圆心角所对的弦、圆心角所对的弧和对应弦的弦心距,四对量中只要有一对相等,其他三对就一定相等。
3、一条弧的度数等于它所对的圆心角的度数。
4、在同圆或等圆中,同弧或同弦所对的圆周角等于二分之一的圆心角。
几何中的圆心角性质

几何中的圆心角性质圆心角是几何中一个重要的概念,它在圆周上的两个点上划出的角度。
在几何学中,圆心角具有一些特殊的性质和定理,它对于理解圆的性质和应用具有重要作用。
本文将介绍圆心角的性质和相关定理。
I. 圆心角的定义与特点圆心角是从圆心出发的两条射线所夹的角。
它的特点如下:1. 圆心角所对的弧长是固定的。
无论圆弧所在的位置和大小如何变化,都不会改变圆心角所对的弧长。
2. 圆心角的度数是圆的半径所决定的。
当圆心角的两条边当中的一条等于圆的半径时,圆心角的度数为45度,即为最小圆心角。
3. 圆周角是最大的圆心角。
当圆心角的两条边分别为圆的直径时,圆心角的度数为180度,即为最大圆心角。
II. 圆心角的重要性质除了上述特点之外,圆心角还具有一些重要的性质和定理。
1. 垂直弧性质:与圆心角所对的弧相垂直的弧,其两条边也是垂直的。
这个性质可以用于解决一些垂直弧的相关问题。
2. 弧度与圆心角的关系:在弧度制中,圆心角的度数与该角所对的弧的弧度数是相等的。
这个关系在弧度制的转换和计算中非常有用。
3. 圆心角的平分线:圆心角的平分线经过圆心,并且将圆心角分成相等的两部分。
这个性质可以用于证明一些相关的圆心角定理。
III. 圆心角的重要定理除了上述性质之外,圆心角还有一些重要的定理,包括以下几个:1. 同弧相等定理:如果两个圆心角所对的弧相等,那么这两个圆心角也相等。
2. 圆心角和弦的关系:圆心角和所对的弦之间存在着一定的关系。
当两个圆心角所对的弦相等时,这两个圆心角也相等。
3. 圆心角的正弦定理:圆心角的正弦定理描述了圆心角边的长度与所对的弦的长度之间的关系。
根据该定理,圆心角边的长度与所对弧的长度的比值等于所对弦的长度与半径的比值。
4. 圆心角的余弦定理:圆心角的余弦定理描述了圆心角边的长度与半径之间的关系。
根据该定理,圆心角边的长度的平方等于半径的平方减去所对弦的长度的平方。
总结:圆心角是几何中的一个重要概念,它在解决圆的性质和应用问题中起着至关重要的作用。
九年级数学圆第四节圆心角知识梳理及典例分析

第四节圆心角知识点梳理【知识点一】圆心角定理1.圆的中心对称性:圆是中心对称图形,圆心就是它的对称中心2.圆心角:顶点在圆心的角叫圆心角3.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
【知识点二】圆心角与它所对弧的度数关系1.1o 圆心角所对的弧叫做1o 的弧,n o 圆心角所对的弧叫做n o的弧2.圆心角的度数和它所对的弧的度数相等3.在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等。
【知识点三】圆心角、弧、弦、弦心距的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等典例分析【题型一】利用圆心角的关系说明弧的关系【例1】 如图,在⊙O 中,D,E 分别是半径OA ,OB 上的点,且AD=BE,C 为AB 上的一点,且CD= CE,那么AC =BC 吗?为什么?【变式1】 如图,在⊙O 中,AB 为直径,CO ⊥AB ,D 为CO 的中点,DE ∥AB ,求证:2EC EA【题型二】利用圆心角、弧、弦、弦心距之间的关系进行证明【例1】如图,⊙O 的弦 AB, CD 相交于点 P ,P0平分∠APD.求证:AB=CD【变式1】小林根据在一个圆中圆心角、弦、弧三个量之间的关系认为在图中,若∠AOB=2∠COD,则2,AB=2CD,你同意吗?说明理由。
AB CD【题型三】与圆心角有关的实际问题【例1】已知来庄、李庄分别位于直径为300 m的半圆弧上的三等分点的位置,现在要在河(半圆弧所在圆的直径所在的直线)修建水泵站,分别向两个村庄供水,求最少需要多少米水管。
【变式1】某村想在村口建如图形状的门, 已知AB的度数为120°,立柱AC高2m.若要使高3 m,宽2m的集装箱货车能通过该门.问:AB的半径应大于于多少?【题型四】弧、弦之间的关系与垂径定理的综合应用【例1】如图,已知AB为⊙O的弦,从圆上任一点引弦CD⊥AB,作∠OCD的平分线交⊙O于点P,连结PA,PB。
与圆有关的角(解析版)

专题08 与圆有关的角知识网络重难突破知识点一圆心角1.圆心角:顶点在圆心的角叫做圆心角.圆心角的度数等于它所对的弧的度数.2.圆心角性质定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.【典例1】(2020•项城市三模)如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=75°,∠D=60°,则的度数为何?()A.25°B.40°C.50°D.60°【点拨】连接OB,OC,由半径相等得到△OAB,△OBC,△OCD都为等腰三角形,根据∠A=75°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【解析】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=75°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×75°=30°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣30°﹣60°=60°,则的度数为60°.故选:D.【点睛】此题考查了圆心角、弧、弦的关系,多边形内角与外角,弄清圆心角、弧、弦的关系是解本题的关键.【变式训练】1.(2019秋•鹿城区月考)一个圆的内接正多边形中,一边所对的圆心角为72°,则该正多边形的边数是()A.6 B.5 C.4 D.3【点拨】根据正多边形的中心角=计算即可.【解析】解:设正多边形的边数为n.由题意=72°,∴n=5,故选:B.【点睛】本题考查正多边形的有关知识,解题的关键是记住正多边形的中心角=.2.(2019秋•余杭区期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A.45°﹣αB.αC.45°+αD.25°+α【点拨】连接OD,求得∠DCE=α,得到∠BCD=90°﹣α,根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:连接OD,∵的度数为α,∴∠DCE=α,∵∠ACB=90°,∴∠BCD=90°﹣α,∵BC=DC,∴∠B=(180°﹣∠BCD)=(180°﹣90°+α)=45°+α,∴∠A=90°﹣∠B=45°﹣α,故选:A.【点睛】本题考查了圆心角,弧,弦,直角三角形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.3.(2019秋•鄞州区期末)如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙O于点F,若AC=12,AE=3,则⊙O的直径长为()A.10 B.13 C.15 D.16【点拨】连接OF,首先证明AC=DF=12,设OA=OF=x,在Rt△OEF中,利用勾股定理构建方程即可解决问题.【解析】解:如图,连接OF.∵DE⊥AB,∴DE=EF,=,∵点D是弧AC的中点,∴=,∴=,∴AC=DF=12,∴EF=DF=6,设OA=OF=x,在Rt△OEF中,则有x2=62+(x﹣3)2,解得x=,∴AB=2x=15,故选:C.【点睛】本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4.(2019春•西湖区校级月考)如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数60°.【点拨】根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.【解析】解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°【点睛】此题考查圆心角、弧、弦,关键是根据圆心角、弧、弦的关系和含30°的直角三角形的性质解答.5.(2018秋•丽水期中)如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.【点拨】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【解析】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,又∵OA=OB,M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,,∴△MOC≌△NOC(SAS),∴MC=NC.【点睛】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.知识点二圆周角1.圆周角:顶点在圆上,两边分别和圆相交的角叫做圆周角.圆周角的度数等于它所对弧上的圆心角度数的一半.2.圆周角性质定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【典例2】(2019秋•义乌市期末)如图,已知AB为半圆O的直径,AC,AD为弦,且AD平分∠BAC.(1)若∠ABC=28°,求∠CBD的度数;(2)若AB=6,AC=2,求AD的长.【点拨】(1)利用圆周角定理得到∠C=∠ADB=90°,则根据互余计算出∠CAB=62°,再根据角平分线的定义得到∠CAD=∠CAB=31°,然后根据圆周角定理得到∠CBD的度数;(2)连接OD交BC于E,如图,先利用勾股定理计算出BC=4,由∠CAD=∠BAD得到=,根据垂径定理得到OD⊥BC,BE=CE=BC=2,则OE=1,然后根据勾股定理计算出BD,接着计算出AD.【解析】解:(1)∵AB是⊙O的直径,∴∠C=∠ADB=90°,∴∠CAB=90°﹣28°=62°,∵AD平分∠BAC,∴∠CAD=∠CAB=31°,∴∠CBD=∠CAD=31°;(2)连接OD交BC于E,如图,在Rt△ACB中,BC==4,∵AD平分∠BAC,∴∠CAD=∠BAD,∴=,∴OD⊥BC,∴BE=CE=BC=2,∴OE=AC=×2=1,∴DE=OD﹣OE=3﹣1=2,在Rt△BDE中,BD==2,在Rt△ABD中,AD==2.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【变式训练】1.(2019秋•海曙区期末)如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD 的度数为()A.25°B.50°C.65°D.75°【点拨】先根据圆周角定理得到∠ADC=90°,∠ABD=∠ACD,然后利用互余计算出∠ACD,从而得到∠ABD的度数.【解析】解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.2.(2020•绍兴)如图,点A,B,C,D,E均在⊙O上,∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°【点拨】首先连接BE,由圆周角定理即可得∠BEC的度数,继而求得∠BED的度数,然后由圆周角定理,求得∠BOD的度数.【解析】解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.【点睛】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.3. (2020•温州一模)如图,四边形ABCD内接于⊙O,若∠AOC=∠B,则∠D的度数为60°.【点拨】根据圆周角定理得到∠AOC=2∠D,根据题意得到∠B=2∠D,根据圆内接四边形的对角互补列式计算,得到答案.【解析】解:由圆周角定理得,∠AOC=2∠D,∵∠AOC=∠B,∴∠B=2∠D,∵四边形ABCD内接于⊙O,∴∠D+∠B=180°,∴∠D+2∠D=180°,解得,∠D=60°,故答案为:60.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4.(2019春•西湖区校级月考)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E连接EB、DE,EC=2,BC=6,则⊙O的半径为 4.5.【点拨】连接BE,AD,求出CD,根据圆周角定理求出∠CAD=∠CBE,证△CAD∽△CBE,得出比例式,求出AC,即可得出答案.【解析】解:连接BE,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵BC=6,AB=AC,∴CD=BD=3,∵由圆周角定理得:∠CAD=∠CBE,∵∠C=∠C,∴△CDA∽△CEB,∴=,∴=,解得:AC=9,∵AB=AC,∴AB=9,∴⊙O的半径为=4.5,故答案为:4.5.【点睛】本题考查了等腰三角形的性质,圆周角定理,相似三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.5.(2019秋•温州期末)如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:=.【点拨】由于AC平分∠BAD则∠BAC=∠DAC,再利用平行线的性质得∠BAC=∠ACE,所以∠DAC =∠ACE,然后根据圆周角定理得到结论.【解析】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴=.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(2018秋•西湖区校级期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=75°,求弧DE的度数;(3)若BD=3,BE=4,求AC的长.【点拨】(1)连结AE,如图,由圆周角定理得∠AEC=90°,而AB=AC,则根据等腰三角形的性质即可判断BE=CE;(2)连结OD、OE,如图,在Rt△ABE中,利用互余计算出∠BAE=15°,再根据圆周角定理得∠DOE =2∠DAE=30°,然后根据圆心角的度数等于它所对的弧的度数即可得到弧DE的度数为30°;(3)连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,由圆周角定理得∠ADC=90°,在Rt △BCD中,利用勾股定理得CD2=55,然后在Rt△ADC中再利用勾股定理得到(x﹣3)2+55=x2,接着解方程求出x即可.【解析】解:(1)证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:连结OD、OE,如图,在Rt△ABE中,∠BAE=90°﹣∠B=90°﹣75°=15°,∴∠DOE=2∠DAE=30°,∴弧DE的度数为30°;(3)解:连结CD,如图,BC=2BE=8,设AC=x,则AD=x﹣3,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2﹣BD2=82﹣32=55,在Rt△ADC中,∵AD2+CD2=AC2,∴(x﹣3)2+55=x2,解得x=,即AC的长为.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的判定与性质.知识点三圆内接四边形1.圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.2. 圆内接四边形的性质:圆的内接四边形的对角互补.【典例3】(2018秋•崇川区校级月考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F,求证:∠ADC=∠ABC;(2)若∠E=∠F=40°,求∠A的度数;(3)若∠E=30°,∠F=40°,求∠A的度数.【点拨】(1)根据外角的性质即可得到结论;(2)根据圆内接四边形的性质和等量代换即可求得结果;(3)连结EF,如图,根据圆内接四边形的性质得∠ECD=∠A,再根据三角形外角性质得∠ECD=∠1+∠2,则∠A=∠1+∠2,然后根据三角形内角和定理有∠A+∠1+∠2+∠E+∠F=180°,解方程即可.【解析】解:(1)∠E=∠F,∵∠DCE=∠BCF,∠ADC=∠E+∠DCE,∠ABC=∠F+∠BCF,∴∠ADC=∠ABC;(2)由(1)知∠ADC=∠ABC,∵∠EDC=∠ABC,∴∠EDC=∠ADC,∴∠ADC=90°,∴∠A=90°﹣40°=50°;(3)连结EF,如图,∵四边形ABCD为圆的内接四边形,∴∠ECD=∠A,∵∠ECD=∠1+∠2,∴∠A=∠1+∠2,∵∠A+∠1+∠2+∠E+∠F=180°,∴2∠A+30°+40°=180°,∴∠A=90°﹣=55°.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.【变式训练】1.(2019秋•越城区期末)如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°【点拨】根据圆内接四边形对角互补可得∠C=180°×=105°.【解析】解:∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.【点睛】此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.2.(2020•仙居县模拟)如图,四边形ABCD是⊙O的内接四边形,若∠BCD=143°,则∠BOD的度数是()A.77°B.74°C.37°D.43°【点拨】根据圆内接四边形的性质求出∠A,再根据圆周角定理解答即可.【解析】解:∵四边形ABCD为⊙O的内接四边形,∠BCD=143°,∴∠A=180°﹣∠BCD=37°,由圆周角定理得,∠BOD=2∠A=74°,故选:B.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3..如图,已知ABCD是一个以AD为直径的圆内接四边形,分别延长AB和DC,它们相交于P,若∠APD =60°,AB=5,PC=4,则⊙O的面积为()A.25πB.16πC.15πD.13π【点拨】连接AC,由圆周角定理可得出∠ACD=90°,再由圆内接四边形的性质及三角形内角和定理可求出∠P AC=30°,由直角三角形的性质可求出AP、AC的长,由相似三角形的判定定理及性质可得出CD的长,再根据勾股定理接可求出AD的长,进而求出该圆的面积.【解析】解:连接AC,∵AD是⊙O的直径,∴∠ACD=90°,∵∠APD=60°,∴∠P AC=30°,∴AP=2PC=2×4=8,∵AB=5,∴PB=8﹣5=3,∵四边形ABCD是以AD为直径的圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∠APD=∠APD,∴△PCB∽△P AD,∴=,即=,PD=6,∴CD=PD﹣PC=6﹣4=2,∴AC===4,在Rt△ACD中,AD===2.∴OA=AD=,∴⊙O的面积=π×()2=13π.故选:D.【点睛】本题考查的是相似三角形的判定与性质、圆内接四边形的性质、勾股定理,解答此题的关键是作出辅助线,构造出直角三角形求解.4.(2019秋•萧山区期中)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=2.【点拨】连接AC,由圆内接四边形的性质和圆周角定理得到∠BAE=∠CDA,∠ABD=∠ACD,从而得到∠ACD=∠CDA,得出AC=AD=5,然后利用勾股定理计算AE的长.【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠ABE=∠ABD,∵∠ABE=∠CDA,∠ABD=∠ACD,∴∠ACD=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故答案为:2.【点睛】本题考查了圆内接四边形的性质、等腰三角形的判定、圆周角定理、勾股定理、角平分线定义等知识;熟练掌握圆周角定理和圆内接四边形的性质是解题的关键.6.(2019•黄埔区一模)如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.【点拨】(1)根据圆内接四边形的性质得到∠CDE=∠ABC=60°,根据圆周角定理、等边三角形的判定定理证明;(2)在BD上截取PD=AD,证明△APB≌△ADC,根据全等三角形的性质证明结论.【解析】(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.【点睛】本题考查的是圆内接四边形的性质、等边三角形的性质、全等三角形的判定和性质,掌握圆内接四边形的性质是解题的关键.巩固训练1.(2019秋•福田区期末)下图中∠ACB是圆心角的是()A.B.C.D.【点拨】根据圆心角的概念判断.【解析】解:A、∠ACB不是圆心角;B、∠ACB是圆心角;C、∠ACB不是圆心角;D、∠ACB不是圆心角;故选:B.【点睛】本题考查的是圆心角的概念,掌握顶点在圆心的角叫作圆心角是解题的关键.2.(2019秋•诸暨市期末)用直角三角板检查半圆形的工件,下列工件哪个是合格的()A.B.C.D.【点拨】根据90°圆周角所对的弦是直径即可判断.【解析】解:根据90°的圆周角所对的弦是直径得到只有C选项正确,其他均不正确;故选:C.【点睛】本题考查圆周角定理、解题的关键是灵活运用圆周角定理解决问题,属于中考常考题型.3.(2019秋•拱墅区校级期末)下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④【点拨】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【解析】解:①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.4.(2019春•西湖区校级月考)圆的内接四边形ABCD的四个内角之比∠A:∠B:∠C:∠D的可能的值是()A.1:2:3:4 B.4:2:3:1 C.4:3:1:2 D.4:1:3:2【点拨】因为圆的内接四边形对角互补,则两对角的和应该相等,比值所占份数也相同,据此求解.【解析】解:∵圆的内接四边形对角互补,∴∠A+∠C=∠B+∠D=180°,∴∠A:∠B:∠C:∠D的可能的值是4:3:1:2.故选:C.【点睛】要掌握圆的内接四边形对角互补的特性.5.(2018秋•句容市校级月考)如图,AB,CD是⊙O的直径,弦CE∥AB,弧CE的度数为40°,∠AOC 的度数70°.【点拨】连接OE,由弧CE的度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE=(180°﹣40°)÷2=70°,而弦CE∥AB,即可得到∠AOC=∠OCE=70°.【解析】解:连接OE,如图,∵弧CE的度数为40°,∴∠COE=40°,∵OC=OE,∴∠OCE=∠OEC,∴∠OCE=(180°﹣40°)÷2=70°,∵弦CE∥AB,∴∠AOC=∠OCE=70°.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,等腰三角形的性质和平行的性质以及三角形的内角和定理.6.(2020•浙江自主招生)如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN 的中点,P是直径MN上一动点,则P A+PB的最小值为.【点拨】首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.【解析】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∴弧AN的度数是60°,则弧BN的度数是30°,根据垂径定理得弧CN的度数是30°,则∠AOC=90°,又OA=OC=1,则AC=.【点睛】此题主要考查了确定点P的位置,垂径定理的应用.7.(2019春•西湖区校级月考)如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC=9,∠BAC+∠EAD=180°,则⊙A的直径等于3.【点拨】延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦CF的长即可.【解析】解:作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴,∴DE=BF=6,∵CF是直径,∴∠CBF=90°,∴CF===3,故答案为:3.【点睛】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.正确作出辅助线是解题的关键.8.(2019秋•香坊区校级期中)如图,AB为 ⊙O的弦,半径OC,OD分别交AB于点E,F.且=.(1)求证:OE=OF;(2)作半径ON⊥AB于点M,若AB=8,MN=2,求OM的长.【点拨】(1)连接OA、OB,证明△AOE≌△BOF(ASA),即可得出结论;(2)连接OA,由垂径定理得出AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得出方程,解方程即可.【解析】(1)证明:连接OA、OB,如图1所示:∵OA=OB,∴∠A=∠B,∵=,∴∠AOE=∠BOF,在△AOE和△OBF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)解:连接OA,如图2所示:∵OM⊥AB,∴AM=AB=4,设OM=x,则OA=ON=x+2,在Rt△AOM中,由勾股定理得:42+x2=(x+2)2,解得:x=3,∴OM=3.【点睛】本题考查了圆心角、弧、弦的关系,等腰三角形的性质,全等三角形的判定与性质,垂径定理,勾股定理等知识;熟练掌握圆心角、弧、弦的关系和垂径定理是解题的关键.9.(2019秋•滨江区期中)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC 交于点E.(1)若∠B=70°,求弧CD的度数;(2)若AC=24,DE=8,求半圆O的半径.【点拨】(1)根据直径所对的圆周角是直角求出∠BAC的度数,根据平行线的性质求出∠AOD的度数,然后求出∠DOC的度数可确定弧CD的度数;(2)先证明OE⊥AC得到AE=CE=AC=12,设半径为r,则OE=r﹣8,然后利用勾股定理得到(r ﹣8)2+122=r2,然后解方程即可.【解析】解:(1)连接OC,如图,∵AB是半圆O的直径,∴∠ACB=90°,又∠B=70°,∴∠BAC=20°,∵OD∥BC,∴∠AOD=∠B=70°,又OD=OA,∴∠OAD=55°,∴∠DAC=35°,∴∠DOC=2∠DAC=70°,∴的度数是70°;(2)∵OD∥BC,∴∠OEA=∠ACB=90°,∴OE⊥AC,∴AE=CE=AC=12,设半径为r,则OE=r﹣8,在Rt△AOE中,(r﹣8)2+122=r2,解得r=5,即半圆O的半径为5.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.【点拨】(1)根据三个内角相等的三角形是等边三角形即可判断;(2)过点A作AE⊥CD,垂足为点E,过点B作BF⊥AC,垂足为点F.根据S四边形ABCD=S△ABC+S△ACD,分别求出△ABC,△ACD的面积,即可求得四边形ABCD的面积,然后通过证得△EAB≌△DCB(AAS),即可求得△BDE的面积=四边形ABCD的面积=.【解析】(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.【点睛】本题考查圆内接四边形的性质,等边三角形的判定和性质,勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.。
圆心角(1) 课件

例3:如图, ⊙O的直径垂直于弦CD,AB,CD相交 ⌒ ⌒ 于点E,∠COD=1000,求BC,AD的度数。 A O E C B D
说能出你这节课的收获和体验让大家
与你分享吗?
OA,OB,OC。
(1)∠AOB、∠COB、∠AOC A
的度数分别为__________ 0 1200 ,1200 ,120
(2)若⊙O的半径为r,则等边 ABC三角形的边长为_______ 3r B
O C
做一做: ⌒ 1、如图,在⊙O中,AB为直径,∠BAC=400,则AC的 0 0 ⌒ 度数为_______,BC的度数为_______ 80 100
O
O
圆心角定理:在同圆或等圆中,相等的圆心角所对
的弧相等,所对的弦相等,所对的弦的弦心距相等.
在同圆或等圆中,如果两个圆心角、两条弧、两 条弦、两个弦心距中有一对量相等,那么它们所 对应的其余各对量都相等。
例1: 已知:如图,A,B,C,D是⊙O上的点,∠1=∠2。 求证:AC=BD
例2:如图,等边三角形ABC内接于⊙O,连结
1、圆即是轴对称图形,又是中心对称图形。 2、顶点在圆心的角叫做:圆心角。 做一做:判别下列各图中的角是不是圆心角,并源自说明理由。①②
③
④
生活中的很多实物给我们以圆心角的直观感受
在同圆中,相等的圆心角所对的弧相等,所对的弦也相等.
在同圆中,相等的圆心角所对的弧相等,所对的弦也相等. 在等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心角定理(弧、弦、圆心角关系定理)基本内容:1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
2、在同圆或等圆中,如果两条弧相等,则它们所对的圆心角相等,所对的弦相等。
3、在同圆或等圆中,如果两条弦相等,则它们所对的圆心角相等,所对的弧相等。
在理解时要注意:⑴前提:在同圆或等圆中;⑵条件与结论:在①两条弧相等;②两条弦相等;③两个圆心角相等中,只要有一个成立,则有另外两个成立。
基本概念理解:1.在同圆或等圆中,若的长度=的长度,则下列说法正确的个数是( )①的度数等于;②所对的圆心角等于所对的圆心角;③和是等弧;④所对的弦心距等于所对的弦心距。
A .1个B .2个C .3个D .4个2.如图,在两半径不同的同心圆中,︒=''∠=∠60B O A AOB ,则( )A .B .C .的度数=的度数D .的长度=的长度3.下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧; (4)经过圆心的每一条直线都是圆的对称轴. (A )1个 (B )2个 (C )3个 (D )4个4.已知弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 . 5.在⊙O 中,的度数240°,则的长是圆周的 份.概念的延伸及其基本应用:1.在同圆或等圆中,如果圆心角BOA ∠等于另一圆心角COD ∠的2倍,则下列式子中能成立的是( )2.在同圆或等圆中,如果,则AB 与CD 的关系是( )A .CD AB 2> B .CD AB 2=C .CD AB 2< D .CD AB =(2题图)3.在⊙O 中,圆心角︒=∠90AOB ,点O 到弦AB 的距离为4,则⊙O 的直径的长为( )A .24B .28C .24D .164.在⊙O 中,两弦CD AB <,OM ,ON 分别为这两条弦的弦心距,则OM ,ON 的关系是( )A .ON OM >B .ON OM =C .ON OM <D .无法确定 5.已知:⊙O 的半径为4cm ,弦AB 所对的劣弧为圆的31,则弦AB 的长为 cm ,AB 的弦心距为 cm .6.如图,在⊙O 中,AB ∥CD ,的度数为45°,则∠COD 的度数为 .典型例题精析:例题1、如图,已知:在⊙O 中,OA ⊥OB ,∠A=35°,求和的度数.解:连结OC ,在Rt △AOB 中,∠A=35° ∴∠B=55°,又∵OC=OB , ∴∠COB=180°-2∠B=70°,∴的度数为70°,∠COD=90°-∠COB=90°-70°=20°,∴的度数为20°.说明:连结OC ,通过求圆心角的度数求解。
此题是基本题目,目的是巩固基础知识. 例题2、如图,已知:在⊙O 中,=2,试判断∠AOB 与∠COD ,AB 与2CD 之间的关系,并说明理由.分析:根据条件确定图形,观察、分析、猜想,特别是解:∠AOB=2∠COD , AB<2CD ,理由如下:如图,在⊙O 上取一点C ’,使=.∴∠COD=∠DOC’∵=2,∴,=+=.∴AB=CC’. ∠AOB=∠CO C’=∠COD+∠DOC’=2∠COD又∵在△CD C’中,CD+DC’> CC’,∴CC’ <2CD ,即AB<2CD.说明:①证明两条线段的不等关系,常常把两条线段放到一个三角形中。
②此题进一步理解定理及其推论的应用条件,在“相等”问题中的不等量.由=2可得∠AOB=2∠COD 是正确的,但由=2得出AB=2CD ,是错误的,培养学生在学习中的迁移能力.例题3、如图,已知:AB 是⊙O 直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证:=.分析:要证弧相等,可以证弧对应的弦相等,弧对应的圆心角相等.A(6题图)1图)(例题4图)(例题5图)证法一:连结AC 、OC 、OD 、BD ,∵M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB , ∴AC= OC 、OD=BD 又∵OC=OD ,∴AC= BD ,∴=.证法二:连结OC 、OD ,∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,∵CM ⊥AB ,DN ⊥AB ,∴OC=OD ,∴Rt △COM ≌Rt △DON ,∴∠COA=∠DOB ,∴=.证法三、如图,分别延长CM 、DN 交⊙O 于E 、F , ∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,又∵CM ⊥AB ,DN ⊥AB ,∴CE=DF ,∴=∵=21,=21,∴=.说明:此题是利用本节定理及推论应用的优秀题目,题目不难,但方法灵活,培养学生灵活解决问题的能力和基本的辅助线的作法.例题4、如图,C 是⊙O 直径AB 上一点,过C 点作弦DE ,使CD =CO ,若的度数为40°,求的度数.分折: 要求的度数,可求它所对的圆心角∠BOE 的度数,如图作辅助线,通过等量转换得出结果.解: 连OE 、OD 并延长DO 交⊙O 于F . ∵的度数为40°,∴∠AOD=40°.∵CD =CO , ∴∠ODE =∠AOD =40°. ∵OD =OE , ∴∠E = ∠ODE =40°.∴∠EOF=∠E+∠ODE=80°,∠BOF= ∠AOD =40°, 则∠BOE=∠EOF +∠BOF =80°+40°=120°,∴的度数为120°.说明:此题充分体现了圆中的等量转换以及圆中角度的灵活变换. 例题5、如图,在⊙O 中,直径AB 垂直于CD 并交CD 于E ;直径MN 交CD 于F ,且OE FD FO 2==,求的度数.解 连结OD .CD AB ⊥于E ,且OE OF 2=. ︒=∠∴30EFO ,︒=∠60EOF ,ABABA(例题3图1)(例题6图)(例题7图)又FD OF = .︒=∠=∠∴15FOD FDO ︒=∠∴75AOD ,的度数是︒150.说明:由于圆心角的度数与它所对的弧的度数相等,而我们对角是比较熟悉的,所以求弧的度数的问题往往转化为求它所对的圆心角度数的问题.例题6、已知:如图,M 、N 分别是⊙O 的弦AB 、CD 的中点,CD AB =,求证:CNM AMN ∠=∠.分析:由弦CD AB =,想到利用弧,圆心角、弦、弦心距之间的关系定理,又M 、N 分别为AB 、CD 的中点,如连结OM ,ON ,则有ON OM =,AB OM ⊥,CD ON ⊥,故易得结论.证明 连结OM 、ON ,O 为圆心,M 、N 分别为弦AB 、CD 的中点, CD ON AB OM ⊥⊥∴,.CD AB = ON OM =∴ONM OMN ∠=∠∴ONM CNM OMN AMN ∠-︒=∠∠-︒=∠90,90CNM AMN ∠=∠∴说明:有弦中点,常用弦心距利用垂径定理及圆心角、弧、弦、弦心距之间关系定理来证题.例题7、如图,已知⊙O 中,,OB 、OC 分别交AC 、DB 于点M ,N ,求证:OMN ∆是等腰三角形.分析:由,应得:AC OM ⊥,BD ON ⊥,因此,只要证明BD AC =就可以证明MON ∆是等腰三角形.说明:在本题中,请注意垂径定理基本图形在证明中的作用.例题8、如图,已知AB 为⊙O 的弦,从圆上任一点引弦AB CD ⊥,作OCD ∠的平分线交⊙O 于P 点,连接PB PA ,. 求证:PB PA =. 证明:连结OP .∵ ,OP CO =∴ OPC OCP ∠=∠. ∵ CP 是DCO ∠的平分线,∴ OCP DCP ∠=∠.∴OP ∥CD . ∵ ,AB CD ⊥∴ AB OP ⊥.∴ .PB PA =∴说明:本题考查在同圆中等弧对等弦及垂径定理的综合应用,解题关键是连结OP ,证AB OP ⊥.易错点是囿于用全等三角形的办法证明PA 与PB 相等而使思维受阻或证明繁杂.作业:1.已知⊙O 的半径为R ,弦AB 的长也为R ,则AOB ∠=_________,弦心距是_______2. 在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为cm 2,则AB =_________ 3.圆的一条弦把圆分为度数的比为5:1的两条弧,如果圆的半径为R ,则弦长为______,该弦的弦心距为__________4.如图,直径CD AB ⊥,垂足为E ,︒=∠130AOC ,则的度数为_______,的度数为________5.在矩形、等腰直角三角形、圆、等边三角形四种几何图形中,只有一条对称轴的几何图形是________6.⊙O 中弦AB 是半径OC 的垂直平分线,则的度数为_______7.已知⊙O 的半径为cm 5,的度数是︒120,则弦AB 的长是________8.如果一条弦将圆周分成两段弧,它们的度数之比为1:3,那么此弦的弦心距的长度与此弦的长度的比是________ 9.已知:在直径是10的⊙O 中,的度数是60°.求弦AB 的弦心距.10.已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB ,求证:=2.11.如图,⊙O 内两条相等的弦AB 与CD 相交于P ,求证:PD PB =PA=PB12.如图,⊙1O 和⊙2O 是等圆,M 是两圆心21O O 的中点,过M 任作一直线分别交⊙1O 于A ,B ,交⊙2O 于C ,D ,求证:=13.如图,已知⊙O 的直径AC 为cm 20,的度数为 60,求弦AB 的弦心距的长。
例 如图,已知:在⊙O 中,=2,试判断∠AOB 与∠COD ,AB 与2CD 之间的关系,并说明理由.分析:根据条件确定图形,观察、分析、猜想,特别是两条线段的不等关系,常常把两条线段放到一个三角形中.解:∠AOB=2∠COD , AB<2CD ,理由如下: 如图,在⊙O 上取一点C ’,使=.∴∠COD=∠DOC ’∵=2,∴,=+=.∴AB=CC ’. ∠AOB=∠CO C ’=∠COD+∠DOC ’=2∠COD又∵在△CD C ’中,CD+DC ’> CC ’,∴CC ’ <2CD ,即AB<2CD.说明:此题进一步理解定理及其推论的应用条件,在“相等”问题中的不等量.由=2可得∠AOB=2∠COD 是正确的,但由=2得出AB=2CD ,是错误的,培养学生在学习中的迁移能力.例 如图,已知:AB 是⊙O 直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证:=.分析:要证弧相等,可以证弧对应的弦相等,弧对应的圆心角相等. 证法一:连结AC 、OC 、OD 、BD ,∵M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB , ∴AC= OC 、OD=BD 又∵OC=OD ,∴AC= BD ,∴=.证法二:连结OC 、OD ,∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,∵CM ⊥AB ,DN ⊥AB ,∴OC=OD ,∴Rt △COM ≌Rt △DON ,∴∠COA=∠DOB ,∴=.证法三、如图,分别延长CM 、DN 交⊙O 于E 、F , ∵M 、N 分别是AO 、BO 的中点,∴OM=21AO ,ON=21BO , ∵OA=OB ,∴OM=ON ,又∵CM ⊥AB ,DN ⊥AB ,∴CE=DF ,∴=∵=21,=21,∴=.说明:此题是利用本节定理及推论应用的优秀题目,题目不难,但方法灵活,培养学生灵活解决问题的能力和基本的辅助线的作法.例 如图,已知:在⊙O 中,OA ⊥OB ,∠A=35°,求和的度数.分析:连结OC ,通过求圆心角的度数求解. 解:连结OC ,在Rt △AOB 中,∠A=35° ∴∠B=55°,又∵OC=OB , ∴∠COB=180°-2∠B=70°,∴的度数为70°,∠COD=90°-∠COB=90°-70°=20°, ∴的度数为20°.说明:此题是基本题目,目的是巩固基础知识.例 如图,C 是⊙O 直径AB 上一点,过C 点作弦DE ,使CD =CO ,若的度数为40°,求的度数.ABAB分折: 要求的度数,可求它所对的圆心角∠BOE 的度数,如图作辅助线,通过等量转换得出结果.解: 连OE 、OD 并延长DO 交⊙O 于F . ∵的度数为40°,∴∠AOD=40°.∵CD =CO , ∴∠ODE =∠AOD =40°. ∵OD =OE , ∴∠E = ∠ODE =40°.∴∠EOF=∠E+∠ODE=80°,∠BOF= ∠AOD =40°, 则∠BOE=∠EOF +∠BOF =80°+40°=120°,∴的度数为120°.说明:此题充分体现了圆中的等量转换以及圆中角度的灵活变换.典型例题五例 (北京市朝阳区试题,2002)已知:如图,ABC ∆内接于⊙O ,AD 是⊙O 的直径,点E 、F 分别在AB 、AC 的延长线上,EF 交⊙O 于点M 、N ,交AD 于点H ,H 是OD的中点,,2=-HF EH ,设α=∠ACB ,43tan =α,EH 和HF 是方程()0422=++-k x k x 的两个实数根.(1)求EH 和HF 的长; (2)求BC 的长. 解:(1)依题意,有一元二次方程根与系数关系,得()[]04412>⨯-+-=k k ∆,① 2+=+k HF EH , ②A04>=⋅k HF EH , ③ 又2=-HF EH . ④ 由②、③、④得 12=k . 当12=k 时,①成立.把12=k 代入原方程解得 81=x ,62=x ∴8=EH ,6=HF . (2)解法一:连结BD ,∴α∠=∠1.∵AD 是⊙O 的直径,∴︒=∠90ABD .∵, ∴EF AD ⊥. 即︒=∠=∠90AHF AHE . ∴α∠=∠=∠1E .在AEH Rt ∆中,43tan tan ===αEH AH E ,又8=EH . ∴6=AH . 由勾股定理得10=AE . 在AHF Rt ∆中,6==HF AH ,由勾股定理得26=AF .在ABD Rt ∆中,43tan 1tan ===∠αBD AB . 设m AB 3=,则m BD 4=,由勾股定理得m AD 5=.∵H 是OD 的中点,∴AD AH 43=.∴863434=⨯==AH AD .∴85=m . 解得58=m .∴5243==m AB . …………………………11分∴α∠=∠E ,FAE BAC ∠=∠, ∴ABC ∆∽AFE ∆. ∴AFAB EF BC =. ∴()()25282668524=+⨯=+=AF HF EH AB BC . …………………………14分 解法二:同解法一求出10=AE ,8=AD . 连结CD .∵HF AH =,且HF AH ⊥, ∴︒=∠=∠45F HAF ∵AD 为⊙O 直径,∴︒=∠90ACD ,︒=∠45ADC .∴2445sin sin =︒⋅=∠⋅=AD ADC AD AC . ……………………11分以下同解法一可求得2528101424=⨯=⋅=AE EF AC BC . 说明:这是一道综合性较强的题目,主要考查一元二次方程的韦达定理和圆的一些知识。