异分母分式加减法习题

合集下载

八年级数学异分母的分式加减法

八年级数学异分母的分式加减法
义务教育课程标准实验教科书 SHUXUE 八年级下
湖南教育出版社
小玲的妈妈买了一块蛋糕,分给小玲的弟弟这块蛋糕
的 1 , 分给小玲这块蛋糕的 1 ,应当怎样切这块蛋糕?
在图2中画出来.
3
· 120°
小玲和她的弟弟共分得这块蛋糕的几分之几?
1 1 1 2 13 2 3 5 3 2 32 23 6 6
x 32 x 32

x 3x 3


x

3


x

3 x
x2 32

3


x

3

2xx 3 x
x2 9

3

2x 6 x2 9

12x x2 9
计算: x 1 1
1 x 解 x1 1 x1 1
1

x 1 x 1 x 1 x 1

2 x2 1
2 x2 1
通分后,各个分式的分母变成相同,这时的分母叫
作公分母,例5中两个分式的公分母是 x 1 x 1
计算:
x3 x3 x3 x3
解 x 3x 3 x 3x 3 x 3x 3 x 3x 3
5
共分得这块蛋糕的
6
从上面的例子看到,异分母的分数相加,要先通分,化成同分母的分数 类似地,异分母的分式相加减,要先通分,即把各个分式的分子与分母 都乘以适当的同一个非零多项式,化成同分母的分式,然后再加减.
计算:
11 x 1 x 1


x

x 1
1 x
1


x
x

5.3分式加减法(3)---异分母的分式加减法

5.3分式加减法(3)---异分母的分式加减法

5.3分式加减法(3)---异分母的分式加减法一、 学习目标:1、运用分式加减法的法则进行分式加减运算二.学习过程(一) 复习导入1.计算:解:1123+= + = 2计算:解:(1)226132ab c a - (最简公分母是____ _) =- (通分:分母是最简公分母,写上分子) = (同分母的分式相加减)(2)y x y x -++11 (最简公分母是____ _) = + (通分:分母是最简公分母,写上分子) =(同分母的分式相加减) = (注意化简运算结果为最简分式)异分母分式加减法的法则:异分母的分式相加减,先 ,化为 ,然后再按 的法则进行计算。

(二)讲授新课例1:计算:xy x y x +--22211 解:原式= — (把分母因式分解) =— (通分) =(同分母的分式相加减) = (化简分子,去括号,合并同类项)= (注意化简运算结果为最简分式)例2:计算m m -+-329122 解:原式=()()212- (把分母因式分解) =()()()()()3212--m (通分)=()()()212- (同分母分式相加减) =()() (化简分子,去括号,合并同类项) = (注意化简运算结果为最简分式)=例3:计算 a a --+242。

解:原式=412++a=()()()412+⋅+a (通分) =(同分母分式相加减) =课堂练习1. 计算:(1)b a b a 2211-+-(2)x x x +23-11+x (3)21+x -412-x2计算:(1))(1a b a b b a -+-(2)x x -+-21412 (3)242++-a a。

分式的加减专项练习20题答案

分式的加减专项练习20题答案

1化简: 考点: 分式的加减法.分析: 首先将原分式化为同分母的分式,然后再利用同分母的分式的加减运算法则求解即可求得答案解答:解: 2 2 = K 2+^ -奴 G-2) 2 2= ------------- =x - 2.X - 2 2 - x K - 2 K - 2 K 2 K _ 2点评:此题考查了分式的加减运算法则•解题的关键是要注意通分与化简. 3.计算:a -9b _ a +3b6ab 22K 44 az+一―K-2 2-12 K 22 •化简-一「的结果是 a+b□ _ b a _ b考点:分式的加减法.专题:计算题.分析:根据同分母的分数相加,分母不变,分子相加减.a-b=a+b ,故答案为a+b .点评:本题考查了分式的加减法,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即 可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.考点:分式的加减法.3曰29且b-曲18a 2b 2点评:本题考查了分式的加减法,解题的关键是找出各分母的最小公倍数.分式的加减专项练习 20题答案分析: 先找出最小公倍数,再通分,最后计算即可.专题:计算题. 解答: 解:原式+考点:分式的加减法.专题:计算题.分析:观察发现,只需对第二个分母提取负号,就可变成冋分母.然后进行分子的加减运算.最后注意进行化简.)•分式运算的最后结果应化成最简分式或整式.5•计算: □2-4 a+2l-a+2 考点: 分式的加减法. 分析:首先把分子分解因式,再约分,合并同类项即可. 解答:初商于 Ca+2) (a- 2) 解:原式= ------------------------- 1 n+p , a+2 =a - 2+a+2, =2a . 点评:此题主要考查了分式的加减法,关键是掌握计算方法,做题时先注意观察,找准方法再计算. 考点:分式的加减法. 专题:计算题. 分析:Az?首先把各分式进行约分,然后进行加减运算. 解答:解:原式=f - 9 9 4耳 虹y+y^+y=x - y - =x - y - 2x+y =-x . 点评:本题不必要把两式子先通分,约分后就能加减运算了. 7•计算:1 1 _ 亦+b a"% 2ab 考点:专题:分析:解答:分式的加减法. 计算题. 先通分,再把分解: 2b +衣巴 亦+b 2al> 2ab Zab 2b4-2a - (2&+b) 2ab解答:解:原式=-: :口一口 n _ID n _ IT点评:6.化简:9•按要求化简: 2a+3 4旦 a 2 -2a点评:本题考查的是分式的加减法,异分母分式的加减就转化为同分母分式的加减.考点:分式的加减法.专题:计算题.分析:(1)几个分式相加减,根据分式加减法则进行运算;2)当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算. 解答:解:原式= 且_b a-b 耳一「丄 a-bi+la _ b=1 + 1=2 .点评:归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分 母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.考点:分式的加减法.分析:首先通分,把分母化为(a+1) (a - 1),再根据同分母分数相加减,分母不变,分子相加减进行计算,注意 最后结果要化简. 解答:解:原式= - “冷-(arbl )冷 T )(寸1)点评:此题主要考查了分式的加减,关键是掌握异分母分式加减法法则:把分母不相同的几个分式化成分母相同 的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.考点:分式的加减法. 专题:计算题.10.化简分析: 解答: 此题分子、分母(廿力(a-2) 4自La+2 - 4冷-2) 2 a (a _2) a _2点评: 此题的分解因式、约分起到了关键的作用.11 .化简:考点:分式的加减法.专题:计算题.分析:把异分母分式转化成同分母分式,然后进行化简. 解答:解.原式=_(in -n) Cnrf-n) (n) Cm+nJ (m_n) (nrl-n)点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.考点:分式的加减法.分析:根据异分母分式相加减,先通分,再加减,可得答案.解答:解皐:原^式一丄— 1 +~|八7 2_2y) | ” (3x+2y) ] (3x+2y)(3K-2y)(3碍)-(3i2y) +6x2(3H2y)(3K - 2y)2(3x+2y) (3x _2y)2 (3/分)2(3s+2y) (3x _2y)点评:本题考查了分式的加减,先通分花成同分母分时,再加减.解:原式==1.考点:专题: 分析:解答:点评: 解答本题时不要盲目的通分,先化简后运算更简单.x+2考点: 分式的加减法;解一兀一次方程组. 专题:计算题.点评:此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.分式的加减法.计算题. 通过观察分式可知:将分母分解因式,找最简公分母,把分式通分,再化简即可.考点:分式的加减法.分析:将括号里通分,再进行同分母的运算.点评:本题考查了分式的加减运算.关键是由同分母的加减法法则运算并化简.13.)已知:(K -1) (H-2)分析:解答: 相等,从而求出 A 、B 的值.K 2 _ _ X - 2x 2+4X +414.化简: 15.计算:分析: 解答: a 2+ab+ b 2b 2 ? (a+b) (a _ b) (a _ bi ( a 2+ab+ b?)(a~ b) 2 b (a+b)16.计算: 1 _ 5IT 2 _ m 2m 2 - 2考点:分式的加减法.专题:计算题.分析:根据分式的加减运算法则,先通分,再化简.解答:解:原式= .. +—. 2m (m _ 1)(讨1〕2m (1) (nr+12D 1) (nrH)(; I D 1)【 :m- 2)1) (nrH)m 22m El).点评:本题考查了分式的加减运算•解决本题首先应通分,最后要注意将结果化为最简分式.17.化简考点: 分式的加减法.专题: 计算题.分析: 原式两项通分并利用冋分母分式的减法法则计算,约分即可得到结果解答: 解:原式= _ "K _ 1 X 1)2x-2X (X-1)2 (x - 1?X (X-1)2点评: 此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.考点:分式的加减法.专题:计算题. 首先将各式的分子、分母分解因式,约分、化简后再进行分式的加减运算.a 2+ab+b 2 t>2 ab+b 2a 3 -b 3 b 2-2ah+b 2 A/18化简: 解:原式= (2分)(3 分)分析: 本题需先根据分式的运算顺序及法则,分别对每一项进行整理,再把每一项合并即可求出答案. 点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减;如果分式的分子、分母中含有公因式的,需 要先约分、化简,然后再进行分式的加减运算.考点:分式的加减法.专题:计算题.分析:先通分,把异分母分式加减运算转化为同分母分式加减运算,求解即可. 解答:解:原式=_ 一_ (a+2)(耳-1) ( a+2) (a _ 1)点评:本题主要考查异分母分式加减运算,先通分,把异分母分式化为同分母分式,然后再相加减./ Cx+2) (x 2) - x (x+6)=疋了+2远2_ 2耳 _ /-斂-m 1 ■: 「:点评:本题主要考查了分式的加减,在解题时要根据分式的运算顺序及法则进行计算这是本题的关键.考点:分式的加减法.矍1 x-|x-2'x (r+2) (n2) (x-2) 解:原式= (4分)20.化简:/十2工考点:分式的加减法. 解答:专题:计算题.分析:先找到最简公分母,通分后再约分即可得到答案.2 Cx- 2) 工+2芈. ^ ^ - —- ^ ^ .(K+2) ( K_2)(蛊+刃(x _2)点评:本题考查了分式的加减,会通分以及会因式分解是解题的关键.考点:分式的加减法.专题:计算题.分析:观察各个分母,它们的最简公分母是x (x 解答:解:蓋-讥1解:K- 3X2 -3x X 3),先通分把异分母分式化为同分母分式,然后再加减.K+2点评:本题主要考查异分母分式加减,通分是解题的关键.。

异分母分式的加减法 (2)

异分母分式的加减法 (2)

第五章 分式与分式方程3.分式的加减法(二)导学案茂名市第二中学 程卫英教学目标:1、会找最简公分母,能进行分式的通分;2、理解并掌握异分母分式加减法的法则;3、经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力。

4、培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。

第一环节 测试巩固课前5分钟小测:1.填空:(1)(2) 2计算3.先化简再求值: + ,其中第二环节 学习新知(一)议一议小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。

小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a aa a a a a a a a a a a a a 41341344124443413222==+=⨯+⨯⨯=+ 小亮:a a a a a a a 4134141241443413=+=+⨯⨯=+ ()b a ab b b a a ++++2122()x x x x x x -+-----2122522你对这两种做法有何评论?与同伴交流。

类似于分数的通分要找最小公倍数,分式的通分要先确定分式的最简公分母.例1 找出下面各组分式最简公分母 针对练习:找最简公分母(1)(2) (3)(二)异分母分式加减法的法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算. 用式子表示为:acad bc ac ad ac bc c d a b ±=±=±. 尝试完成下列各题第三环节 运用新知活动内容:吃透例题 , 成功一半例2. 第四环节 小试牛刀活动内容1、将下列各组分式通分:;;41,3,2)1(2xy y x x y ;31,31)2(-+x x ;21,41)3(2--a a .)(3,5)4(2y x x y --223(1)2a b a b ab c-与;的最简公分母是2,312ax x x -的最简公分母是21,23a b b a a --的最简公分母是961,922++--a a a a a =-a a 14)1(2=+b a 11)2(;3131)1(+--x x .2142)2(2---a a a2、计算:五.小结 (1)分式加减运算的方法思路:(2)分子相加减时,如果分子是一个多项式,要将分子看成一个整体,先用括号括起来,再运算,可减少出现符号错误。

异分母分式加减法二

异分母分式加减法二
x y• y = − = − 2 y(x + y) • x x(x + y) • y x − 4 2x − 4
x −y = xy(x + y)
2 2
x y − (1) y(x+y) x(x+y)
2 1 ( 2) 2 + x −4 4−2x
x− y = xy
2× 2 1(x + 2) = − 2(x + 2)(x − 2) 2(x − 2)(x + 2) 1 2− x = =− 2(x + 2)(x − 2) 2(x + 2)
2 3
c c •bc bc = 2 = 22 2 a b a b •bc a b c
2
abc
2 2
24x y
2 2
7 7×3x 21x = 2 = 22 2 8xy 8xy •3x 24x y
2
3
x 1 , 2 2 通分: 通分: x − 1 x − x
解: 第一个分式的分母是
第二个分式的分母是
x − x = x( x −1)
7 y (1) 2 − 2 8xy 6x
2
b a c ( 2) 2 + 2 − 2a 3 4ab b
2
2
21x−4y = 22 24x y
21x 21x 4y = 2 2− 2 2 24x y 3 24x y
6b 4a 3abc = 2 2+ 2 2− 2 2 12a b 12a b 12a b
6b + 4a − 3abc = 2 2 12a b
通分: 通分:
y 2 4x
5 6 xy
2
x 2 9y
2
解 : 最简公分母是

【北师大版】初二八年级数学下册《5.3.3 异分母分式的加减》课件

【北师大版】初二八年级数学下册《5.3.3  异分母分式的加减》课件
(2)小丽从家到学校需要 3 (h).
2v 因为 5 > 3 ,所以小丽在路上花费时间少.
3v 2v 小丽比小刚在路上花费时间少
5 - 3 = 10- 9 = 1 (h).
3v 2v 6v 6v
(来自《教材》)
知2-练
1
已知两个式子: A =
4 x2 -
,B = 4
1+ x+ 2
1, 2- x
其中x≠±2,则A与B的关系是( C )
1+ 1创3
2
1
+ 4
1 3?
+¼ 5

1 n(n+2)
(n≥3且n为
3n2+5n
整数),其结果为___4_(_n_+__1_)(_n_+__2_)_.
知识点 2 分式加减的应用
知2-讲
例2 小刚家和小丽家到学校的路程都是3 km,其中小丽走
的是平路,骑 车速度是2v km/h.小刚需要走1 km的
a c ac ac
ac
(来自《教材》)
知1-讲
要点精析: (1)异分母分式相加减,先利用通分化成同分母的分
式相加减,再按同分母分式相加减的法则进行计 算. (2)异分母分式的加减运算步骤: ①通分:将异分母分式化成同分母分式; ②写成“分母不变,分子相加减”的形式; ③分子化简:分子去括号、合并同类项; ④约分:结果化为最简分式或整式.
=
(a -
a- 2
2)(a +
2)
= 1.
(a + 2)
(来自《教材》)
总结
知1-讲
(1)异分母分式相加减,先用通分的方法化异分母为同分母, 然后按同分母分式加减法的法则计算;当分子、分母是 多项式时,首先要进行因式分解;如果计算结果不是最 简的,一定要进行约分将其化为最简分式或整式.

异分母分式的加减法

异分母分式的加减法

计算
(1)
3x (x 3)2
x 3
x
11
1
(2) x 1 x 1 x2 2x 1
(3)
2 2a
3
3
3 2a
2a 15 4a2 9
用两种方法计算: ( 3x x ) • x2 4 解:法一(按运算顺序x) 2 x 2 x
原式 (3xx 2 xx 2) • x2 4
x2 4 x2 4
第五章 分式与分式方程
3 分式的加减法(二)
问题1:同分母分式是怎样进行加减运算的? 同分母的分式相加减,分母不变,把分子相加 减.
问题2:还记得异分母的分数如何加减吗?
异分母分数相加减,先通分,化为同分母分
数后,再加减.
3 1 ? 5 20
3 1 3 4 1 12 1 12 1 13
5 20 5 4 20 20 20 20 20 你认为异分母的分式应该如何加减?比如
2v
因为 5 f 3 ,所以小丽在路上花费时间少。 3v 2v
小丽比小刚在路上花费时间少
5 3 10 9 1(h)。 3v 2v 6v 6v
计算:
(1) b a
解:原式 2b2 3a2 2b2 3a2 6ab 6ab 6ab
3a 2b
12 (2) a 1 1 a2
解:原式 a 1
(2)错误原因
(3)本题的正确结论为
选择: 1.计算
2m m n 2m n n 2m
的结果是(
B)
A、m n
mn
B、
C、3m n
D、3m n
n 2m n 2m n 2m
n 2m
c 2.若 m n 3 则 n 的值等于( )
n4 m

【初升高数学衔接教材讲义系列】第02章 分式运算(解析版)

【初升高数学衔接教材讲义系列】第02章 分式运算(解析版)

第2章 分式运算【知识衔接】————初中知识回顾————(一)分式的运算规律1、加减法 同分母分式加减法:c b a c b c a ±=± 异分母分式加减法:bc bd ac c d b a ±=±2、乘法:bd ac d c b a =⋅3、除法:bc ad c d b a d c b a =⋅=÷4、乘方:n nn ba b a =)( (二)分式的基本性质1、)0(≠=m bm am b a2、)0(≠÷÷=m mb m a b a ————高中知识链接————比例的性质(1)若d c ba=则bc ad = (2)若d c ba =则d d c b b a ±=±(合比性质) (3)若d c ba =(0≠-db )则d b d bc a c a -+=-+(合分比性质) (4)若d c b a ==…=n m ,且0≠+++n d b 则b a n d b m c a =++++++ (等比性质) 分式求解的基本技巧1、分组通分2、拆项添项后通分3、取倒数或利用倒数关系4、换元化简5、局部代入6、整体代入7、引入参数8、运用比例性质【经典题型】初中经典题型1.若代数式4x x -有意义,则实数x 的取值范围是( ) A . x =0 B . x =4 C . x ≠0 D . x ≠4【答案】D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D .2.化简:,结果正确的是( )A . 1B .C .D .【答案】B 【解析】试题分析:原式==.故选B .3.当x =______时,分式523x x -+的值为零. 【答案】5. 【解析】解:由题意得:x ﹣5=0且2x +3≠0,解得:x =5,故答案为:5.4.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =22. 【答案】21x -,7. 【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.试题解析:原式=()22121x x x x x x ++-⋅+=()2211x x x x x +-⋅+=()()2111x x x x x-+⋅+=21x - 当x =22=(2221-=8-1=7.高中经典题型例1:化简232||211x x x x x +-+-- 解:原式=22|)|1()1()1(x x x -+- 当0≥x 且1≠x 时,原式=x +1当0<x 且1-≠x 时,原式=xx +-1)1(2 例2:化简:++++3223bab b a a a 442222223223311b a b a a b b a b ab b a a b -+-+--+-+-例3:计算2)(32222233332222-++÷---++nm m n n m m n n m m n n m m n n m m n 解:设a m n =,b nm =,则1=ab ∴原式=2)(32223322-++÷---++b a b a b a b a b a =ba ab b a b a ab b a ab b a +-+----++2)(32223322=2222232)()()(nm n m b a b a b a b a b a b a -+-=-+=+-⋅-+ 例4:计算abbc ac c b a ac ab bc b a c bc ac ab a c b +---++----+---222 解:既不便于分式通分,又不适合分组通分,试图考察其中一项,从中发现规律ca b a c a b a b a c a c a b a bc bc ac ab a c b ---=-----=--=+---11))(()()())((2 因此不难看出,拆项后通分更容易 ∴原式=))(())(())((b c a c b a a b c b a c c a b a c b ---+------- =))(()()())(()()())(()()(b c a c a c b c a b c b c b a b c a b a b a c a -----+----------- =ac b c a c a b c b c a b a -=---+-+-----2111111 例5:若1=abc ,求111++++++++c ac c b bc b a ab a 解:∵1=abc ,∴bc a 1=,将式中的a 全换成bc1 ∴原式=11111++++++++c bcc c b bc b bc bc b bc =11111=++++++++bc b bc bc b b bc b 例6:已知x z y x y z y x z z y x ++-=+-=-+且0≠xyz ,求分式xyzx z z y y x ))()((+++的值 解:分析:已知条件以连比的形式出现,可引进一个参数来表示这个连比,从而将分式化成整式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习好资料 欢迎下载
(1)3131xx
解:原式=)3)(3(3)3)(3(3xxxxxx (通分,依据是 。)

=)3)(3()()(xx (同分母分式相加减,分母 ,分子 。)
=92x (将刚才的分子 并 ,化为最简分式。)
(2)21422aaa
解:原式=)2)(2(2)2)(2(2aaaaaa(将原分母分解因式并通分,依据是 。)
=)2)(2()()(aa (同分母分式相加减,分母 ,分子 。)

=)2)(2(aa (将刚才的分子去括号并合并同类项,。)
= (约分,将结果化为 )
计算:
1、bcaabc 2、2121xx 3、31922aaa

4、baab23 5、1111xx 6、12112aa

7、bababa222 8、231x+x43 9、111aa
学习好资料 欢迎下载
10、aa1 11、qpqp321321 12、24abab

13、223121cddc 14、111xx 15、)(2baabbaa
16、yxyx12 17、2)2(223nmnmnm 18、aa1
19、212a 20、224aa 21、112xxx

相关文档
最新文档