高一数学下学期期中试题A
高一数学下学期(人教A版A卷)-(考试版)(范围:必修第二册第6、7、8章)

2022-2023学年高一下学期期中考前必刷卷数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第二册第6、7、8章。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得2分,有选错的得0分。
1.在ABC 中,点D 是线段BC (不包括端点)上的动点,若=+AB xAC y AD ,则()A .1x >B .1y >C .1x y +>D .1xy >2.欧拉公式i s co in s i x e x x +=(i )是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的()A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量()()1,,,2a k b k →→==,若a →与b →方向相同,则k 等于()A .1B .C .D4.ABC 中,若1,2,30a c B ︒===,则ABC 的面积为()A .12B .2C .1D 5.设复数z 满足|2|1z i -=,在复平面内z 对应的点到原点距离的最大值是()A .1BC D .36.已知在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3A =,则222b c a +的取值范围是()A .5,34⎛⎤⎥⎝⎦B .(]0,3C .5,24⎛⎤ ⎥⎝⎦D .5,23⎛⎤ ⎥⎝⎦7.已知在ABC 中,2B A =,ACB ∠的平分线CD 把三角形分成面积比为4:3的两部分,则cos A =()A .3B .3C .13D .238.设O 为ABC 所在平面内一点,满足2730OA OB OC --=,则ABC 的面积与BOC 的面积的比值为()A .2.5B .3C .3.5D .49.已知复数122z i =-,则下列结论正确的有()A .1z z ⋅=B .2z z=C .31z =-D .2020122z i =-+10.下列命题中正确的是:()A .两个非零向量a ,b ,若a b a b -=+ ,则a 与b 共线且反向B .已知0c ≠ ,且a c b c ⋅=⋅ ,则a b=C .若()3,4OA =- ,()6,3OB =- ,()5,3OC m m =---,ABC ∠为锐角,则实数m 的取值范围是34m >-D .若非零a ,b 满足a b a b ==- ,则a 与a b +的夹角是30︒11.如图所示设,Ox Oy 是平面内相交成2πθθ⎛⎫≠ ⎪⎝⎭角的两条数轴,12,e e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y = .在23πθ=的反射坐标系中,()()12,21a b ==- ,,.则下列结论中,正确的是()A .()1,3a b -=-B .a =C .a b⊥D .a 在b 上的投影向量为714- 12.在南方不少地区,经常看到一种用木片、竹篾或苇蒿等材料制作的斗笠,用来遮阳或避雨,有一种外形为圆锥形的斗笠,称为“灯罩斗笠”,不同型号的斗笠大小经常用帽坡长(母线长)和帽底宽(底面圆直径长)两个指标进行衡量,现有一个“灯罩斗笠”,帽坡长20厘米,帽底宽关于此斗笠,下列说法正确的是()A .斗笠轴截面(过顶点和底面中心的截面图形)的顶角为120︒B .过斗笠顶点和斗笠侧面上任意两母线的截面三角形的最大面积为平方厘米C .若此斗笠顶点和底面圆上所有点都在同一个球上,则该球的表面积为1600π平方厘米二、填空题:本题共4小题,共2013.若点A (-2,0),B (3,4),C (2,a )共线,则a =________.14.在四边形ABCD 中,(1,2)AC = ,(4,2)BD =-,则该四边形的面积为________15.如图,在四面体A BCD -中,AC BD a ==,AC 与BD 所成的角为60°,M 、N 分别为AB 、CD 的中点,则线段MN 的长为______.16.如图,在ABC 中,已知2AB =,6AC =,60BAC ∠=︒,2BC BM =,3AC AN =,线段AM ,BN 相交于点P ,则MPN ∠的余弦值为___________.三、解答题:本题共6小题,共70分。
2022-2023学年北京丰台高一(下)期中数学(A卷)试题及答案

2023北京丰台高一(下)期中数 学(A 卷)考试时间:120分钟第I 卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知向量(12)(3)x =−=,,,a b ,且⊥a b ,则x = (A )6− (B )32−(C )32(D )6 2.已知02απ−<<,则点(sin cos )P αα,位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.下列函数中,最小正周期是π的奇函数为 (A )sin 2y x = (B )cos 2y x =(C )tan 2y x = (D )sin y x =|| 4.已知3sin 5α=,则()cos 2απ−= (A )1825−(B )725−(C )725(D )24255.已知函数()sin()f x x ωϕ=+(0||2ωϕπ><,)的部分图象如图所示,则(A )62,ωϕπ==(B )62,ωϕπ==−(C )61,ωϕπ== (D )31,ωϕπ==6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos a B b A =,则 △ABC 的形状为(A )直角三角形 (B )等腰或直角三角形 (C )等腰三角形 (D )等边三角形7.在平面直角坐标系中,动点A 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周. 若点A 初始位置的坐标为43()55−,,则运动到3分钟时,动点A 所处位置的坐标为 (A )34()55−,(B )43()55,(C )34()55−−,(D )34()55−,8.在矩形ABCD 中,2AB =,BC =,P 为AB 边的中点,则CP BD ⎯⎯→⎯⎯→⋅=(A )1− (B ) (C )1 (D9.将函数cos(4)y x ϕ=+的图象向左平移m 个单位所得函数图象关于y 轴对称,向右 平移m 个单位所得函数图象关于原点对称,其中02ϕπ≤≤,0m >,则ϕ= (A )6π (B )3π (C )8π (D )4π 10.在△ABC 中,3AC =,2BC AB =,则CA CB ⎯⎯→⎯⎯→⋅的取值范围是(A )9[6]2, (B )(69),(C )[918], (D )(618), 第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分. 11.在△ABC 中,若8a =,4A π=,6B π=,则b = . 12.已知向量,a b 是单位向量,且夹角为60,则=|a +b | .13.在平面直角坐标系xOy 中,角α以x 轴非负半轴为始边,其终边经过点()y ,且sin 3α=,则y = .14.若点(cos sin )A αα,关于y 轴的对称点为(cos()sin())33B ααππ++,,则α的一个取值为 . 15.已知函数()cos()4f x x ωπ=+(0)ω>在区间[0π],上有且仅有3个对称中心,给出下列四个结论:①()f x 的最小正周期可能是π;②()f x 在区间(0π),上有且仅有3条对称轴; ③ω的取值范围是913[)44,; ④()f x 在区间[016π],上单调递减. 其中所有正确结论的序号是________.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)已知向量(32)(12)==−,,,a b . (Ⅰ)求2−a b ;(Ⅱ)设a,b 的夹角为α,求cos α的值; (Ⅲ)若()()+2k −a b a b ‖,求实数k 的值.17. (本小题13分)在平面直角坐标系xOy 中,以x 轴非负半轴为始边的两个锐角α,β的终边分别与单位圆相交于P ,Q 两点,P ,Q 的横坐标分别为10,35.(Ⅰ)求sin α,sin β的值; (Ⅱ)求αβ+的值.18. (本小题14分)已知函数1()sin cos cos 22f x x x x =+. (Ⅰ)求()8f π的值;(Ⅱ)若3()[]588f ααπ3π=∈,,,求cos 2α的值.19. (本小题15分)在△ABC 中,222a b c ab +−=. (Ⅰ)求C ∠的大小;(Ⅱ)若2a =,再从条件①、条件②中任选一个作为已知,求b 的值.条件①:△ABC条件②:cos A =注:如果选择条件①和条件②分别解答,按第一个解答计分.20. (本小题15分)已知函数2()cos 2sin 1f x x x x =+−. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 的单调递减区间;(Ⅲ)若()f x 在区间[0m ],上的最大值为2,求m 的最小值.21. (本小题15分)已知函数()sin()(0||)2f x x ωϕωϕπ=+><,.用五点法画函数()f x 在区间13[]1212ππ,上的图象时,取点列表如下:(Ⅰ)直接写出的解析式;(Ⅱ)在锐角△ABC 中,若()1f A =,且向量(1sin )B =,m 与(sin )C t =,n 共线,求t 的取值范围.(考生务必将答案写在答题卡上,在试卷上作答无效)参考答案第I 卷(选择题 共40分)第II 卷(非选择题 共110分)二.填空题(每小题5分,共25分)11.14.3π(答案不唯一,符合3,k k αππ+∈=Z 即可) 15. ③④三.解答题(共85分) 16.(本小题13分)解:(Ⅰ)因为向量(32)(12)==−,,,a b ,所以2−a b ()()()23,21,27,2=−−=. ………………3分(Ⅱ)由题意得3(1)22341⋅=⨯−+⨯=−+=a b ,|||==a b ,故cos||||65α⋅===a b a b . ………………8分(Ⅲ)因为向量(32)(12)==−,,,a b ,所以()()()3,21,231,22k k k k +=+−=−+a b ,()27,2−=a b . 因为()()+2k −a b a b ‖, 所以()()3122270k k −⨯−+⨯=.解得:2k =−. ………………13分17.(本小题13分)解:(Ⅰ)由已知得cos 10α=,3cos 5β=.因为α,β都是锐角,所以sin 10α==,4sin 5β==. ………………6分(Ⅱ)因为α,β都是锐角, 所以0αβ<+<π.因为cos()cos cos sin sin αβαβαβ+=−34105105=−2=所以34αβπ+=. ………………13分18.(本小题14分)解:(Ⅰ)因为1()sin cos cos 22f x x x x =+11sin 2cos 222x x =+2cos 2)222x x =+)24x π=+,所以()sin(2)8284f πππ=⨯+2=. ………………6分(Ⅱ)由(Ⅰ)可知()sin(2)24f x x π=+,因为3()5f α=,所以3sin(2)245απ+=.整理得:sin(2)45απ+=.因为3[,]88αππ∈,所以2[,]42αππ+∈π.所以cos(2)4απ+=5=−.所以cos 2cos((2))44ααππ=+−cos(2)cos sin(2)sin 4444ααππππ=+++610=. ………………14分19.(本小题15分)解:(Ⅰ)因为222a b c ab +−=,所以2221cos 222b ac ab C ab ab +−=== ,因为C 为三角形内角,所以3C π=. ………………6分 (Ⅱ)选条件①:因为△ABC3C π=,2a =. 所以1sin 2ab C=21sin 32b ⨯⨯π=,解得:3b =. ………………15分 选条件②:因为cos A =A 为三角形内角,所以sin A ==. 在△ABC 中,()B A C =π−+, 所以sin sin(())B A C =π−+sin()A C =+sin()3A π=+sin coscos sin33A A ππ=+=由正弦定理sin sin a bBA=,7=,所以3b =. ………………15分20.(本小题15分)解:(Ⅰ)因为2()cos 2sin 1f x x x x =+−2cos 2x x =−12cos 2)22x x =−2sin(2)6x π=−,所以()f x 的最小正周期为2ππ2T ==. ………………4分(Ⅱ)由(Ⅰ)知()2sin(2)6f x x π=−.因为函数sin y x =的单调递减区间为π3π[2π,2π]22k k ++(k ∈Z ).所以222262k x k ππ3π+π−+π≤≤,k ∈Z ,得36k x k π5π+π+π≤≤,k ∈Z .所以()f x 的单调递减区间为[,]()36k k k π5π+π+π∈Z .……………9分 (Ⅲ)因为[0,]x m ∈, 所以0m >.所以πππ2[,2]666x m −∈−−. 又因为[0,]x m ∈,()f x 的最大值为2, 所以ππ262m −≥,解得π3m ≥.所以m 的最小值为π3. ………………15分21.(15分)解:(Ⅰ)()f x 的解析式为()sin(2)6f x x π=−.………………4分(Ⅱ)因为()1f A =,所以sin(2)16A π−=.因为△ABC 是锐角三角形, 所以π(0,)2A ∈,所以5π2(,)666A ππ−∈−, 解得:π3A =.因为向量(1,sin )B =m 与(sin ,)C t =n 共线, 所以sin sin t B C =πsin sin()3B B =+112cos 244B B =−+1sin(2)64B π=−+.因为△ABC 是锐角三角形,所以π(0,)2B ∈,2ππ(0,)32C B =−∈,解得:ππ(,)62B ∈,所以5π2(,)666B ππ−∈, 所以135sin(2)(,]6444t B π=−+∈.所以t 的取值范围是35(,]44. ………………15分。
人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
青海省海东市第一中学2023-2024学年高一下学期期中考试数学试题(含答案)

海东市第一中学2023-2024学年高一下学期期中考试数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:必修第二册第六章~第八章8.4.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知中,内角所对的边分别,若,,,则( )A.B.C.D.2. 用一个平面截一个几何体,得到的截面是三角形,这个几何体不可能是( )A. 长方体B. 圆锥C. 棱锥D. 圆台3. 复平面内表示复数的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知是两个不共线的向量,,若与是共线向量,则实数的值为( )A. B. 6C.D. 5. 如图,正方形中,、分别是、的中点,若,则( )ABC V ,,A B C ,,a b c 1a =2b =1sin 6A =sin B =231356121iiz -=21,e e 1212e 3e ,2e e a b k =+=-+ a bk 6-3232-ABCD M N BC CD AC AM BN λμ=+λμ+=A. 2B.C.D.6. 某圆锥的侧面展开图扇形的弧长为,扇形的半径为5,则圆锥的体积为( )A. B. 75C. D. 7. 若水平放置四边形AOBC 按“斜二测画法”得到如图所示的直观图,四边形为等腰梯形,,则原四边形AOBC 的面积为( )A. B. C. D. 8. 如图,AB 是底部不可到达一座建筑物,A 为建筑物的最高点,某同学选择地面CD 作为水平基线,使得C ,D ,B 在同一直线上,在C ,D 两点用测角仪器测得A 点的仰角分别是45°和75°,,则建筑物AB 的高度为( )A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 分别在两个相交平面内的两条直线间的位置关系是( )A. 平行B. 相交C. 异面D. 以上皆不可能10. 已知为虚数单位,复数,则()的的8365858π25π16πO A C B '''',4,8A C O B A C O B ''''''''==∥10CD=5+i 312312i,2i,i z z z =+=-=A. 与互为共轭复数B.C. 为纯虚数D.11. 在中,内角A,B,C所对的边分别为a,b,c,下列说法正确的是()A. 若,则B. 若,则只有一解C. 若,则直角三角形D.三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数,则______.13. 有一个正六棱柱的机械零件,底面边长为,高为,则这个正六棱柱的机械零件的表面积为_________.14. 如图,一艘船以每小时20km的速度向东航行,船在处观测灯塔在北偏东方向,行驶2h后,船到达处,观测个灯塔在北偏东方向,此时船与灯塔的距离为_________km.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 已知是虚数单位,复数,.(1)当复数为实数时,求的值;(2)当复数为纯虚数时,求的值;16已知平面向量满足,其中.(1)若,求实数m的值;(2)若,求向量与的夹角的大小.17. 在中,内角A,B,C所对的边分别为a,b,c,且(1)求角C;(2)若的面积为a、b的值.为.1z2z12=z z123z z z++()1323iz z z+⋅=+ ABCVA B>sin sinA B>602 1.74A c a=︒==,,ABCVtanaAb=ABCVcos cos cos0A B C++>122i,1iz z=-=+12z z=4cm1cm2cmA C45︒B C15︒Ci()()22562iz m m m m=-++-m∈Rz mz ma b,(1,2),(4,1)a m b=--=-m∈Ra b∥a b⊥2a b-bABCV222ab c a b=--ABCV c=18. 如图,圆锥中内接一个圆柱,是的中点,,圆柱的体积为.(1)求圆锥母线长;(2)求图中圆锥的侧面积与圆柱的侧面积之比.19. 在平面四边形中(在的两侧),.(1)若,求;(2)若,求四边形的面积的最大值.的PO 1O OP 24OB OA ==1O O 16πPO 1O O ABCD ,B D AC 1,120AD CD ADC ∠===90,DAB BC ∠==ABC ∠2AB BC =ABCD海东市第一中学2023-2024学年高一下学期期中考试数学答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABC【10题答案】【答案】BD【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.【15题答案】【答案】(1)或 (2)【16题答案】【答案】(1)9 (2)【17题答案】【答案】(1);(2),或,.【18题答案】【答案】(1)(2【19题答案】【答案】(1) (2)3i +24+24+0m =2m =3m =3π423C π=2a =4b =4a =2b =45ABC ∠= 1。
菏泽市2022-2023学年高一下学期期中数学试题含答案(A)

保密★启用前菏泽市2022—2023学年度第二学期期中考试高一数学试题(A )2023.04注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上,选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数1z 对应的点与232iz i+=对应的点关于虚轴对称,则1z =( ) A.23i -- B.23i -+ C.23i - D.23i +2.在平行四边形ABCD 中,4AB =,3AD =,2cos 3BAD ∠=,3CM MD =,则AM MB ⋅=( )A.-2B.2C.-4D.4 3.在ABC ∆中,6a =,8b =,40A ∠=︒,则B ∠的解的个数是( )A.0个B.2个C.1个D.无法确定4.已知正四棱台的上、下底面分别是边长为2和4 )A.10+B.34C.20+D.685.一艘船从河岸边出发向河对岸航行.已知船的速度()18v m =,,水流速度()260v =,,那么当航程最短时船实际航行的速度大小为( )A.5B.10C.8D. 6.已知正三棱锥A BCD -中,2AE EB =,AD CE ⊥,2AB =,则正三棱锥A BCD -内切球的半径为( )7.已知ABC ∆是直径为α满足3cos 5α=,则ABC ∆周长的最大值为( )A.20B. C. D.20+8.已知复数12z ,z 1=,3z 2i =,且1z 2=,在复平面内对应向量为1OZ ,2OZ ,3OZ ,(O 为坐标原点),则1213Z Z Z Z ⋅的最小值为( )A.4+B.4-C.4D.4-二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分.9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,则( ) A.若A B >,则sin sin A B >B.若2220a b c +->,则ABC ∆一定是锐角三角形C.点()13A ,,()41B -,,与向量AB 共线的单位向量为3455⎛⎫- ⎪⎝⎭, D.若平面向量a ,b 满足22b a ==,则2a b -的最大值是5 10.设α是给定的平面,A 、B 是不在α内的任意两点,则( ) A.在α内存在直线与直线AB 相交 B.平面α与直线AB 至多有一个公共点 C.在α内存在直线与直线AB 垂直D.存在过直线AB 的平面与α垂直11.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列判断正确的是( ) A.若tan tan tan 0A B C ++<,则ABC ∆为钝角三角形 B.若sin 2sin 2A B =,则ABC ∆为等腰三角形 C.若ABC ∆的三条高分别为114,110,15,则ABC ∆为钝角三角形 D.若2sin sin a bc B A+≤,则ABC ∆为直角三角形 12.如图,在矩形ABCD 中,2AB =,4BC =,E ,F 分别为BC ,AD 中点,将ABE ∆沿直线AE 翻折成1AB E ∆,1B 与B 、F 不重合,连结1B D ,H 为1B D 中点,连结CH ,FH ,则在翻折过程中,下列说法中正确的是( )A.CH 的长是定值;B.在翻折过程中,三棱锥1B AEB -的外接球的表面积为4π;C.当130AD B ∠=︒时,三棱锥H CDF -;D.点H 到面1AB E三、填空题:本大题共4小题,每小题5分,共20分.13.如图,A B C '''∆是斜二测画法画出的水平放置的ABC ∆的直观图,D '是B C ''的中点,且A D y ''轴,B C x ''轴,1A D ''=,2B C ''=,则ABC ∆的周长___________.14.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,60A =︒,且ABC ∆b c +=则a =________________. 15.已知()31a =,,设与b 方向相同的单位向量为e ,若a 在b 3e ,则a 与b 的夹角θ=__________.16.已知向量a ,b 的夹角为3π,2b =,若对任意x ∈R ,恒有12b xa b a +≥-,则函数()()12f t tb a tb a t =-+-∈R 的最小值为________________.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知复数13iz 1i+=-(i 是虚数单位).(1)求复数z 的模;(2)若复数()2i z a -在复平面上对应的点在第四象限,求实数a 的取值范围.18.如图,Rt AOB ∆,1OA =,2OB =,点C 是OB 的中点,AOB ∆绕BO 所在的边逆时针旋转一周.设OA 逆时针旋转至OD 时,旋转角为θ,[)0θπ∈,.(1)求ABC ∆旋转一周所得旋转体的体积V 和表面积S ; (2)当23πθ=时,求点C 到平面ABD 的距离. 19.复数1z 1i =+,2z 12cos i θ=+,i 为虚数单位,()0θπ∈,.(1)若12z z ⋅是实数,求cos 2θ的值;(2)若复数1z ,2z 对应的向量分别是a ,b ,向量a ,b 的夹角为锐角,求θ的范围.20.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 且sin sin cos sin cos sin sin a A a B C c B A c C b A ++=+. (1)求C ; (2)若2A π=,3AC =,角C 的平分线交AB 于点D ,点E 满足DE CD =,求sin AEB ∠.21.如图,正方形ABCD 的边长为6,E 是AB 的中点,F 是BC 边上靠近点B 的三等分点,AF 与DE 交于点M .(1)设AM AF λ=,求λ的值;(2)若点P 自A 点逆时针沿正方形的边运动到C 点,在这个过程中,是否存在这样的点P ,使得EF MP ⊥?若存在,求出MP 的长度,若不存在,请说明理由.22.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=. (1)证明:2B C =; (2)求a bc+的取值范围.高一数学试题(A )参考答案一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1—4AABC5—8BCDB二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得2分,有选错的得0分. 9.AD10.BCD11.ACD12.ACD三、填空题:本大题共4小题,每小题5分,共20分.13.214.315.6π四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)z 12i =-+,z =;(2)因为()()()()22212i i 12i 1222i a a a a -+=+-=--+-⎡⎤⎣⎦()24322i a a a =-+-+-,所以()2430,220,a a a ⎧-+->⎪⎨-<⎪⎩解得12a <<18.解:(1)设底面半径为1r =,圆锥BO 底面面积为2S r ππ==,底面周长母线2l π=,母线AB ==圆锥BO 的体积11122333V S BO ππ=⋅=⨯⨯=,侧面积1222l S AB π=⨯==.圆锥CO 的体积2111333V S CO ππ=⋅=⨯⨯=,AC ==侧面积2222l S AC π=⨯==. ABC ∆旋转一周所得旋转体的体积123V V V π=-=ABC ∆旋转一周所得旋转体表面积12S S S π=+=.(2)连接AD ,23πθ=,AD ∴=4AOD S ∆∴=,136B AOD AOD V S OB -∆∴=⋅=,ABD S ∆∴=,设点O 到平面ABD 的距离为h ,13O ABD ABD B AOD V S h V -∆-∴=⋅=,17h ∴=,因为C 是OB 的中点.即点C 到平面ABD 的距离为217h =. 19.解:(1)因为()()1212cos 2cos 1i z z θθ⋅=-++, 因为12z z ⋅为实数,所以2cos 10θ+=,1cos 2θ=-, 21cos 22cos 12θθ∴=-=-;(2)复数1z 1i =+,()2z 12cos i θ=+复数1z 、2z 对应的向量分别是a ,b ,()11a =,,()12cos b θ=,, 12cos 0a b θ⋅=+>,1cos 2θ∴>-, 又()0θπ∈,,203πθ⎛⎫∴∈ ⎪⎝⎭,,当a 、b 同向时,设a b λ=,0λ>得3πθ=,综上,向量a 、b 的夹角为锐角时,θ的范围是20333πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,. 20.解:(1)依题意,由正弦定理sin sin sin a b cA B C==得22cos cos a ab C bc A c ab ++=+, 由余弦定理2222cos ab C a b c =+-,2222cos bc A b c a =+-,则222a b c ab +=+,则2221cos 22a b c C ab +-==,因为0C π<<,所以3C π=;(2)如图所示,因为3ACB π∠=,3AC =,所以AB =又因为CD 为ACB ∠的平分线,所以AD =CD DB ==因为DE CD =,所以在BDE ∆中,DB DE == 又3BDE π∠=,所以BDE ∆为等边三角形,所以BE =在ABE ∆中,由余弦定理可得22222cos 213AE AD DE AD DE π=+-⨯⨯=,即AE =在ADE ∆中,由正弦定理可得sin sin AB AEAEB ABE=∠∠,sin 3π=,得sin 14AEB ∠=.21.解:(1)如图所示,建立以点A 为原点的平面直角坐标系,因为AM AF λ=,则()62AM λλ=,,则()62M λλ,, 又D ,M ,E 三点共线,则设DM tDE =,01t <<,即()()62636t λλ-=-,,,则63266t t λλ=⎧⎨-=-⎩,,解得37λ=(2)由题意得()32EF =,,假设存在点P ,使得EF MP ⊥,①当点P 在AB 上时,设()0P x ,,06x ≤≤,18677MP x ⎛⎫∴=-- ⎪⎝⎭,, 则54123077x --=,则227x =,故2207P ⎛⎫ ⎪⎝⎭,,MP == ②当点P 在BC 上时,设()6P y ,,06y <≤,24677MP y ⎛⎫∴=- ⎪⎝⎭,,则72122077y +-=,307y ∴=-(舍去); 综上,存在符合题意的点2207P ⎛⎫⎪⎝⎭,,MP =22. 解:(1)22c ac b +=,22c b ac ∴-=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===, 即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,()2sin cos sin sin sin cos sin cos sin C B B C C B C C B C ∴⋅=+-=+-,整理得,sin cos sin cos sin 0B C C B C --=,即:()sin sin B C C -=, 又()0B C π∈,,,B C ∴-=,即:2B C =.(2)2B C =,3A C π∴=-,又sin 22sin cos C C C =⋅,()2sin3sin 2sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C =+=⋅+⋅=⋅+⋅,∴由正弦定理得:()sin 3sin 2sin sin sin 3sin 2sin sin sin C C a b A B C Cc C C Cπ-++++===22sin cos 22sin cos 2sin cos cos 22cos 2cos sin C C C C C CC C C C ⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又0030020300A C B C C C C ππππππππ<<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩, 1cos 12C ∴<<,令cos t C =,则2421a b t t c +=+-,112t <<,2421y t t =+-对称轴为14t =-,2421y t t ∴=+-在112⎛⎫⎪⎝⎭,上单调递增, 当时12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,15a bc+∴<<,即: a bc+的范围为()15,。
2023-2024学年福建省泉州市泉州科技中学高一下学期期中考试数学试题

2023-2024学年福建省泉州市泉州科技中学高一下学期期中考试数学试题1.已知向量,,则()A.4B.5C.6D.72.在中,已知,设,则()A.B.C.D.3.已知a,b均为实数,复数:,其中i为虚数单位,若,则a的取值范围为()A.B.C.D.4.如图为水平放置的的直观图,则原三角形的面积为()A.3B.C.6D.125.已知向量满足,且,则在上的投影向量为()A.B.C.D.6.在中,角的对边分别为,若的平分线的长为,则边上的高线的长等于()A.B.C.2D.7.在三棱柱中,点在棱上,且所在的平面将三棱柱分割成体积相等的两部分,点在棱上,且,点在直线上,若平面,则()A.2B.3C.4D.68.在锐角中,角A,B,C的对边分别为a,b,c,且满足.若恒成立,则实数的取值范围为()A.B.C.D.9.已知i为虚数单位,以下四个说法中正确的是()A.,则B.C.若,则复数z对应的点位于第四象限D.已知复数z满足,则z在复平面内对应的点的轨迹为圆10.在中,角,,所对的边分别为,,,则下列说法中正确的是()A.若,则B.若,且,则的最大值为C.若,,,则符合条件的有两个D.若,则是锐角三角形11.如图,在棱长为2的正方体中,M,N,P分别是,,的中点,Q是线段上的动点,则()A.存在点Q,使B,N,P,Q四点共面B.存在点Q,使平面MBNC.过Q,M,N三点的平面截正方体所得截面面积的取值范围为D.经过C,M,B,N四点的球的表面积为12.在复平面内,复数对应的点的坐标为,则___________.13.在正六边形中,已知,则______.14.已知正六棱锥的高是底面边长的倍,侧棱长为,正六棱柱内接于正六棱锥,即正六棱柱的所有顶点均在正六棱锥的侧棱或底面上,则该正六棱柱的外接球表面积的最小值为______.15.某广场内设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的,如图所示,若被截正方体的棱长是60cm.(1)求石凳的体积;(2)为了美观工人准备将石凳的表面进行粉刷,已知每平方米造价50元,请问粉刷一个石凳需要多少钱?16.已知,.(1)若,求;(2)若与的夹角为,求;(3)若与垂直,求与的夹角.17.在中,内角的对边分别是,且,.(1)求角B;(2)若,求边上的角平分线长;(3)若为锐角三角形,求边上的中线的取值范围.18.如图所示,在四棱锥中,平面,,E是PD的中点.(1)求证:;(2)求证:平面;(3)若M是线段上一动点,则线段上是否存在点N,使平面?说明理由.19.在中,角,,的对边分别为,,,点,,分别位于,,所在直线上,满足,,(,,).(1)如图1,若三角形是边长为3的正三角形,且,求;(2)如图2,若,,交于一点,①求证:②若,,,,求.。
高一数学下学期期中试题(A卷)(含答案)
春季期中联考 高一数学试题(卷面满分:150分 考试时间:120分钟)一、选择题(每小题5分,共60分)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 ( )A .64B .31C .30D .152.cos 42°cos 18°-cos 48°sin 18°的结果等于 ( )A .12B .33C .22D .323.已知534cos =⎪⎭⎫⎝⎛-x π,则x 2sin = ( )A .1825B .725C .-725D .-16254.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a cos A =b sin B ,则sin A cos A +cos 2B = ( )A .-12 B.12C .-1D .15.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10) B.19(1-3-10)C .3(1-3-10) D .3(1+3-10)6.各项均为正数的等比数列{a n }中,321,,2a a a 成等差数列,那么4534a a a a ++= ( ) A.D7.在△ABC 中,a =23,b =22,∠B =45°,则∠A 为 ( )A .30°或150°B .60°C .60°或120°D .30°8.已知π<α<3π2 且sin(3π2 +α)=45 ,则tan α2等于 ( )A.3B.-3C.2D.-29.设S n 是等差数列{a n }的前n 项和,若63S S =13,则126S S = ( ) A . 91 B .31 C .73D .10310.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为23,那么b = ( ) A .231+ B .1+3 C .232+ D .2+311. 设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=,称n T 为数列1a ,2a ,…,n a 的“理想数”,已知数列1a ,2a ,……,502a 的“理想数”为2012,那么数列2,1a ,2a ,…,502a 的“理想数”为 ( )A .2010B .2011C .2012D .201312.△ABC 中,三边长a ,b ,c 满足a 3+b 3=c 3,则△ABC 的形状为 ( )A .锐角三角形B .钝角三角形C .直角三角形D .以上均有可能二、填空题(每小题5分,共20分)13.tan19°+tan26°+tan19°tan26°=__________.14. sin 21°+sin 22°+…+sin 290°=________.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值 为 ________.16.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________.三.解答题(共70分) 17.(本题10分)(1)计算:87cos 85cos 83cos 8cos 4444ππππ+--的值.(2)化简:︒︒+︒︒︒-︒10sin 15sin 65sin 80cos 15cos 25sin .18. (本题12分) 已知()2cos cos 22f x x x x π⎛⎫=-⎪⎝⎭,x R ∈. (1)求6f π⎛⎫⎪⎝⎭的值; (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最值.19.(本题12分)在ABC ∆中,角A 、B 、C 所对应的边为a 、b 、c . (1)若cos 2cos 3A A π⎛⎫-=⎪⎝⎭,求A 的值;(2)若1cos 3A =,且ABC ∆的面积2S =,求C sin 的值.20. (本题12分)在等比数列{n a }中,公比1≠q ,等差数列{n b }满足311==a b ,24a b =,313a b = (1)求数列{n a }和{n b }的通项公式;(2)记n n n n a b c +-=)1(,求数列{n c }的前n 项和n S .21.(本题12分)已知函数b x xa x f ++=)sin 2cos2()(2,x R ∈. (1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.22. (本题12分)已知数列{}n a 前n 项和n S 满足:21n n S a +=. (1)求数列{}n a 的通项公式; (2)设()()11211n n n n a b a a ++=++,数列{}n b 的前n 项和为n T ,求证:14n T <.春期中联考 高一数学参考答案(卷面满分:150分 考试时间:120分钟)一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分) 13. 1 14. 291 15. 3π或32π 16. 2n三.解答题(共70分)17.(1) 2 --------------5分(2) --------------5分 18.解:(1)()2sin cos 2sin 222sin 23f x x x x x x x π⎛⎫=-==-⎪⎝⎭ ——4分2sin 22sin 00663f πππ⎛⎫⎛⎫∴=⨯-== ⎪ ⎪⎝⎭⎝⎭; ————6分(2),20π≤≤x 32323πππ≤-≤-∴x,,1)32sin(23≤-≤-∴πx 2)32sin(23≤-≤-∴πx2)(max =∴x f 3)(min -=x f ————12分19.解: (1)由cos 2cos 3A A π⎛⎫-= ⎪⎝⎭,得cos cos sin sin 2cos 33A A A ππ+=, 1cos 2cos 2A A A ∴=3cos A A =,tan A ∴=, 0A π<<,3A π∴=;--------------6分︒tan 15(以上答案任选一种) ————12分20. 解:(1)设等差数列}{n b 的公差为d ,由已知得:d b d b q a q a 123,33,3,3134232+=+===即,⎩⎨⎧+=+=dq d q 12333332 ————2分解得20()31d d q q ==⎧⎧⎨⎨==⎩⎩或舍,所以2=d ————4分所以12,3+==n b a n n n ————6分(2)由题意得nn n n n n n a b c 3)12()1()1(++⋅-=+-=,所以)12()1()12()1(...)97()53(...121+-+--+++-++-=+++=-n n c c c S n n n n23(3333)n +++++ ———— 8分(1)当n 为偶数时,得232331)31(31-+=--+=+n n S n n n ————10分 (2)当n 为奇数时,得272331)31(3)12(11--=--++--=+n n n S n n n ————12分(另解:用错位相减法求得})1{(n n b -的前n 项和为)1()1(1+-+-n n, ————9分利用等比数列求和得到}{n a 的前n 项和为2331-+n , ————11分从而得到=n S )1()1(2531+-+-+n n n ————12分21.解 f (x )=a (1+cos x +sin x )+b =2a sin ⎪⎭⎫⎝⎛+4πx +a +b . ————2分 (1)当a =-1时,f (x )=-2sin ⎪⎭⎫ ⎝⎛+4πx +b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ). ————6分 (2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sin ⎪⎭⎫ ⎝⎛+4πx ≤1,依题意知a ≠0. (ⅰ)当a >0时,⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.(ⅱ)当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8. ————12分22.解:(I )因为21n n S a +=,所以1121n n S a +++=, 两式相减可得1120n n n a a a +++-=,即13n n a a +=,即113n n a a +=, ————3分 又1121S a +=,113a ∴=, ————4分 所以数列{}n a 是公比为13的等比数列 . ————5分故1111()()333n n n a -=⋅=,数列{}n a 的通项公式为1()3nn a =. ————6分(II )()()11211n n n n a b a a ++=++,11111122()331131311()1()3333n n n n n n n n n b +++++⋅∴==++⎛⎫⎛⎫++⋅ ⎪⎪⎝⎭⎝⎭ 112311(31)(31)3131n n n n n ++⋅==-+⋅+++. ————10分 1212231111111()()()313131313131n n n n T b b b +∴=+++=-+-++-++++++ 1111.4314n +=-<+ ————12分。
2023-2024学年天津市河西区高一下学期期中考试数学试题
2023-2024学年天津市河西区高一下学期期中考试数学试题1.化简:()A.B.C.D.2.下列说法正确的是()A.底面是正多边形的棱锥是正棱锥B.长方体是平行六面体C.用一个平面去截圆柱,所得截面一定是圆形或矩形D.用一个平面去截圆锥,截面与底面之间的部分是圆台3.复数的共轭复数是()A.B.C.D.4.已知正三棱柱的所有棱长均为,且其体积为,则()A.2B.C.4D.5.若单位向量,,满足,,则()A.0B.C.0或D.0或6.根据下列情况,判断三角形解的情况,其中有唯一解的是()A.B.C.D.7.正六边形中,,,则()A.B.C.D.8.如图,有一个水平放置的透明无盖的正三棱柱容器,所有棱长都为,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为,如果不计容器的厚度,则球的体积为()A.B.C.D.9.在锐角中,内角,,所对的边分别为,,,且,,则的取值范围是()A.B.C.D.10.已知是虚数单位,复数的虚部为___________.11.已知向量,,且,则实数__.12.在中,,,,则BC边上的高为________.13.已知是关于的实系数方程的两个虚根,则___________.14.底面半径为1的圆锥的侧面积是它的底面积的两倍,则圆锥的内切球的表面积与圆锥的表面积之比为___________.15.在四边形中,,,,,为的中点,,则_____;设点为线段上的动点,则最小值为_____.16.已知复数(是虚数单位)是方程的根,其中是实数(1)求和的值;(2)若是纯虚数,求实数的值17.已知向量,且.(1)求向量与的夹角;(2)求的值;(3)若向量与互相垂直,求k的值.18.在中,内角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若.(i)求的值;(ii)求的面积.。
河南省郑州外国语学校2023-2024学年高一下学期期中考试数学试题(解析版)
郑州外国语学校2023-2024学年高一下期期中试卷数 学(120分钟 150分)一、单选题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数(为虚数单位),则在复平面内对应的点位于( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据给定条件,利用复数乘法运算求出即可得解.【详解】复数,在复平面内对应的点位于第二象限.故选:B2. 下列说法正确的是( )A. 底面是正多边形的棱锥是正棱锥B. 长方体是平行六面体C. 用一个平面去截圆柱,所得截面一定是圆形或矩形D. 用一个平面去截圆锥,截面与底面之间的部分是圆台【答案】B 【解析】【分析】根据棱柱、棱锥、圆柱和圆锥的定义对选项一一判断即可得出答案.【详解】对于A , 底面是正多边形,侧棱均相等的棱锥是正棱锥,故A 错误;对于B ,平行六面体是各个面都为平行四边形的棱柱,而长方体是各面为矩形的棱柱,所以长方体是平行六面体,故B 正确;对于C ,用一个平面去截圆柱,所得截面可能为椭圆,故C 错误;对于D ,用一个平行于底面的平面截圆锥,底面与截面之间的部分叫做圆台,故D 错误.故选:B .3. 在中,角所对边分别为,若,则( )A.B. 2C. 1或2D. 2的()i 1i z =+i z z 1i z =-+z (1,1)-ABC ,,A B C ,,a b c π1,6a b B ===c =【解析】【分析】由余弦定理即可求.【详解】由余弦定理得,化简得,解出或2.故选:C.4. 已知直线、,平面、,满足且,则“”是“”的( )条件A. 充分非必要 B. 必要非充分条C. 充要D. 既非充分又非必要【答案】A 【解析】【分析】利用空间中的垂直关系和充分条件、必要条件的定义进行判定.【详解】因为,所以,又因为,所以,即“”是“”的充分条件;如图,在长方体中,设面为面、面为面,则,且与面不垂直,即“”不是“”的必要条件;所以“”是“”的充分不必要条件.故选:A.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为222cos 2a c b B ac +-==2320c c -+=1c =m n αβn αβ= αβ⊥m β⊥m n ⊥n αβ= n β⊂m β⊥m n ⊥m β⊥m n ⊥ABCD αBCEF βm n ⊥m βm β⊥m n ⊥m β⊥m n ⊥A.B.C.D.【答案】C 【解析】【分析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得.故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6. 已知直角三角形ABC 中,,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则的最大值为( ),CD a PE b ==212PO CD PE =⋅,a b ,CD a PE b ==PO ==212PO ab =22142a b ab -=24()210b b a a -⋅-=b a =90A ∠=︒PB PC ⋅A.B.C.D.【答案】D 【解析】【分析】建立如图所示的坐标系,根据可求其最大值.【详解】以为原点建系,,,即,故圆的半径为,∴圆,设中点为,,,∴,故选:D.16556525PB PC PD =- A ()()0,2,4,0BC :142x yBC +=240x y +-=r 2216:5A x y +=BC ()2,1D 22221120544PB PC PD BC PD PD =-=-⨯=- max PD AD r =+==()max8156555PB PC =-=7. 在中,内角A ,B ,C 所对的边分别为,,,将该三角形绕AC 边旋转得一个旋转体,则该旋转体体积为()A. B. C. D.【答案】B 【解析】【分析】根据题意利用余弦定理可得,进而可得该旋转体为大圆锥去掉小圆锥,结合圆锥的体积公式运算求解.【详解】因为,即,由余弦定理可得,且,可得,又因为,,即,解得或(舍去),如图,将该三角形绕AC 边旋转得一个旋转体,则该旋转体为大圆锥去掉小圆锥,可得,则,大圆锥的底面半径为3,高为,小圆锥的底面半径为3,所以该旋转体体积为.故选:B.8. 如图,透明塑料制成的长方体容器内灌进一些水,固定容器底面一边于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:①有水的部分始终呈棱柱形;ABC ,,a b c 222bc a b c =--a=b =360︒2π,3A c ==CO AO 222bc a b c =--222b c a bc +-=-2221cos 222b c a bc A bc bc +--===-()0,πA ∈2π3A =a =b =2213c =--2180c -=c =c =-360︒CO AO cos 60sin 603AO AB BO AB =︒==︒=CO CA AO =+=CO 119π3V =⨯⨯=AO 219π3V =⨯=12V V V =-=-=1111ABCD A B C D -BC②没有水的部分始终呈棱柱形;③水面所在四边形的面积为定值;④棱始终与水面所平面平行;⑤当容器倾斜如图3所示时,是定值.其中正确命题的个数为( )A. 2B. 3C. 4D. 5【答案】C 【解析】【分析】根据棱柱的定义判定①②,利用线面垂直的性质定理可得水面是矩形判定③,利用线面平行的判定定理判断④,利用等体积法判断⑤即可.【详解】根据棱柱的定义:有两个面是相互平行且是全等的多边形,其余没相邻两个面的交线也相互平行,而这些面都是平行四边形可知,由于边固定,所以在倾斜的过程中,始终有,且平面平面,所以在倾斜的过程中有水的部分始终呈棱柱形,同理没有水的部分始终呈棱柱形,①②正确;在倾斜的过程中,,长度不变,不断变化,又因为,所以始终垂直于平面,又平面,所以水面是矩形,所以水面所在四边形的面积不是定值,③说法错误;因为在倾斜的过程中,始终与平行,且水面,水面,所以棱始终与水面所在平面平行,④说法正确;因为水的体积是不变的,正三棱柱的高始终是也不变,所以底面面积也不会变,即是定值,⑤说法正确;综上正确的是:①②④⑤,在EFGH 11A D ·BE BF EFGH BC AD EH FG BC ∥∥∥AEFB DHGC ,EH FG ,EF HG FG BC ∥FG 11ABB A EF ⊆11ABB A EFGH EFGH 11A D FG 11A D ⊄FG ⊆11A D BEF CHG -BC ·BE BF故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知,,则下列结论正确的是( )A B. C. 与的夹角为D. 在【答案】AC 【解析】【分析】已知向量的坐标,证明向量垂直,求向量的模长、夹角、投影等都比较简单,根据公式求解即可.【详解】因为,,所以,则,所以,故A 正确;因为,所以,故B 错误;,所以,故C 正确;在方向上的投影向量是,故D 错误.故选:AC.10. 下列说法正确的是( )A. 若、互为共轭复数,则为实数B. 若为虚数单位,为正整数,则C. 已知是关于的方程的一个根,则D. 复数满足,则的最大值为【答案】ACD 【解析】【分析】利用复数乘法可判断A 选项;利用复数的乘方可判断B 选项;分析可知为方程.的(3,1)a =- (2,1)b =()a b b-⊥ 2a b +=a b4πa b()3,1a =- ()2,1b = ()1,2a b -=-()12(2)10a b b -⋅=⨯+-⨯= ()a b b -⊥2(71)a b +=,|2|a b +==cos ,||||a b a b a b ⋅==⋅<>,[π]a b ∈ <>0,π,4a b = <>a b cos ,a a b = 1z 2z 12z z i n 43i in +=1i +x ()220,ax bx a b ++=∈R 1a b +=-z 1z =1i z --11i ±的两根,利用韦达定理可求出、的值,可判断C 选项的正误;利用复数模的三角不等式可判断D 选项.【详解】对于A 选项,设,则,所以,为实数,A 对;对于B 选项,,B 错;对于C 选项,实系数的一元二次方程虚根成对(互为共轭复数),所以为方程的两根,则,所以,,解得,所以,,C 对;对于D 选项,利用复数模的三角不等式可得,当且仅当时,等号成立,D 对.故选:ACD.11.在三棱锥中,已知,点M ,N 分别是AD ,BC 的中点,则( )A.B. 异面直线AN ,CM所成的角的余弦值是C. 三棱锥D. 三棱锥的外接球的表面积为【答案】ABD 【解析】【分析】将三棱锥补形为长方体,向量法求直线的夹角判断A ,B ;利用体积公式求三棱锥的体积判断C ;确定三棱锥的外接球的半径,求表面积判断D.【详解】三棱锥中,已知,三棱锥补形为长方体,如图所示,()220,ax bx a b ++=∈R a b ()1i ,z a b a b =+∈R 2i z a b =-()()2212i i z z a b a b a b =+-=+433i i i n +==-1i ±()220,ax bx a b ++=∈R 0a ≠()()()()21i 1i 1i 1i ab a ⎧+-=⎪⎪⎨⎪++-=-⎪⎩12a b =⎧⎨=-⎩1a b +=-1i 1i 1z z --≤++=+z =A BCD -3,2AB AC BD CD AD BC ======MNAD ⊥78A BCD -A BCD -11πA BCD -3,2AB AC BD CD AD BC ======AHDG FCEB -则有,解得,以为原点,的方向为轴,轴,轴正方向,建立如图所示的空间直角坐标系,点M ,N 分别是AD ,BC 的中点,则有,,,,,,所以,A 选项正确;,,,所以异面直线AN ,CM 所成的角的余弦值是,B 选项正确; 三棱锥,三棱锥,三棱锥,三棱锥,体积都为三棱锥,C 选项错误;222222222949BF BG AB BFBE BC BG BE BD ⎧+==⎪+==⎨⎪+==⎩BF BE BG ===B ,,BF BE BGx y z ())(0,0,0,,,B CAD M N ⎫⎪⎪⎭(0,0,MN = ()AD = 0MN AD ⋅=MN AD ⊥AN ⎛= ⎝ CM ⎛= ⎝ 7cos ,8AN CM AN CM AN CM ⎛⎛++ ⋅-===⋅ 78E BCD -G ABD -F ABC -H ACD -1132⨯=A BCD -4-=的外接球,其表面积为,D 选项正确.故选:ABD.12. 在锐角中,角的对边分别为,且满足,,则下列说法正确的有( )A. 外接圆面积是 B. 面积最大值是C. 周长的取值可以是 D. 内切圆半径的取值范围是【答案】ABD 【解析】【分析】根据,结合正弦定理,可求,结合,可求角.根据三角形外接圆半径满足,可判断A 的真假;结合余弦定理和基本(均值)不等式,可判断B 的真假;利用为锐角三角形,求出角的取值范围,利用正弦定理表示出,可求周长的取值范围,判断C 的真假;根据BC 的结论,结合三角形的面积、三角形周长、三角形内切圆半径之间的关系,判断D 的真假.【详解】由,结合正弦定理,可得:.因为在锐角三角形中,,所以.由,又为锐角,所以.对A :设的外接圆半径为,由,所以,所以外接圆的=A BCD -24π11π⨯=ABC 、、A B C a b c 、、2cos cos )a b C c B =+cos 2)1A B C ++=ABC 4πABC ABC 9ABC 1,1]-2cos cos )a b C c B =+a cos 2)1A B C ++=A 2sin aR A=ABC B b c +)2cos cos a b C c B =+)sin sin cos cos sin a A B C B C =+()B C =+A =sin 0A ≠a =()cos 21A B C ++=⇒()1cos 2B C A +=-⇒22sin A A =⇒sin A =A π3A =ABC R 2sin a R A=⇒24R ==2R =ABC面积为:.故A 正确.对B :由余弦定理(当且仅当时取“”).所以.故B 正确;对C :因为为锐角三角形,所以,,,所以.由正弦定理:,所以,,所以,因为,所以,所以,所以周长的取值范围为.因为,故C 错误;对D :设内切圆半径为,则.又, ,,所以,由.故D 正确.故选:ABD 【点睛】思路点睛:(1)涉及三角形周长或面积的取值范围,可将问题转化为利用基本(均值)不等式求最值或转化为三角函数求值域的问题解决.(2)本题的关键是三角形式锐角三角形,由此确定三角形角的取值范围,是该题的一个关键点.2π4πR =2222cos a b c bc A =+-⇒2212b c bc bc +-=≥b c ==11sin 1222ABC S bc A =£´´=ABC π02B <<π02C <<2π3B C +>ππ62B <<4sin sin sin b c aB C A===4sin b B =4sin c C =()4sin sin b c B C +=+2π4sin sin 3B B ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦2π4sin sin 3B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦π6B ⎛⎫=+ ⎪⎝⎭ππ2π,633B ⎛⎫+∈ ⎪⎝⎭πsin 6B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦(6,b c +∈ABC (6+(96∉+ABC r ()12ABC S a b c r =++△⇒2ABC S r a b c =++△a =()2312b c bc +-=1sin 2ABC S bc A =r ===6b c <+≤11r -<≤三、填空题:本题共4小题,每小题5分,共20分.13. 圆锥的底面半径为1,其侧面展开图是一个圆心角为的扇形,则此圆锥的母线长为______.【答案】3【解析】【分析】根据圆锥底面圆的半径为1得到侧面展开图扇形的弧长为,然后根据侧面展开图扇形的圆心角为列方程,解方程即可得到圆锥的母线长.【详解】因为圆锥底面圆的半径为1,所以侧面展开图扇形的弧长为,设圆锥的母线长为,因为侧面展开图扇形的圆心角为,所以,解得,所以此圆锥的母线长为3.故答案为:3.14. 已知向量和满足:,,与向量的夹角为______.【答案】【解析】【分析】设向量与向量的夹角为,根据得到,再利用向量的夹角公式计算得到答案.【详解】设向量与向量的夹角为,,故,故,,故.故答案为:15. 四棱锥的底面是边长为1的正方形,如图所示,点是棱上一点,,若且满足平面,则_________23π2π23π2πl 23π23222l ππππ=⨯3l =a b 1a = 2b = 2a b -= ab 2π3abθ()2212a b -=1a b ⋅=-abθ2a b -= ()22224444412a b a a b b a b -=-⋅+=-⋅+= 1a b ⋅=- 11cos 212a b a b θ⋅-===-⨯⋅ []0,πθ∈2π3θ=2π3P ABCD -E PD 35PE PD =PF PC λ=//BF ACE λ=【答案】【解析】【分析】连接BD ,交AC 于点O ,连接OE ,利用中位线性质和线面平行的判定证明平面ACE ,结合平面ACE ,则证明平面平面ACE ,再利用利用面面平行的性质则有,即可得到答案.【详解】如图,连接BD ,交AC 于点O ,连接OE ,由是正方形,得,在线段PE 取点G ,使得,由,得,连接BG ,FG ,则,由平面,平面,得平面,而平面,,平面,因此平面平面,又平面平面,平面平面,则,所以.故答案为:16. 在锐角中,角A ,B ,C 的对边分别为a ,b ,c ,S 为的面积,且,则的取值范围为______.13//BG //BF //BGF //GF EC ABCD BO OD =GE ED =35PE PD =13PG PE =//BG OE OE ⊂ACE BG ⊄ACE //BG ACE //BF ACE BG BF B ⋂=,BG BF ⊂BGF //BGF ACE PCD ACE EC =PCD BGF GF =//GF EC 13PF PG PC PE λ===13ABC ABC ()222S a b c =--22b c bc+【答案】【解析】【分析】利用三角形面积公式与余弦定理,可得,再根据同角关系式可得,然后利用正弦定理与三角恒等变换公式化简可得,结合条件可得取值范围,进而求得的取值范围,令,则,然后由对勾函数的单调性即可求出.【详解】在中,由余弦定理得,且的面积,由,得,化简得,又,,联立得,解得或(舍去),所以,因为为锐角三角形,所以,,所以,所以,所以,所以,设,其中,所以,由对勾函数单调性知在上单调递减,在上单调递增,当时,;当时,;当时,,所以,即的取值范围是.故答案为:.342,15⎡⎫⎪⎢⎣⎭sin 2cos 2A A +=sin A 435tan 5b c C =+tan C b cb tc =221b c t bc t+=+ABC 2222cos a b c bc A =+-ABC 1sin 2S bc A =()222S a b c =--sin 22cos bc A bc bc A =-sin 2cos 2A A +=0,2A π⎛⎫∈ ⎪⎝⎭22sin cos 1A A +=25sin 4sin 0A A -=4sin 5A =sin 0A =()sin sin sin cos cos sin 43sin sin sin 5tan 5A C bB AC A C c C C C C ++====+ABC 02C π<<2B AC ππ=--<22A C ππ-<<13tan tan 2tan 4C A A π⎛⎫>-== ⎪⎝⎭140,tan 3C ⎛⎫∈ ⎪⎝⎭35,53b c ⎛⎫∈ ⎪⎝⎭b t c=35,53t ⎛⎫∈ ⎪⎝⎭221b c b c t bc c b t +=+=+1y t t =+3,15⎛⎫ ⎪⎝⎭51,3⎛⎫ ⎪⎝⎭1t =2y =35t =3415y =53t =3415y =342,15y ∈⎡⎫⎪⎢⎣⎭22b c bc+342,15⎡⎫⎪⎢⎣⎭342,15⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:本题关键在于利用正弦定理与三角恒等变换公式化简可得,进而可以求解.四、解答题:本题共5小题,共70分.其中第17题12分,第18, 19题每题13分,第20题15分,第21题17分,解答应写出文字说明、证明过程或演算步骤.17. 已知复数,,其中.(1)若,求的值;(2)若是纯虚数,求的值.【答案】(1)2 (2)或.【解析】【分析】(1)利用复数相等几何复数运算即可求出结果;(2)利用纯虚数定义即可求出结果.【小问1详解】∵,,,∴,从而,解得,所以的值为2.【小问2详解】依题意得:,因为是纯虚数,所以,解得或.435tan 5b c C =+()21i z a =+243i z =-R a ∈12i z z =a 12z z a 2a =12a =-()21i z a =+243i z =-12i z z =()22i 12i 34i a a a +=-+=+21324a a ⎧-=⎨=⎩2a =a ()()()()()2222122i 143i 464383i i 43i 2525a a a a a a a z z +-+--++-+===-12z z 2246403830a a a a ⎧--=⎨+-≠⎩2a =12a =-18. (1)已知向量,点,若向量,且的坐标;(2)已知向量,若与夹角为钝角,求的取值范围.【答案】(1)或;(2)且.【解析】【分析】(1)设,根据向量垂直和向量的模得到方程组,解出即可;(2)计算出与坐标形式,根据向量点乘小于0,并结合向量反向共线即可得到答案.【详解】(1)设,则因为向量,所以又,所以解得或,所以的坐标为或(2)因为,所以,因为与夹角为钝角,所以,即,解得又不反向共线,所以,解得综上,且.19. 如图,在三棱柱中,侧棱底面,,为的中点,,.(1)求三棱柱的表面积;()2,1a =()2,1A -AB a ⊥ AB = B ()()2,1,4,3a b ==- 2a b - a b λ+ λ()3,3-()1,19λ>-12λ≠-(),B m n 2a b -a b λ+(),B m n ()2,1AB m n =-+AB a ⊥()()2210m n -++=AB =22(2)(1)5m n -++=33m n =⎧⎨=-⎩11m n =⎧⎨=⎩B ()3,3-()1,1()()2,1,4,3a b ==-()()26,7,24,3a b a b λλλ-=-+=+-2a b -a b λ+()()20a b a b λ-⋅+<()()624730λλ-++-<9λ>-,a b()()63724,0λλλ--≠+<12λ≠-9λ>-12λ≠-111ABC A B C -1AA ⊥ABC AB BC ⊥D AC 12AA AB ==3BC =111ABC A B C -(2)求证:平面.【答案】(1) (2)证明见解析【解析】【分析】(1)分别求三棱柱每个面的面积相加即可;(2)利用线面平行的判定定理证明即可.【小问1详解】因为侧棱底面,所以三棱柱为直三棱柱,所以侧面,,均为矩形.因为,所以底面,均为直角三角形.因为,,所以.所以三棱柱的表面积为.【小问2详解】连接交于点,连接,因为四边形为矩形,所以为的中点.因为为的中点,所以.因为平面,平面,所以平面.20. 已知的内角的对边分别为,且,______(1)求的面积;(2)求角的平分线的长.1AB ∥1BCD 16+1AA ⊥ABC 111ABC A B C -11BCC B 11BAA B 11CAA C AB BC ⊥ABC 111A B C 12AA AB ==3BC=AC ===111ABC A B C -()(11122322231622AB BC AC AA AB BC ++⋅+⨯⋅=++⨯+⨯⨯⨯=+1B C 1BC O OD 11BCC B O 1B C D AC 1OD AB ∥1AB ⊄1BC D OD ⊂1BC D 1AB ∥1BC D ABC ,,A B C ,,a b c 7,3a b ==ABC S A AD在①;②;③.这三个条件中任选一个,补充在上面问题的横线中,并作答.【答案】(1(2)【解析】【分析】(1)选①:根据,求得角C ,再利用三角形面积公式求解;选②:利用正弦定理得到,化简求得边c ,再利用余弦定理求得角A ,再利用三角形面积公式求解;选③:根据,根据二倍角公式求得角A ,再利用余弦定理求得边c ,再利用三角形面积公式求解;(2)选①:先利用余弦定理求得边c 和角A ,再由解;选②:由(1)得到结论利用1)得到结论利用【小问1详解】解:选①:因为,所以,又,所以,所以,所以选②:因为,所以由正弦定理可得,所以,即,由正弦定理可得,所以,332AC CB ⋅=- 12cos 72cos 13A B -=-2sin 2A A =158332AC CB ⋅=- 12cos 7sin 2cos 13sin A a AB b B-===-2sin 2A A =11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=332AC CB ⋅=- ()33cos 2ab C π-=-7,3a b ==11cos 14C =sin C =1sin 2ABC S ab C ==7,3a b ==12cos 7sin 2cos 13sin A a AB b B-===-sin 2sin cos 2sin cos sin -=-B B A A B A sin sin 2sin cos 2sin cos 2sin +=+=A B B A A B C 2a b c +=5c =由余弦定理可得,,由,所以,所以选③:因为,所以,由,所以,由余弦定理可得,,所以,所以【小问2详解】选①:由余弦定理可得,,所以.所以,由,所以,因为所以.选②:由(1)知:,,所以解得.选③:由(1)知:,,2221cos 22b c a A bc +-==-()0,A π∈23A π=1sin 2ABC S bc A ==2sin 2AA =22sin cos 222A A A =()0,,cos 02A A π∈>2tan 23A A π==2221cos 22b c a A bc +-==-5c =1sin 2ABC S bc A ==2222cos 25c b a ab C =+-=5c =2221cos 22b c a A bc +-==-()0,A π∈23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=所以解得.21. 如图,在三棱柱中,已知侧面,,(1)求证:平面;(2)是线段上的动点,当平面 平面时,求线段的长;(3)若为的中点,求二面角平面角的余弦值.【答案】(1)证明见解析; (2); (3.【解析】【分析】(1)由,,根据线面垂直的判定定理即可证结论;(2)先证面面,因此过作交线的垂线,可得到平面,即可求得=;(3)由上一问面,故过作交所在直线为点,则为所求平面的二面角,利用三角函数即可求值.【小问1详解】证明:侧面,侧面,得,由,知,即,11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =111ABC A B C -AB ⊥11BB C C 11π1,2,3BC AB BB BCC ===∠=1C B ⊥ABC P 1BB 1C AP ⊥11AA B B 1B P E 1BB 11C AE A --12AB ⊥1C B 1C B CB ⊥11ABB A ⊥11BB C C 1C 1C P 1C AP ⊥11AA B B 1B P 121C P ⊥11AA B B P PH AE ⊥AE H 1C HP ∠AB ⊥11BB C C 1C B ⊂11BB C C AB ⊥1C B 111π1,2,3BC CC BB BCC ===∠=190C CB ∠=︒1C B CB ⊥又交于点A ,且都在面内,故平面.【小问2详解】由已知侧面,面,知面面,过作于,面,面面,则面,因面,故平面平面,此时.【小问3详解】由(2):面,面,则过P 作交于,且都在面内,所以面,则二面角平面角为或其补角,由,则,且,所以, ,故.,CB BAABC 1C B ⊥ABC AB ⊥11BB C C AB ⊂11ABB A 11ABB A ⊥11BB C C 1C 11C P BB ⊥P 1C P ⊂11BB C C 11ABB A 111BB C C BB =1C P ⊥11AA B B 1C P ⊂1C AP 1C AP ⊥11AA B B 111ππcoscos 33B P B C BC ===121C P ⊥11AA B B AE ⊂11AA B B 1C P AE ⊥PH AE ⊥AE H 1C P PH P = 1C PH ⊥AE 1C PH 11C AE A --1C HP ∠PHE ABE PH PE AB AE =12,,2AB PE AE ===PH =1C P =11tan C P C HP PH ∠===1cos C HP ∠=。
海南省海口市第一中学2021-2022学年高一下学期期中考试数学试题(A)
海口市第一中学2021-2022学年度第二学期高一年级数学科期中考试试题(A)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|4}A x x =<,{0,1,2,3,4}B =,则A ∩B =()A.{0,1,2} B.{1,2,3}C.{2,3}D.{0,1,2,3}2.1b a >+是33b a >的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若一个平面图形的直观图是边长为2的正三角形,则该平面图形的面积为()A.64 B. C.24 D.4.已知()f x 为定义在R 上的偶函数,当0x ≤时,()2x f x =,则()f x 的值域为()A.[1,+∞) B.(0,1) C.(0,1] D.(-∞,1]5.函数2()2f x x a x =--的一个零点在区间(1,2)内,则实数a 的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2) 6.已知3sin()63πα+=-,则2cos(2)3πα-=()A.23- B.13- C.23 D.137.圣·索菲亚教堂(英语:SAINT SOPHIA CATHEDRAL)坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑.1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点.其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美.小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为15)-m,在它们之间的地面上的点M (,,B M D 三点共线)处测得楼顶A ,教堂顶C 的仰角分别是15︒和60 ,在楼顶A 处测得塔顶C 的仰角为30,则小明估算索菲亚教堂的高度为()A.20mB.30mC.3mD.303m8.已知函数()2sin()(0)6f x x πωω=+>,若方程|()|1f x =在区间(0,2)π上恰有5个实根,则ω的取值范围是()A.75,63⎛⎤ ⎥⎝⎦ B.513,36⎛⎤ ⎥⎝⎦ C.41,3⎛⎤ ⎥⎝⎦ D.43,32⎛⎤ ⎥⎝⎦二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数z 的共轭复数为z ,若1iz i =+,则()A.z 的实部是1 B.z 的虚部是i - C.1z i=+ D.||2z =10.设函数2log (1),2()23,2x x x f x x ->⎧=⎨-≤⎩,则以下结论正确的为()A.()f x 为R 上的增函数B.()f x 有唯一零点0x ,且012x <<C.若()5f m =,则33m =D.()f x 的值城为R11.已知0,0a b >>,且2a b +=,则()A.24a b -<B.22112a b ≥+C.lg lg a b +≤0D.23b a b +≥12.有下列4个关于三角函数的命题,其中是真命题的是()A.0003cos 1x R x x ∃∈+=B.函数44()cos sin 22x x f x =-的图象关于y 轴对称C.若,αβ都是第一象限角,且αβ>,则tan tan αβ>D.当()2sin cos f x x x =+取最大值时,5cos 5x =三、填空题:本题共4个小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牌头中学2017学年第二学期高一期中考试数学A 卷一、选择题(4×10分=40分)1.向量(2,4)a =与向量(,6)b x =共线,则实数 ( )A .12-B .3C .4D .6 2.与向量a =(1,1)平行的所有单位向量为( )A .(22,22)B .(-22,-22)C .(±22,±22)D .(22,22)或(-22,-22)3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( )A .168B .156C .152D .2864.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2C . 2D . 35.已知等差数列{a n }的前n 项和为S n ,若OA →=a 2OB →+a 2 017OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 2 018的值为( )A .1 007B .2 018C .1 009D .2 0076.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是 ( )A .①②B .①④C .①②③D .③④7.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A .322B .3152C .-322D .-3152 8.已知四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则= ( )A.1B.2C.-1D.±19.已知为ABC ∆内一点,满足0OA OB OC ++=,2AB AC ⋅=,且3BAC π∠=,则OBC∆的面积为 ( )A .12 B .3 C .2D .23 10.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对边的边长,若其边和角满足关系式2cos sin 0cos sin A A B B +-=+,则a bc+的值是 ( )A .1B .2C .3D .2二、填空题(6×4分+4×3分=36分)11.已知()1,2a =-,()2,b λ=,若与的夹角为锐角,则实数的取值范围是;若a b ⊥,则=.12.锐角△ABC 中内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,b =2,S △ABC =3,则;第三边c=.13.已知各项均为正数的等比数列{}n a 中,若569a a ⋅=,则2389a a a a ⋅⋅⋅=; 则3132310log log log a a a +++=.14.已知等差数列{}n a 的通项公式为=522n a n -+,设其前项和,当=时,取得最大值,最大值为.15.在△ABC 中,若a bAB 22=tan tan ,则△ABC 的形状为 三角形.16.等差数列{a n }的前项和为,已知4=4S ,8=10S ,则16=S ____ ___. 17.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,AP=3,点Q 是△BCD 内(包括边界)的动点,则AP AQ ⋅的取值范围是. 三、解答题(14+14+15+15+16=74分) 18.已知=a b c +,3a =,5b =,7c =.(1)求与的夹角;(2)是否存在实数k ,使b a k +与b a 2-垂直?解答题所有答案写在答题纸上,否则无效!19.设等差数列{}n a 的的前项和,且4=16S ,1612a a +=,求: (1){}n a 的通项公式及的前项和; (2)若11n n n b a a +=⋅,求{}n b 的前项和.解答题所有答案写在答题纸上,否则无效!20.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知sin()sin sin a b a cA B A B+-=+-,b =3. (1)求角B ;(2)若sin A =33,求△ABC 的面积.解答题所有答案写在答题纸上,否则无效!21.已知数列{}n a 的前项和278n S n n =--.(1)求数列{}n a 的通项公式; (2)求数列{}||n a 的前项和.解答题所有答案写在答题纸上,否则无效!22. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围.解答题所有答案写在答题纸上,否则无效!牌头中学2017学年第二学期高一期中考试数学A 卷 一、选择题(10×4分=40分)1.向量(2,4)a =与向量(,6)b x =共线,则实数 ( )A .12-B .3C .4D .6 解析:因为a ∥b ,所以2×6-4x =0,解得x =3. 答案:B2.与向量a =(1,1)平行的所有单位向量为( )A .(22,22)B .(-22,-22)C .(±22,±22)D .(22,22)或(-22,-22) 答案 D解析 与a 平行的单位向量为±a|a |.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13= ( D )A .168B .156C .152D .286 【答案】D【解析】 ∵⎩⎪⎨⎪⎧a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为 ( )A .1B .2C .2D . 35.已知等差数列{a n }的前n 项和为S n ,若OA →=a 2OB →+a 2 017OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 2 018的值为( )A .1 007B .2 018C .1 009D .2 0076.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是 ( )A .①②B .①④C .①②③D .③④7.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A .322B .3152C .-322D .-3152答案 A解析 本题考查向量数量积的几何意义及坐标运算.由条件知AB →=(2,1),CD →=(5,5),AB →·CD →=10+5=15.|CD →|=52+52=52,则AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322。
8.已知四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则=( )A.1B.2C.-1D.±19.已知为ABC ∆内一点,满足0OA OB OC ++=,2AB AC ⋅=,且3BAC π∠=,则OBC∆的面积为( )A .12 B .3 C .2D .23 4.B 【解析】试题分析:0OA OB OC O ++=∴为三角形的重心,由2AB AC ⋅=得4bc =1sin 2ABC S bc A ∆∴==所以OBC ∆的面积为3考点:向量运算与解三角形10.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对边的边长,若cos A +sin A -2cos B +sin B =0,则a +bc 的值是 ( )A .1B .2C . 3D .2B二、填空题(6×4分+4×3分=36分)11.已知()1,2a =-,()2,b λ=,若与的夹角为锐角,则实数的取值范围是;若a b ⊥,则=.1-4λ<≠且=1λ12.锐角△ABC 中内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,b =2,S △ABC =3,则;第三边c=. 30, c=213.已知各项均为正数的等比数列{}n a 中,若569a a ⋅=,则2389a a a a ⋅⋅⋅=; 则3132310log log log a a a +++=.81 1014.已知等差数列{}n a 的通项公式为=522n a n -+,设其前项和,当=时,取得最大值,最大值为.4 3815.在△ABC 中,若a bAB 22=tan tan ,则△ABC 的形状为 三角形.∵a b A B 22=tan tan ,∴由正弦定理,得sin sin tan tan 22A B A B=,即22sin sin cos sin cos sin A A BB A B =·,∵sin 0sin 0A B >>,,∴sin cos sin cos A BB A=,∴,即sin cos sin cos sin sin A A B B A B ==22 ∴22,22A B A B π=+=或,∴,2A B A B π=+=或,∴△ABC 为等腰三角形或直角三角形。
16.等差数列{a n }的前项和为,已知4=4S ,8=10S ,则16=S ____ ___. 2817.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,AP=3,点Q 是△BCD 内(包括边界)的动点,则AP AQ ⋅的取值范围是.9.[9,18]. 【解析】试题分析:由数量积的定义,有||||cos θ⋅=AP AQ AP AQ ,(其中为两向量的夹角),而||3AP →=,||cos θAQ 为向量AQ →在向量AP →上的投影,由点Q 是△BCD 内(包括边界)的动点且AP ⊥BD ,所以AQ →在向量AP →上的投影最小时即为||AP →,此时||||cos θ⋅==⨯=AP AQ AP AQ 339,AQ →在向量AP →上的投影最大时如图为||AM →(Q 落在C上),由三角形AOP 与三角形ACM 相似且O 为AC 中点易知||2||6AM AP →→==,此时||||cos θ⋅==⨯=AP AQ AP AQ 3618,故填[9,18].考点:数量积的定义及||cos θAQ 的几何意义. 三、解答题(14+14+15+15+16=74分)18.已知=a b c +,3a =,5b =,7c =.(1)求与的夹角;(2)是否存在实数k ,使k +与2-垂直? 解析:(1)由0=++c b a ,得c b a -=+,所以||||=+,即22)(c b a =+,则2222c b a b a =∙++, 所以)(21222--=∙=215,则><b a ,cos ||||b a ∙=21,所以3,π>=<; (2)由于(b a k +)·(b a 2-)=k k ∙+∙--2222=2856--k =0,所以k=1285-时,b a k +与b a 2-垂直.19.设等差数列{}n a 的的前项和,且4=16S ,1612a a +=,求: (1){}n a 的通项公式及的前项和; (2)若11n n n b a a +=⋅,求{}n b 的前项和.(1) 21n a n =-2=n S n(2)=21n nT n +20.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a +b A +B =a -csin A -sin B ,b =3.(1)求角B ;(2)若sin A =33,求△ABC 的面积. (1)∵a +b A +B =a -csin A -sin B ,∴a +b c =a -ca -b .∴a 2-b 2=ac -c 2,即a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =ac 2ac =12.∵B ∈(0,π),∴B =π3.(2)由b =3,sin A =33,sin B =32,a sin A =bsin B ,得a =2. 由a <b 得A <B ,从而cos A =63,故sin C =sin(A +B )=sin A cos B +cos A sin B =3+326. ∴△ABC 的面积S =12ab sin C =3+322.21.已知数列{}n a 的前项和278n S n n =--.(1)求数列{}n a 的通项公式; (2)求数列{}||n a 的前项和.解:(1)当=1时,11a S ==-14; 当≥2时,1n n n a S S -=-=2-8, 故=14(1),28(2).n n n -=⎧⎨-≥⎩(2)由=2-8可知:当≤4时,≤0;当≥5时,0n a >. ∴当1≤≤4时,278n n T S n n =-=-++;当≥5时,22444()2782(20)732n n n T S S S S S n n n n ⨯=-+-=-=----=-+.∴=2278(14),732(5).n n n n n n ⎧-++≤≤⎪⎨-+≥⎪⎩22. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. 解 (1)由a =2b sin A ,根据正弦定理可得sin A =2sin B sin A ,∵()0,A π∈,∴sin 0A ≠。