中考必会几何模型:角平分线四大模型
角平分线的四大模型

角平分线的四大模型模型1:角平分线的点向两边作垂线如图,P是∠M O N的平分线上一点,过点P作PA⊥O M于点A,PB⊥O N于点B,则PB=PA模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口例题1 (1)如图①,在⊥ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D 到直线AB的距离是(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC1.如下图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC,求证:∠BAD+∠BCD=180°模型2:截取构造对称全等如图,P是∠M O N的平分线上的一点,点A是射线O M上任意一点,在O N上截取O B=O A,连接PB,则⊥O PB⊥⊥O PA模型实例例题2 (1)如图①所示,在⊥ABC中,AD是⊥BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由(2)如图②所示,AD是⊥ABC的内角平分线,其它条件不变,试比较PC-PB与AC-AB 的大小,并说明理由巩固提升1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长模型3:角平分线+垂线构造等腰三角形如图,P是∠M O N的平分线上一点,AP丄O P于P点,延长AP交O N于点.B,则⊥A O B是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例例题3 如图,己知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,C£丄BD.垂足为E.求证:BD=2C£.巩固提升1.如图,在⊥ABC中.BE是角平分线.AD丄BE.垂足为D.求证:∠2=∠1+∠C.模型4:角平分线+平行线模型分析有角平分线时.常过角平分线上一点作角的一边的平行线. 构造等腰三角形.为证明结论提供更多的条件.体现了用平分线与等腰三角形之间的密切关系.模型实例例题4 解答下列问题:(1)如图①.⊥ABC中,EF∥BC,点D在EF上,BD、CD分别平分∠ABC、∠ACB.写出线段EF 与BE、CF有什么数量关系?(2)如图②,BD平分∠ABC,CD平分外角∠ACG. DE//BC交AB于点E,交AC于点F,线段EF与BE、CF有什么数量关系?并说明理由.(3)如图③,BD 、CD 为外角∠CBM 、∠BCN 的平分线,DE //BC 交AB 延长线于点E .交AC 延长线于点F ,直接写出线段EF 与BE 、CF 有什么数关系?巩固提升1.如图, 在⊥ABC 中,∠ABC 和∠ACB 的平分线交于点E .过点E 作MN ∥BC 交AB 于M 点. 交AC 于N 点.若BM +CN =9,则线段MN 的长为 .课后练习1.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF △AB ,F 为垂足.下列结论:△△ABD ≌△EBC ;△∠BCE +∠BCD =180°;△AD=AE ;△BA +BC =2BF .其中正确的是( )A .△△△B .△△△C .△△△D .△△△△ 2.如图,中,,,垂足为,若,,则的长为( )A .B .C .D .4ABC ∆135ACB ∠=︒CD AB ⊥D 6AD =20BD =CD72。
中考数学几何模型复习 专题01 角平分线的五种模型(学生版+解析版)

中考数学几何模型复习专题01 角平分线的五种模型模型一、角平分线垂两边【例1】如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【例2】如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【变式训练1】如图所示,在四边形ABCD中,DC//AB,∠DAB =90°,AC BC,AC =BC,∠ABC的平分线交A D,AC于点E、F,则BFEF的值是___________.【变式训练2】如图,BD平分ABC的外角∠ABP,DA=DC,DE∠BP于点E,若AB=5,BC=3,求BE的长.【变式训练3,的平分线相交于点E ,过点E 作交AC 于点F ,则EF 的长为 .模型二、角平分线垂中间【例3】 如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E . 求证:2BD CE =.【变式训练1】如图,已知∠ABC ,∠BAC =45°,在∠ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.模型三、角平分线+平行线构造等腰三角形【例4】 如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【变式训练1】平分于点C ,,求OC 的长?【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.模型四、利用角平分线作对称例.平分.【变式训练】AD是∠ABC的角平分线,过点D作DE∠AB于点E,且DE=3,S∠ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.模型五、内外模型【例5】如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠AC E的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°的平分线CP与内角BP交于点P,若,则.课后训练4321DA1.如图,BD 是ABC 的外角∠ABP 的角平分线,DA =DC ,DE ∠BP 于点E ,若AB =5,BC =3,则BE 的长为( )A .2B .1.5C .1D .02.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .63.如图,在Rt∠ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5 D4.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD的面积是______.5.如图,在∠ABC中,AD为∠ABC的角平分线,DE∠AB,垂足为E,DF∠AC,垂足为F,若AB=5,AC=3,DF=2,则∠ABC的面积为______.6.在∠ABC中,∠ABC=62°,∠ACB=50°,∠ACD是∠ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB =_____∠7.如图,DE∠AB于E,DF∠AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC:(2)已知AC=18,BE=4,求AB的长.8.如图1,在平面直角坐标系中,∠ABC的顶点A(-4,0),B(0,4),AD∠BC交BC于D点,交y轴正半轴于点E(0,t)(1)当t=1时,点C的坐标为;(2)如图2,求∠ADO的度数;(3)如图3,已知点P(0,3),若PQ∠PC,PQ=PC,求Q的坐标(用含t的式子表示).9AB为直径,CD D,求证:.中考数学几何模型复习专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交AD ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴===- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴BF =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,平分,,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AC=.【解析】过点E于G,连接CF,如图所示:分别是的平分线,,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°4321DA【答案】A【解析】∵∠ABC与∠ACE的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分,又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD 是ABC 的外角∠ABP 的角平分线,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,则BE 的长为( )A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF =⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABC ABD ACD S S S =+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5D 【答案】B 【详解】解:作DH ⊥AB 于H ,如图,∵AD 平分∠BAC ,DH ⊥AB ,DC ⊥AC ,∴DH =DC =2,∵Q 为AB 上一动点,∴DQ 的最小值为DH 的长,即DQ 的最小值为2.故选:B .4.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是______.【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25.7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长.【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=, DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ;(2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示).【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ).【详解】(1)如图1,当t =1时,点E (0,1),∵AD ⊥BC , ∴∠EAO +∠BCO =90°,∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBO AO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0).故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒; (3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P(0,3),C(t,0),∴CG=FH=3,PG=OC=t,∵∠QPC=90°,∴∠CPG+∠QPH=90°,∵∠QPH+∠HQP=90°,∴∠CPG=∠HQP,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).9AB为直径,CD平分D.【解答】见解析【解析】连接AD、BD,过点A,过点B M、N,如图所示:CD于点D,,,,又,.。
中考数学角平分线四大模型专题知识解读

N M O A B PPO N M B A角平分线四大模型专题知识解读【专题说明】角平分线在几何中占有重要地位,是解决许多问题的桥梁和纽带,角平分线把一个角分成相等的两个部分,其“轴承对称功能”衍生出“角平分线上的点到角两边的距离相等”以及“等腰三角形三线合一”、“三角形的内心到三边的距离相等”等性质,而角平分线与平行线相结合构造出等腰三角形,也常在解题中给我们带来帮助,本专题介绍四种常考解题方法。
【方法技巧】模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
【模型分析】利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
【模型分析】P O N M B AQP O N M 利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型3 角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP ⊥OP 于P 点,延长AP 于点B 。
结论:△AOB 是等腰三角形。
【模型分析】构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。
这个模型巧妙地把角平分线和三线合一联系了起来。
模型4 角平分线+平行线如图,P 是∠MO 的平分线上一点,过点P 作PQ ∥ON ,交OM 于点Q 。
结论:△POQ 是等腰三角形。
【模型分析】有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
角平分线的模型

角平分线的模型三角形中角平分线的基本模型在初中阶段,角平分线问题涉及角度的计算和证明。
经过总结归纳,有相当部分可以转化为基本模型,掌握这些模型,可以为我们迅速找到解题思路,形成良好的数学思维习惯奠定基础。
下面举例说明。
【模型一】角平分线+垂直一边(点在线垂两边得全等)若PA⊥OM于点A,如图a,可以过P点作PB⊥ON于点B,则PB=PA。
可记为“图中有角平分线,可向两边作垂线”,显然这个基本图形中可以利用角平分线的性质定理,也可以得到一组全等三角形;【模型二】角平分线+斜线若点A是射线OM上任意一点,如图b,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA。
可记为“图中有角平分线,可以将图形对折看,对称以后关系现”。
【模型三】角平分线+垂线(角分垂等腰归)若AP⊥OP于点P,如图c,可延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB 的中点,可记为“角平分线加垂线,三线合一试试看”,实际上这是“两线合一”的一种情形,这个图形中隐含着全等和等腰三角形;【模型四】角平分线+平行线(角分平等腰呈)若过P点作PQ∥ON交OM于点Q,如图d,可以构造△POQ是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现”,这个基本图形使用频率那是相当的高,切记。
【模型五】角平分线+对角互补若∠A+∠C=180°,BD是∠ABC的平分线,则AD=CD.【模型六】夹角模型BP 、CP 分别是∠ABC 、∠ACB 的角平分线,则:∠P=90°+∠A .BP 、CP 分别是∠CBG 、∠BCD 的角平分线,则: ∠D=90°-∠A .BP 、CP 分别是∠ABC 、∠ACD 的角平分线,则:∠P=∠A .模型:角平分线 + 垂直(一)、与角的两边垂直——构全等如果:OP 平分∠AOB ,PM ⊥OB ,可以过P 点向OA 作垂线交于点N 。
那么:△NOP ≌△MOP例题:1、如图△ABC 中, ∠C=90º,AC=BC ,AD 是∠A 平分线。
角平分线的四大模型(Word版)

角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。
练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。
专题 角平分线四大模型在三角形中的应用(知识解读)-中考数学(全国通用)

N M O A B PPO N M B A专题01 角平分线四大模型在三角形中的应用(知识解读)【专题说明】角平分线在几何中占有重要地位,是解决许多问题的桥梁和纽带,角平分线把一个角分成相等的两个部分,其“轴承对称功能”衍生出“角平分线上的点到角两边的距离相等”以及“等腰三角形三线合一”、“三角形的内心到三边的距离相等”等性质,而角平分线与平行线相结合构造出等腰三角形,也常在解题中给我们带来帮助,本专题介绍四种常考解题方法。
【方法技巧】模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
【模型分析】利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
P O N M B AQP O N M 【模型分析】利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型3 角平分线+垂线构造等腰三角形如图,P 是∠MO 的平分线上一点,AP⊥OP 于P 点,延长AP 于点B 。
结论:△AOB 是等腰三角形。
【模型分析】构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。
这个模型巧妙地把角平分线和三线合一联系了起来。
模型4 角平分线+平行线如图,P 是∠MO 的平分线上一点,过点P 作PQ ∥ON ,交OM 于点Q 。
结论:△POQ 是等腰三角形。
【模型分析】有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。
中考数学几何专项——角平分线模型

中考数学几何专项——角平分线模型(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--角平分线模型的构造四大基本模型:已知P是∠MON平分线上一点,(1)若平PA⊥OM于点A,如图(a)所示,可以过点P作PB⊥ON于点B,则PB=PA(2)若点A是射线OM上任意一点,如图(b)所示,可以在ON上截取OB=OA,连接PB,构造△OPB≌△OPA(3)若AP⊥OP于点P,如图(c)所示,可以延长AP交ON于点B,构造△AOB是等腰三角形,P是底边AB的中点(4)若过P点作PQ⊥ON交OM于点Q,如图(d)所示,可以构造△POQ是等腰三角形,“角平分线平行得等腰”例题:1、如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D 到直线AB的距离是 cm。
2、如图所示,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC3、如图所示,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,连接AP、CP,若∠BPC=40°,求∠CAP的度数。
4、如图,∠AOB=45°,点P在∠AOB的平分线上,PC∥OA交OB于C,PD⊥OA于D,若PD=2,求PC的长。
5、已知在四边形ABCD中,AB=9,AD=CD=10,BC=21,BD为∠ABC的角平分线,求BD 的长。
6、如图所示,已知在△ABC中,AC=BC,∠C=90°,AD平分∠CAB,求证:AB=AC+CD变式1:如图所示,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD变式2:如图所示,已知△ABC中,AB=AC,∠A=100°,BD平分∠ABC,求证:BC=BD+AD7、①如图所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由。
专题6 全等模型——角平分线模型

初中数学 ︵ 角平分线模型 ︶培优篇角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需反复掌握.【模型解读与图示】条件:如图1,OC 为AOB 的角平分线、CA OA 于点A 时,过点C 作CA OB .结论:CA CB 、OAC ≌OBC .图1常见模型1(直角三角形型)条件:如图2,在ABC 中,90C ,AD 为CAB 的角平分线,过点D 作DE AB .结论:DC DE 、DAC ≌DAE .(当ABC 是等腰直角三角形时,还有AB AC CD )图2初中数学 ︵ 角平分线模型 ︶培优篇常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥OA 、CE ⊥OB 。
结论:①180BOA ACB ;②AD BE ;③2OA OB AD .图3A .4 例2.如图,已知BF ,垂足分别为①CP 平分ACF ; ② APM CPN APC S S .其中结论正确的是( A .①②③B .①②③④初中数学 ︵ 角平分线模型 ︶培优篇 例3.如图所示,90BC ,E 是BC 的中点,DE 平分ADC . (1)求证:AE 是DAB 的平分线; (2)若2cm,BAD=60CD ,求AD 的长.例4.已知,OA 平分MON ,点P 在射线OA 上,点B 在射线OM 上,点C 在直线ON 上,连接PB ,PC ,且180MON BPC .(1)如图1,当90MON 时,PB 与PC 的数量关系是______.(2)如图2,当MON 是钝角时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;(3)当120MON 时,若6OP ,2OC ,请直接写出OBP 与OCP △的面积的比值.初中数学 ︵ 角平分线模型 ︶培优篇【模型解读与图示】条件:如图1,OC 为AOB 的角平分线,AB OC .结论:△AOC ≌△BOC ,OAB 是等腰三角形、OC 是三线合一等.图1 图2 图3 条件:如图2,BE 为ABC 的角平分线,BE EC ,延长BA ,CE 交于点F . 结论:△BEC ≌△BEF ,BFC 是等腰三角形、BE 是三线合一等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线四大模型模型1 角平分线的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口模型实例(1)如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直线AB的距离是解答:如图,过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE.∵CB=6,BD=4,∴DE=CD=2,即点D到直线AB的距离是2.(2)如图②,∠1=∠2,∠3=∠4,求证:AP平分∠BAC证明:如图,过点P作PD⊥AB于点D,PE⊥BC于点E,PF⊥AC于点F,∵∠1=∠2,∴PD=PE,∵∠3=∠4, ∴PE=PF,∴PD=PF又∵PD⊥AB,PF⊥AC,∴AP平分∠BAC(角平分线的判定)练习1、如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC ,求证:∠BAD+∠BCD=180°证明:作DE⊥BC于E,作DF⊥BA的延长线于F,∴∠F=∠DEC=90°,∵BD平分∠ABC,∴DF=DE,又∵AD=DC,∴△DFA≌DEC,∴∠FAD=∠C∵∠FAD+∠BAD=180°,∴∠BAD+∠BCD=180°2.如图,△ABC的外角∠ACD∠的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=.解答:如图所示,作PN⊥BD于N,作PF⊥BA,交BA延长线于F,作PM⊥AC于M ∵BP、CP分别是∠CBA和∠DCA的角平分线,∴∠ABP=∠CBP,∠DCP=∠ACP,PF=PN=PM,∵∠BAC=∠ACD-∠ABC,∠BPC=∠PCD-∠PBC(外角性质)∴∠BAC=2∠PCD-2∠PBC=2(∠PCD-∠PBC)=2∠BPC=80°∴∠CAF=180°-∠BAC=100°,∵PF=PM∴AP是∠FAC的角平分线,∴∠CAP=∠PAF=50°模型2 截取构造对称全等如图,P是∠MON的平分线上的一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≌△OPA模型分析利用角平分线图形的对称性,在铁的两边构造对称全等三角形,可以得到对应边,对应角相等,利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧模型实例(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由解题:PB+PC>AB+AC证明:在BA的延长线上取点E,使AE=AB,连接PE,∵AD平分∠CAE∴∠CAD=∠EAD,在△AEP与△ACP中,∵AE=AB,∠CAD=∠EAD,AP=AP,∴△AEP≌△ACP (SAS),∴PE=PC∵在△PBE中:PB+PE>BE,BE=AB+AE=AB+AC,∴PB+PC>AB+AC(2)如图②所示,AD是△ABC的内角平分线,其它条件不变,试比较PC-PB与AC-AB的大小,并说明理由解答:AC-AB>PC-PB证明:在△ABC中, 在AC上取一点E,使AE=AB ,∴AC-AE=AB-AC=BE∵AD平分∠BAC ,∴∠EAP=∠BAP ,在△AEP和△ACP中∴△AEP≌△ABP (SAS) ,∴PE=PB ,∵在△CPE中CE>CP-PE ,∴AC-AB>PC-PB练习1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长解:如图在BC边上截取CE=AC,连结DE,在△ACD和△ECD中⎪⎩⎪⎨⎧=∠=∠=CD CD ECD ACD EC AC∴△ACD ≌△ECD(SAS)∴AD =DE , ∠A =∠1 ,∵∠A =2∠B ,∴∠1=2∠B ,∵∠1=∠B +∠EDB , ∴∠B =∠EDB ,∴EBB =ED , ∴EB =DA =8,BC =EC +BE =AC +DA =16+8=242. 在△ABC 中,AB =AC,∠A =108°,BD 平分∠ABC ,求证:BC =AB +CD证明:在BC 上截取BE =BA ,连结DE ,∵BD 平分∠ABC,BE =AB,BD =BD∴△ABD ≌△EBD(SAS),∴∠DEB =∠A =108°,∴∠DEC =180°-108°=72°∵AB =AC ,∴∠C =∠ABC =12(180°-108°)=36°,∴∠EDC =72° , ∴∠DEC =∠EDC ,∴CE =CD ,∴BE +CE =AB +CD ,∴BC =AB +CD3.如图所示,在△ABC 中,∠A =100°,∠ABC =40°,BD 是∠ABC 的平分线,延长BD 至E ,使DE =AD ,求证:BC =AB +CE证明:在CB 上取点F ,使得BF =AB,连结DF ,∵BD 平分∠ABC ,BD =BD∴△ABD ≌△FBD ,∴DF =AD =DE,∠ADB =∠FDB ,∴BD 平分∠ABC∴∠ABD =20°,则∠ADB =180°-20°-100°=60°=∠CDE∠CDF =180°-∠ADB -∠FDB =60°,∴∠CDF =∠CDE ,在△CDE 和△CDF 中 ⎪⎩⎪⎨⎧=∠=∠=CD CD CDE CDF DF DE∴△CDE ≌CDF ,∴CE =CF ,∴BC =BF +FC =AB +CE模型3 角平分线+垂线构造等腰三角形如图,P 是∠MON 的平分线上一点,AP 丄OP 于P 点,延长AP 交ON 于点.B,则△AOB 是等腰三角形.模型分析构造此模型可以利用等腰三角形的"三线合一”,也可以得到两个全等的直角三角形.进而得到对应边.对应角相等.这个模型巧妙地把角平分线和三线合一联系了起来.模型实例如图.己知等腰直角三角形ABC中,∠A=90°, AB=AC, BD平分∠ABC, C£丄BD.垂足为E.求证:BD=2C£.解答:如图,延长CE、BA交于点F,∵CE丄BD于E, ∠BAC=90°,∴∠BAD=∠CED. ∴∠ABD=∠ACF.又∵AB=AC, ∠BAD=∠CAF=90°, ∴△ABD≌△ACF.∴ BD=CF.∵BD平分∠ABC, ∴∠CBE=∠FBE. 又BE=BE,∴△BCE≌△BFE.∴CE=EF. ∴BD=2CE.练习1.如图.在△ABC中.BE是角平分线.AD丄BE.垂足为D.求证:∠2=∠1+∠C.证明:延长AD交BC于F,∵AD⊥BE, ∴∠ADB=∠BDF=90°, ∵∠ABD=∠FBD,∴∠2=∠BFD. ∵∠BFD=∠1+∠C,∴∠2=∠1+∠C.2.如图.在△ABC中. ∠ABC=3∠C,AD是∠BAC的平分线, BE丄AD于点E.求证:1()2BE AC AB=-.(2)证明:延长BE 交AC 于点F.∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD.∵AE=AE, ∴∠BAE=∠FAE,则△AEB ≌△AEF ,∴AB=AF, BE=EF, ∠ 2=∠3.∴AC-AB=AC-AF=FC. ∵∠ABC=3∠C,∴∠2+∠1=∠3+∠1=∠1+∠C+∠1=3∠C.∴2∠1=2∠C即∠1=∠C ∴BF=FO=2BE.∴()1122BE FC AC AB ==-模型4 角平分线+平行线模型分析有角平分线时.常过角平分线上一点作角的一边的平行线. 构造等腰三角形.为证明结论提供更多的条件.体现了用平分线与等腰三角形之间的密切关系.模型实例解答下列问题:(1)如图①.△ABC 中,EF ∥BC,点D 在EF 上,BD 、CD 分别平分∠ABC 、∠ACB.写出线段EF 与BE 、CF 有什么数量关系?(2)如图②,BD 平分∠ABC,CD 平分外角∠ACG. DE//BC 交AB 于点E,交AC 于点F ,线段EF 与BE 、CF 有什么数量关系?并说明理由.(3)如图③,BD 、CD 为外角∠CBM 、∠BCN 的平分线,DE//BC 交AB 延长线于点E.交AC 延长线于点F,直接写出线段EF 与BE 、CF 有什么数关系?解答:(1) ∵EF//BC,∴∠EDB=∠DBC.∴BD平分∠EBC,∴∠EBD=∠DBC=EDB. ∴EB=ED. 同理:DF=FC. ∴EF=ED+DF=BE+CF.(2)图②中有EF=BE=CF,BD平分∠BAC,∴∠ABD=∠DBC.又DE//BC、∴∠EDB=∠DBC. ∴DE=EB.同理可证:CF=DF ∴EF=DE-DF=BE-CF.(3) EF=BE+CF.练习1.如图. 在△ABC中,∠ABC和∠ACB的平分线交于点E.过点E作MN∥BC交AB于M点. 交AC于N点.若BM+CN=9,则线段MN的长为.解答:∵∠ABC、∠ACB的平分线相交于点E,∴MBE=∠EBC,∠ECN=∠ECB.∵MN//BC, ∴∠EBC=∠MEB, ∠NEC=∠ECB. ∴∠MBE-∠MEB, ∠NEO=∠ECN.∴BM=ME, EN=CN. ∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9,∴MN=9.2. 如图. 在△ABC中,AD平分∠BAC.点E、F分別在BD,AD上,EF∥AB.且DE=CD,求证:EF=AC.证明:如图,过点C作CM∥AB交AD的延长线于点M,∵AB∥EF,∴CM∥EF.∴∠3=∠4. ∵DE=CD, ∠5=∠6, ∴△DEF≌△DCM.∴EF=CM. ∵AB//CM,∴∠2=∠4. ∵∠1=∠2,∴∠1=∠4.∴CM=AC.∴EF=AC3.如图.梯形ABCD中,AD∥BC,点E在CD上,且AE平分∠BAD.BE平分∠ABC.求证:AD=AB-BC.证明:延长AD、BE交于点F.∵AD∥BC,∴∠2=∠F. ∵∠1=∠2,∴∠1=∠F.∴AB=AF. ∵AE平分∠BAD∴BE=EF. ∵∠DEF=∠CEB,∴△DEF≌△CEB.∴DF=BC.∴AD=AF-DF=AB-BC.。