2008-2011上海市中考试题汇编-方程与不等式(组)
2008年中考数学试题按知识点分类汇编(等式的性质-方程(组)的解的概念、分式方程及增根)

知识点:等式的性质,方程(组)和方程的解的概念,分式方程及增根一.选择题1.(2008佳木斯市)关于的分式方程,下列说法正确的是()A.方程的解是B.时,方程的解是正数C.时,方程的解为负数D.无法确定答案:C2. (08浙江温州)方程的解是()A.B.C.D.答案:B3.(2008湖南郴州)方程2x+1=0的解是()A.B.C.2D.-2答案:B4. (08厦门市)已知方程,那么方程的解是()A.B.C.D.答案:C5. (2008年杭州市)已知是方程的一个解,那么的值是()A.1B.3C.-3D.-1答案:A6.(2008年上海市)如果是方程的根,那么的值是()A.0 B.2C.D.答案:C7. (2008山东烟台)已知方程有一个根是,则下列代数式的值恒为常数的是()A、B、C、D、答案:D8.(2008年山东省滨州市)若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一个根为0,则m的值等于()A、1B、2C、1或2者说D、0答案:B9.(2008年山东省潍坊市)下列方程有实数解的是()A.B.|x+1|+2=0 C.D.答案:C10.(2008年吉林省长春市)如果2是方程的一个根,那么c的值是【】A. B.-4 C.2 D.-2答案:A11..(2008 山东聊城)已知是方程的一个根,则方程的另一个根为()A.B.C.D.答案:B12.(2008湖北武汉)已知关于的方程的解是,则的值是().A.2 B.-2 C.D.-.答案:A13. (2008年杭州市)已知是方程的一个解,那么的值是()A.1B.3C.-3D.-1答案:A14. (2008上海市)如果是方程的根,那么的值是()A.0 B.2 C.D.答案:C15. (2008四川自贡)方程的解的相反数是()A.2 B.-2C.3 D.-3答案:A16.(2008山东济南)关于x的一元二次方程2x2-3x-a2+1=0的一个根为2,则a的值是() A.1 B. C.-D.±答案:D17. (2008 湖北天门)关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m的值为().A、1B、-1C、1或-1D、答案:B18.(2008山东潍坊)下列方程有实数解的是()A.B.|x+1|+2=0C.D.答案:C19.(2008山东烟台)已知方程有一个根是,则下列代数式的值恒为常数的是()A、B、C、D、答案:D20.二.填空题1. (2008山东烟台)请选择一组的值,写出一个关于的形如的分式方程,使它的解是,这样的分式方程可以是______________. 答案:答案不唯一,如2.(2008年江苏省连云港市)若一个分式含有字母,且当时,它的值为12,则这个分式可以是.答案:(写出一个..即可)(答案不唯一)3. (2008湖北襄樊)当m=_________时,关于x的分式方程无解.答案:-64.(2008年四川省宜宾市)若方程组的解是,那么答案:15.(2008年云南省双柏县)下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是.答案:06.(08乌兰察布市)对于定义一种新运算“”:,其中为常数,等式右边是通常的加法和乘法的运算.已知:,那么= .答案:27..(2008年辽宁省十二市)一元二次方程的解是.答案:8.(2008年成都市)已知x = 1是关于x的一元二次方程2x2 + kx – 1 = 0的一个根,则实数k的值是 . 答案:-19.(2008年成都市)如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2–2mx + n2= 0有实数根的概率为.答案:10.(2008江苏宿迁)已知一元二次方程的一个根为,则.答案:411. .(2008黑龙江哈尔滨)若x=1是一元二次方程x2+x+c=0的一个解,则c2=答案:412.(08仙桃等) 关于的一元二次方程的一个根为1,则方程的另一根为答案:-213.(2008 青海)若关于的方程的一个根是0,则另一个根是.答案:5。
2008年中考数学试题按知识点分类汇编(不等式的基本性质,不等式与不等式(组)的解集的概念,).doc

知识点3:不等式的基本性质,不等式与不等式(组)的解集的概念,解一元一次不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为( )A.-1<m<3 B.m>3 C.m<-1 D.m>-1答案:A2.(2008浙江义乌)不等式组的解集在数轴上表示为( )答案:A3.(2008山东烟台)关于不等式的解集如图所示,的值是()A、0B、2C、-2D、-4答案:A4.(2008年山东省临沂市)若不等式组的解集为,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4答案:B5.(2008年辽宁省十二市)不等式组的解集在数轴上表示正确的是()答案:A6.(2008年天津市)若,则估计的值所在的范围是()A.B.C.D.答案:B7.(2008年四川巴中市)点在第二象限,则的取值范围是()A.B. C.D.答案:C8.(2008年成都市)在函数y=中,自变量x的取值范围是( );(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 3 答案:C9.(2008年乐山市)函数的自变量x的取值范围为()A、x≥-2B、x>-2且x≠2C、x≥0且≠2D、x≥-2且≠2答案:D10.(2008年大庆市)使分式有意义...的的取值范围是()A.B.C.D.答案:D11.(2008年大庆市)已知关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A.B.C.D.答案:D12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图3所示,则他们的体重大小关系是()图3A B C D答案:D13.(2008广东肇庆市)下列式子正确的是()A.>0 B.≥0 C.a+1>1 D.a―1>1答案:B14.(2008云南省)不等式组的解集是()A. B.C.D.答案:D15.(2008 台湾)解不等式x+1≤x+,得其解的范围为何?( )(A) x≥ (B) x≥ (C) x≤- (D) x≤-。
2011年全国各地中考数学真题分类汇编第6章 不等式(组)

2011年全国各地中考数学真题分类汇编第6章 不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( )A .6.0元B .7.0元C .8.0元D .9.0元【答案】B .二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对 道题.【答案】143.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 Ax 14 B 14调入地 水量/万吨调出地总计 15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275解不等式1≤x ≤14所以x=1时y 取得最小值y min =12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =. 答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子, 则125720,584245720,4x x ⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人。
最新初中中考数学题库 2011中考数学基础热点专题-热点3 方程(组)和不等式(组)的应用

热点3 方程(组)和不等式(组)的应用(时间:100分钟 分数:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求的)1.为适应国民经济持续协调发展,自2004年4月18日起,全国铁路第五次提速.提速后,火车由天津到上海的时间缩短了7.42小时.若天津到上海的路程为1 326千米,提速前火车的平均速度为x 千米/时,提速后火车的平均速度为y 千米/时,则x 、y•应满足的关系式是( )A .x-y=13267.42B .y-x=13267.42C .1326x -1326y =7.42D .1326y -1326x =7.422.某商店售出了一批进价为a 的商品,利润率为20%,则每件商品的售价为( )A .20%aB .80%aC .(120%)a + D .120%a 3.一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .614.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,则乙现在的年龄是( )A .10岁B .15岁C .20岁D .30岁5.某日历上一竖列3个日期的数字和可能是( )A .32B .45C .9D .756.用板车运煤,若每辆板车运300千克,则还余下1000千克,若每辆板车运400•千克,则可超额500千克.设有x 辆板车,要运y 千克煤,根据题意,列方程组得( )A .3001000,400500y x y x =-⎧⎨=+⎩B .3001000,400500y x y x =+⎧⎨=+⎩C .3001000,400500y x y x =-⎧⎨=-⎩ D .3001000,400500y x y x =+⎧⎨=-⎩7.某超市4月份的营业额为220万元,5月份的营业额为242万元,如果保持同样增长率,则6月份应完成营业额是( )A .264万元B .266.2万元C .272.4万元D .286万元8.两个连续偶数的积是168,则这两个偶数分别是( )A .12,14B .12,14或-12,-14C .16,18D .16,18或-16,-189.某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .510.有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数,他们又参加了第五次测验,测验后,他们的平均分都提高到90分,问在第五次测验前,这两个学生的平均分数是( )A .88分,89分B .87分,88分C .86分,87分D .85分,86分二、填空题(本大题共8小题,每小题3分,共24分)•11.•设甲数为x ,•乙数为y ,•甲数的13比乙数的3•倍多2,•则可列二元一次方程为________.12.购某种3年期国债x 元,到期后可得本息和y 元,已知y=kx ,•则这种国债的年利率为_________.13.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔分别有_______.14.甲、乙两人分别从两地同时出发,若相向而行,则2小时相遇,•若同向而行驶4小时甲追上乙,那么甲、乙速度的比为_______.15.一位老师说,他们班学生的一半在学习数学,14的学生在学习音乐,17的学生在学习英语,还剩不超过6名的同学在踢球,则这个球上最多有_______名学生.16.如果n是一个正偶数,且它的3倍加10不小于它的5倍减2,则n为________.17.一艘船从A港顺流到B港需要6小时,而从B港逆流到A港需要8小时,•若在静水条件下,从A港到B港需________小时.18.在一次知识竞赛中共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,若这次竞赛获奖必须达到80分,则获奖的人至少要答对________道题.三、解答题(本大题共46分,19~24题每题6分,25题10分,•解答题应写出文字说明、证明过程或演算步骤)19.小刚在商场发现他喜欢的随身听和书包,若一起买可以打8折,小刚算了一下,自己手里的361.6元刚好可以买下来且没有剩余.•已知随身听的标价比书包标价的4倍少8元,请你求出小刚喜欢的书包和随身听的标价分别是多少.20.育英中学七年级(2)班23名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,请你为这23名同学设计较好的购票方案.21.某移动公司开通了两种通讯业务:“全球通”使用者先缴50元/月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,•付话费0.6元(这里均指市内通话).若一个月通话时间为x分钟,两种通讯方式的费用分别为y1元和y2元.(1)分别写出y1,y2与x的关系式.(2)一个月内通话多少分钟时,两种通讯方式的费用相同?(3)请你运用你所学的知识帮助李大伯选一种便宜的通讯方式.22.一个长方形如图,恰分成六个正方形,其中最小的正方形的面积是1cm2,这个长方形的面积.23.幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.24.某厂去年总产值比总支出多500万元,而今年计划的总产值比总支出多950万元.已知今年计划总产值比去年增加15%,而计划总支出比去年减少10%,•求今年计划的总支出和总产值各为多少.25.某通讯器材商场,计划用60 000元从厂家购进若干部新型手机,•以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为:•甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进某两种不同型号手机共40部,并将60 000地恰好用完,•请你帮助商场计算一下,如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60 000元恰好用完,•并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号手机购买的数量.答案一、选择题1.C 2.D 3.A 4.C 5.B 6.D 7.B 8.B 9.B 10.A二、填空题11.13x-3y=2 12.13k - 13.11只,13只 14.3:1 15.56 16.2或4或6 17.48718.22 三、解答题19.解:设书包标价为x 元,随身听标价为y 元.依题意列方程组得()0.8361.6,48.x y y x +⨯=⎧⎨=-⎩ 解得92,360.x y =⎧⎨=⎩20.解:若购团体票25张,需花费25×10×0.8=200元;若23名同学单独购买,需花费23×10=230元.200<230,所以购买25人的团体票划算些.方案为:23人买25人的团体票.21.解:(1)y 1=50+0.4x ,y 2=0.6x .(2)y 1=y 2,即50+0.4x=0.6x ,得x=250.(3)若李大伯每月通话时间少于250分钟,则选用“神州行”,•若通话时间多于250分钟,则选用“全球通”.若通话时间等于250分钟,选两种都一样.22.解:143cm 2.23.解:这个幼儿园有x 件玩具,有y 个小朋友,依题意得359,35(1) 5.y x x y +=⎧⎨≤--<⎩ 解得592<y<612,因为y 为整数, 所以y=30,代入x=3y+59,得x=149.24.解:设去年计划的总支出为x 万元,去年的总产值为y 万元,依题意列方程组得500,(115%)(110%)950.y x y x -=⎧⎨+--=⎩ 解得1500,2000.x y =⎧⎨=⎩所以今年计划总支出为x (1-10%)=1 350万元,今年计划总产值为y (1+15%)=2 300万元.25.解:若购进甲、乙两种手机,设购进甲x 部,乙y 部.40,180060060000,x y x y +=⎧⎨+=⎩得30,10.x y =⎧⎨=⎩若购进甲、丙两种手机,设购进甲m 部,丙n 部.40,1800120060000,m n m n +=⎧⎨+=⎩得20,20.m n =⎧⎨=⎩若购进乙、丙两种手机,设购进乙a 部,丙b 部.40,600120060000,a b a b +=⎧⎨+=⎩得20,60.a b =-⎧⎨=⎩不合题意. 所以购买甲30部、乙10部或甲20部、乙20部.(2)设购甲x 部,乙y 部,丙z 部,则40,1800600120060000,68,x y z x y z y ++=⎧⎪++=⎨⎪≤≤⎩解得28,8,4,x y z =⎧⎪=⎨⎪=⎩或26,6,8,x y z =⎧⎪=⎨⎪=⎩或27,7,6.x y z =⎧⎪=⎨⎪=⎩。
2011年全国各地中考(100套真题 100套模拟)试题分类汇编第6章不等式(组)

2011年全国各地中考试题压轴题精选讲座六函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。
也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。
又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。
【典型例题】【例1】(四川雅安)如图,已知二次函数c x ax y ++=22)0(>a 图像的顶点M 在反比例函数xy 3=上,且与x 轴交于A ,B 两点。
(1)若二次函数的对称轴为21-=x ,试求c a ,的值;(2)在(1)的条件下求AB 的长;(3)若二次函数的对称轴与x 轴的交点为N ,当NO+MN 取最小值时,试求二次函数的解析式。
【思路点拨】(1)先求得二次函数c x ax y ++=22)0(>a 中的a ,再根据顶点在反比例函数xy 3=上,求出c 。
(3)可用含有a 的式子表示点M 、N 的坐标,即求出a 的值,再求得解析式。
【例2】(江苏南通)如图,已知直线l 经过点A(1,0),与双曲线()0my x >x=交于点B(2,1).过点P(p ,p -1)( p >1)作x 轴的平行线分别交双曲线()0m y x >x =和()0my x <x =-于点M 、N .(1)求m 的值和直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB∽△PNA;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满 足条件的p 的值;若不存在,请说明理由.【思路点拨】 (2)先求p 的值,再利用对应线段成比例证△PMB ∽△PNA 。
(3)考虑点P 的位置,得1<p <3时的情况。
作延长MP 交x 轴于Q ,先求直线MP 的方程,再求出各点坐标(用p 表示),然后求出面积表达式,代入S △AMN =4S △AMP 后求出p 值。
2011年中考数学试题汇编---一元一次不等式-(1)

2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)2011年中考数学试题汇编---一元一次不等式-(1)一元一次不等式(组)一、知识导航图二、中考课标要求三、中考知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向.2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)的解集是x<a,即“小小取小”.(2)的解集是x>b,即“大大取大”.(3) 的解集是a<x<b,即“大小小大取中间”.(4)的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.一元一次不等式(组)一、选择题1、(2011年浙江杭州二模)已知()0+myxx++32=3+中,y为负数,则m的取值范围是()A. m>9B. m<9C. m>-9D. m<-9答案:A2、(2011年浙江杭州七模)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .a >-1B .a ≥-1C .a ≤1D .a <1 答案:A1、(2011重庆市纂江县赶水镇)不等式组10,354x x -+≤⎧⎨+<-⎩的解集在数轴上可表示为( )A .x≤0 B.-3<x≤1 C .x≤1 D .x<-3 答案:D2、(2011年北京四中四模)不等式组⎩⎨⎧<-<-133042x x 的解集为( ) (A )x< 1(B )x >2 (C )x <1或x >2 (D )1<x <2 答案:D3、(2011年北京四中四模)已知a >b ,则下列不等式中,正确的是( ) (A )―3a >―3b (B )3a ->3b-(C )3-a>3-b (D )a -3>b -3 答案:D4、(2011年北京四中模拟26)不等式组112x x ≤⎧⎨+>-⎩答案:A5、(2011年浙江省杭州市模拟)把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D . 答案:B6.(2011年江苏连云港)不等式112x ->的解集是 A .12x >-B .2x >-C .2x <-D .12x <- 答案C7、(2011山西阳泉盂县月考)如图,直线y=kx+b 交坐标轴于两点,则不等式kx+b <0的解集是( ) A 、x >—2 B 、x >3 C 、x <—2 D 、x <3【答案】C 8、(2011浙江杭州模拟14)若点A (m -3,1-3m )在第三象限,则m 的取值范围是( ).A .31>mB .3<mC .3>mD . 331<<m 【答案】D9、(2011浙江杭州模拟) 关于x 的不等式12-≤-a x 的解集如图所示 ,则a 的取值是( )A .0B .-3C .-1 0 1-1 0 1- 1 0 1- 1 0 1- 第12 D .-1 【答案】D10、(2011浙江杭州模拟16)函数42-+-=x xx y 中自变量x 的取值范围是( )A 、2≤xB 、42≠≤x x 且C 、4≠xD 、42≠<x x 且 【答案】A11、(2011年北京四中中考模拟19)如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( ) 答案C12.(2011.河北廊坊安次区一模)不等式组的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 答案:B13.(2011浙江杭州模拟7)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )第3题图-1 01A -1 01BC-1 01DA .a >-1B .a ≥-1C .a ≤1D .a <1 答案:C14.(河北省中考模拟试卷)把不等式组⎩⎨⎧>+≤-01x 01x 的解集表示在数轴上,正确的是…………………………………( ) 答案:BB 组1、( 2011年杭州三月月考)不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为( )(B)(C)(D) 答案:D2、(2011北京四中二模)把不等式组110x x +⎧⎨-≤的(A )(B ) (C ) (D )0 1 2 3 4 0 1 2 3 4 -0 1-0 1 -0 1 -0 1A .B . 252-525253、(2011年海宁市盐官片一模)把不等式组110x x+⎧⎨-≤⎩( ▲ ) A BC D答案: B4、(2011年浙江省杭州市模2)已知()0332=++++m y x x 中,y为负数,则m 的取值范围是( )A. m >9B. m <9C. m >-9D. m <-9答案:A5、(河南新乡2011模拟)不等式组2461x x >⎧⎨-≥⎩的解集在数轴上可表示为( ) 答案:A6、(2011杭州市模拟)若55x x -=-,下列不等式成立的是( )A .50x ->B .50x -<C. 5x -≥0 D .5x -≤0-0 1 -0 1 -0 1 -0 17、(2011年广东省澄海实验学校模拟)用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为( ) A .B . C . D . 答案:A8、(2011深圳市模四)一元一次不等式组⎩⎨⎧->≤-3312x x 的解集在数轴上的表示正确的是( ) A BC D答案:C9、(2011深圳市模四)若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )A.k >-1B. k >-1且k ≠0C. k <1D. k <1且k ≠0 答案:B10、(2011杭州模拟20)若55x x -=-,下列不等式成立的是( )b ac a b c a b c a b c a b c 第7题图第8题图A .50x ->B .50x -<C. 5x -≥0 D .5x -≤0 答案:D 二、 填空题A 组1、(衢山初中2011年中考一模)不等式组40320x x ->⎧⎨+>⎩的解集是 答案:432〈〈-x 2、(2011年北京四中五模)不等式2131-<+x x 的解集是____________. 答案:x >53.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)请你写出一个满足不等式2x —1<10的正整数x 的值:_____. 答案:1(或者2)4.(2011年浙江省杭州市城南初级中学中考数学模拟试题)已知a ,b 为实数,若不等式组2223x a x b -<⎧⎨->⎩的解集为—1<x <1,那么(a —1)(b —1)的值等于. 答案:35.(2011年江苏连云港)不等式组2494x xx x-<⎧⎨+>⎩的解集是. 答案3x <6、(2011山西阳泉盂县月考)已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是【答案】-5<a≤-47.(2011武汉调考模拟)已知关于z 的一元二次方程a 2x -5x+1=0有两个不相等的实数根,则a 的取值范围是_____.【答案】a<425且a ≠0 8、(2011杭州模拟)关于x 的方程12mx x -=的解均为非负数,则m 的取值范围是 答案:m >29.(2011湖北省天门市一模)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是。
2011年上海市中考数学真题及答案
2011年上海市中考数学真题及答案(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各实数中,属有理数的是A .πB .2C .9D .cos 45°2.解方程3)1(2122=-+-x x x x 时,设y x x =-12,则原方程化为y 的整式方程为 A .01622=+-y y B .0232=+-y y C .01322=+-y y D .0322=-+y y 3.α∠在正方形网格中的位置如图一所示,那么αsin 应用哪些 点联结成的线段的比值表示 A .AC AE B .BC BE C .AC AD D .BCBD4.如图二,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰 为半圆。
当水面上涨1米时,桥孔中的水面宽度A ’B ’为 A .15米 B .152米 C .172米 D .不能计算 5.下列命题中正确的是A .对角线互相垂直且相等的四边形是正方形B .如果一条直线上有两点到另一条直线上的距离相等,那么这两条直线互相平行C .如果半径分别为3和1的两圆相切,那么两圆的圆心距一定是4D .有一个内角是︒95的两个等腰三角形相似6.如图三,已知AC 平分∠PAQ ,点B 、D 分别在边AP 、AQ 上. 如果添加一个条件后可推出AB =AD ,那么该条件不可以是 A .BD ⊥AC B .BC =DC C .∠ACB =∠ACD D .∠ABC =∠ADC 二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上.】 7.求值:38-= .AB CD E(图一)ABC A ’ B ’ ·(图二)·APQC (图三)8.计算:333226y x y x ÷= . 9.分解因式:22y y x x --+= . 10.函数11-=x y 的定义域是 .11.如图四,原点O 是矩形ABCD 的对称中心,顶点A 、C 在反比例函数图像上,AB 平行x 轴.若矩形ABCD 的面积为8,那么 反比例函数的解析式是 . 12.方程 xx x x -+-22323=1中,如设x x y -=23,原方程可化 为整式方程 . 13.方程13-=++x x 的根是 .14.直角三角形斜边长为6,那么三角形的重心到斜边中点的距离为 .15.如图五△ABC 中,AB=AC ,BC =6,S △ABC =3,那么sin B = . 16.汽车沿坡度为1:7的斜坡向上行驶了100米,升高了 米. 17.如图六,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 .18.如图七,在△ABC 中,∠C =90º,∠A=30º,BC =1,将△ABC 绕点B 顺时针方向旋转,使点C 落到AB 的延长线上,那么点A 所经过的线路长为 .三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:︒︒-︒+︒60tan 30tan 260tan 30tan 22.20.(本题满分10分)解不等式组:⎪⎪⎩⎪⎪⎨⎧->+-≥-62334323429x x x x ,并把它的解集表示在数轴上.(图五)AB (图六)ABC(图七)21.(本题满分10分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分3分)某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x (元),日销售量为y (千克),日销售利润为w (元).(1) 求y 关于x 的函数解析式,并写出函数的定义域; (2) 写出w 关于x 的函数解析式及函数的定义域;(3)若日销售量为300千克,请直接写出日销售利润的大小.22.(本题满分10分,每小题满分各5分)已知:如图八,在ABC ∆中,BC AD ⊥,D 点为垂足,BE AC ⊥,E 点为垂足,M 点位AB 边的中点,联结ME 、MD 、ED .(1)求证:MED ∆与BMD ∆都是等腰三角形; (2)求证:DAC EMD ∠=∠2.23.(本题满分12分,第(1)小题满分5分,第(2)小题满分3分,第(3)小题满分4分)如图九,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE AB <),连结EG 并延长交DC 于点M ,作MN AB ⊥,垂足为N ,MN 交BD 于点P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;ABCDME(图八)-2 -1 0 1 2 3 4A NB EFGCM DP(图九)(2)设BE x =,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.24.(本题满分12分,每小题满分各6分)如图十,C 在射线BM 上,在平行四边形ABCD 中,10==BD AC ,43tan =∠CAD ,对角线AC 与BD 相交于O 点.在射线BM 上截取一点E ,使CE OC =,联结OE ,与边CD 相交于点F .(1)求CF 的长;(2)在没有“CE OC =”的条件下,联结DE 、AE ,AE 与对角线BD 相交于P 点,若ADE ∆为等腰三角形,请求出DP 的长.25.(本题满分14分,第(1)、(2)小题满分各5分,第(3)小题满分4分)已知∠MON = 60°,射线OT 是∠MON 的平分线,点P 是射线OT 上的一个动点,射线PB 交射线ON 于点B .(备用图)A BC DOM(1)如图十一,若射线PB 绕点P 顺时针旋转120°后与射线OM 交于A ,求证:PA = PB ; (2)在(1)的条件下,若点C 是AB 与OP 的交点,且满足PC =23PB ,求:△POB 与△PBC 的面积之比;(3)当OB = 2时,射线PB 绕点P 顺时针旋转120°后与直线OM 交于点A (点A 不与点O 重合),直线PA 交射线ON 于点D ,且满足ABO PBD ∠=∠.请求出OP 的长.参考答案:一、选择题(本大题共6题,每题4分,满分24分)1.C 2.B 3.A 4.B 5.D 6.B 二、选择题(本大题共12题,每题4分,满分48分)7.-2; 8.133-x x或; 9.)1)((++-y x y x ; 10.1>x ;11.xy 2=; 12.022=+-y y ; 13.)2(2不得分写--=x ; 14.1; 15.1010; 16.102; 17.2; 18.π34.三、解答题(本大题共7题,满分78分)19.解:原式=2)60tan 30(tan ︒-︒……………………………………………………(4分)=2)333(-……………………………………………………………(7分) =333-=332…………………………………………………………(10分) MO NTPA BC OMNTOMNT(备用图一)(备用图二)(图十一)20.解:由(1)得:x x 432329+-≥- 3≤x …………………………………………………………(3分) 由(2)得:236134->+x x 1->x …………………………………………………………(6分)∴不等式组的解集为:.........31≤<-x ………………………………………………(8分) 在数轴上表示解集正确(图略)………………………………………………(10分)21.解:(1))50(10100x y -+=………………………………………………………(1分)x y 10600-=……………………………………………………………………(2分)定义域为20≤x ≤60……………………………………………………………(3分) (2))20)(10600(--=x x w ………………………………………………………(5分)12000800102-+-=x x w ,定义域为20≤x ≤60…………………………(7分)(3)3000………………………………………………………………………………(9分)答:……………………………………………………………………………………(10分) 22.证明:(1)∵M 为AB 边的中点,AD ⊥BC , BE ⊥AC , ∴12ME AB =,12MD AB =………………………………………………………(2分) ∴ME =MD ………………………………………………………………………………(3分) ∴△MED 为等腰三角形………………………………………………………………(5分) (2)∵12ME AB MA == ∴∠MAE =∠MEA …………………………………………………………………… (6分) ∴∠BME =2∠MAE ……………………………………………………………………(7分) 同理可得:12MD AB MA == ∴∠MAD =∠MDA …………………………………………………………………… (8分) ∴∠BMD =2∠MAD ……………………………………………………………………(9分) ∵∠EMD =∠BME -∠BMD=2∠MAE -2∠MAD =2∠DAC ……………………………………………(10分)23.证明:(1)∵正方形ABCD∴︒=∠=∠90CBA C ,︒=∠45ABD 同理︒=∠45BEG ∵CD //BE∴︒=∠=∠45BEG CMG ………………………………………………………………(2分) ∵AB MN ⊥,垂足为N ∴︒=∠90MNB∴四边形BCMN 是矩形………………………………………………………………(3分) ∴NB CM =又∵︒=∠=∠90PNB C ,︒=∠=∠45NBP CMG∴△CMG ≌△NBP ……………………………………………………………………(5分) (2)∵ 正方形BEFG ∴x BE BG == ∴x CG -=1从而 x CM -=1………………………………………………………………………(6分) ∴21111()(1)(1)2222y BG MN BN x x x =+=+-=-(10<<x )…………(8分) (3)由已知易得 MN //BC ,MG //BP∴四边形BGMP 是平行四边形………………………………………………………(9分) 要使四边形BGMP 是菱形则BG =MG ,∴)1(2x x -=………………………………………………………(10分) 解得22-=x ………………………………………………………………………(11分) ∴22-=BE 时四边形BGMP 是菱形……………………………………………(12分) 24.解:(1)∵ABCD 为平行四边形且AC=BD∴ABCD 为矩形…………………………………………………………………………(1分) ∴∠ACD =90°在RT △CAD 中,tan ∠CAD=43=ADCD 设CD =3k ,AD =4k∴(3k )²+(4k )²=10² 解得k =2∴CD =3k =6 ……………………………………………………………………………(2分) (Ⅰ)当E 点在BC 的延长线上时,过O 作OG ⊥BC 于G …………………………………………………………………(3分)∴21==BD BO CD OG ∴OG =3 同理可得:11==OD BO GC BG ,即BG =GC =4 又∵521===AC CE OC∴EG CE OG CF = ∴4553+=CF 解得35=CF ……………………………………………………………………………(4分)(Ⅱ)当E 点在边BC 上时,易证F 在CD 的延长线上,与题意不符,舍去……(6分) (注:若有考生求出该情况下CF 的长,但没有舍去此解,扣.1.分.) (2)若ADE ∆为等腰三角形,(Ⅰ)8==ED AD (交于BC 的延长线上) 由勾股定理可得:726-8DC -DE 2222===CE ………………………(7分)∵AD ∥BE ∴a PD BP AD BE −→−+=+==令4748728 ∴BP +PD =BD =10=a a a 474++解得57)78(10-=a∴5774032057)78(404-=-==a PD …………………………………………(8分)(Ⅱ)8==ED AD (交于边BC ) 同理可得:a AD BE PD BP −→−-=-==令4748728 ∴a a a BD PD BP 47410+-===+解得57)78(10+=a∴5774032057)78(404+=+==a PD …………………………………………(9分)(Ⅲ)ED AE = 易证:DEC AEB ∆≅∆∴421===BC EC BE ∴同理可得:31=BD BP ,则3110=BP ∴310=BP ,PD =320………………………………………………………………(10分)(Ⅳ)8==AD AE ∴726822=-=BE ∴同理可得:a PDBP AD BE −→−==令47 9)74(101074-==+a a a∴97401604-==a PD …………………………………………………………(11分)∴综上所述,若ADE ∆为等腰三角形,3205774032057740320或或+-=PD 或9740160-…………………………………………………………………………(12分)(注:若考生只详细写出一种情况,其余几种均用了同理,只要答案正确,也给满分....)25.解:(1)证明:作PF ⊥OM 于F ,作PG ⊥ON 于G ………………………………(1分)∵OP 平分∠MON∴PF =PG ………………………………………………………………………………(2分) ∵∠MON = 60°∴∠FPG = 360°– 60°– 90°– 90°= 120°………………………(3分) 又∵∠APB =120° ∴∠APF = ∠BPG∴△PAF ≌△PBG ………………………………………………………………………(4分) ∴PA = PB ………………………………………………………………………………(5分) (2)由(1)得:PA = PB ,∠APB =120°∴∠PAB = ∠PBA = 30°………………………………………………………………(6分) ∵∠MON = 60°,OP 平分∠MON∴∠TON = 30°…………………………………………………………………………(7分) ∴∠POB = ∠PBC ………………………………………………………………………(8分) 又∠BPO = ∠OPB∴△POB ∽△PBC ………………………………………………………………………(9分) ∴34)23()(22===∆∆PB PB PC PB S S PBC POB ∴△POB 与△PBC 的面积之比为4∶3………………………………………………(10分) (3)① 当点A 在射线OM 上时(如图乙1),易求得:∠BPD = ∠BOA = 60°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 75° 作BE ⊥OT 于E∵∠NOT = 30°,OB = 2∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP = OE + PE =3+ 1……………………………………………………………(12分) ② 当点A 在射线OM 的反向延长线上时(如图乙2)此时∠AOB = ∠DPB = 120°∵ABO PBD ∠=∠,而∠PBA = 30°,∴∠OBA = ∠PBD = 15°作BE ⊥OT 于E∵∠NOT = 30°,OB = 2,∴BE =1,OE = 3,∠OBE = 60°∴∠EBP = ∠EPB = 45°∴PE = BE =1∴OP =3-1…………………………………………………………………………(14分) ∴综上所述,当2=OB 时,1313-+=或OP(注:若考生直接写出结果......,只给一半的分数.......)O MN T图乙1 PBEO M N T 图乙2 P A B E D。
最新初中中考数学题库 2011中考方程与不等式专题测试题及答案
(方程与不等式)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B .a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1- B.1m -C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )。
A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
2011年上海市中考数学试卷
2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。
专题:计算题。
分析:本题需根据有理数的除法法则分别对每一项进行计算,即可求出结果.解答:解:A∵=0.3…故本选项错误;B、∵=0.2故本选项正确;C、=0.142857…故本选项错误;D、=0.1…故本选项错误.故选B.点评:本题主要考查了有理数的除法,在解题时要根据有理数的除法法则分别计算是解题的关键.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.考点:不等式的性质。
专题:计算题。
分析:根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.考点:最简二次根式。
专题:计算题。
分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、=,被开方数含分母,不是最简二次根式;故此选项错误B、=,被开方数含分母,不是最简二次根式;故此选项错误C、,是最简二次根式;故此选项正确;D.=5,被开方数,含能开得尽方的因数或因式,故此选项错误故选C.点评:此题主要考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)考点:二次函数的性质。
2011年上海市中考数学试卷(含解析)
2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(4分)下列分数中,能化为有限小数的是()A.B.C.D.2.(4分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(4分)下列二次根式中,最简二次根式的是()A.B.C.D.4.(4分)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(4分)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(4分)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(4分)计算:a2•a3=.8.(4分)因式分解:x2﹣9y2=.9.(4分)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=.10.(4分)函数的定义域是.11.(4分)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是.12.(4分)一次函数y=3x﹣2的函数值y随自变量x值的增大而(填“增大”或“减小”).13.(4分)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是.14.(4分)某小区2016年绿化面积为2000平方米,计划2018年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是.15.(4分)如图,AM是△ABC的中线,设向量,,那么向量=(结果用、表示).16.(4分)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=.17.(4分)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=.18.(4分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0°<m<180°)后,如果点B恰好落在初始Rt△ABC的边上,那么m=.三、解答题(本大题共7题,满分78分)19.(10分)计算:(﹣3)0﹣+|1﹣|+.20.(10分)解方程组:.21.(10分)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC =2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(10分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有名.23.(12分)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(12分)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(14分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y 关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(4分)下列分数中,能化为有限小数的是()A.B.C.D.【分析】本题需根据有理数的除法法则分别对每一项进行计算,即可求出结果.【解答】解:A∵=0.3…故本选项错误;B、∵=0.2故本选项正确;C、=0.142857…故本选项错误;D、=0.1…故本选项错误.故选:B.【点评】本题主要考查了有理数的除法,在解题时要根据有理数的除法法则分别计算是解题的关键.2.(4分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.【解答】解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.【点评】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.3.(4分)下列二次根式中,最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.【解答】解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数或因式,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.【点评】本题主要考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,就是逐个检查被开方数不含分母,也不含能开的尽方的因数或因式,同时满足的就是最简二次根式,否则就不是.4.(4分)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【分析】已知抛物线解析式为顶点式,根据顶点式的坐标特点求顶点坐标.【解答】解:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选:D.【点评】本题考查了二次函数的性质.抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).5.(4分)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等【分析】全等三角形必须是对应角相等,对应边相等,根据全等三角形的判定方法,逐一检验.【解答】解:A、周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B、周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题;C、周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题;D、由于等腰直角三角形三边之比为1:1:,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等,真命题.故选:D.【点评】本题考查了全等三角形的判定定理的运用,命题与定理的概念.关键是明确全等三角形的对应边相等,对应角相等.6.(4分)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内【分析】根据BP=3AP和AB的长度求得AP的长,然后利用勾股定理求得圆P的半径PD的长,根据点B、C到P点的距离判断点P与圆的位置关系即可.【解答】解:∵AB=8,点P在边AB上,且BP=3AP,∴AP=2,∴r=PD==7,PC===9,∵PB=6<7,PC=9>7∴点B在圆P内、点C在圆P外故选:C.【点评】本题考查了点与圆的位置关系的判定,根据点与圆心之间的距离和圆的半径的大小关系作出判断即可.二、填空题(本大题共12题,每题4分,共48分)7.(4分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.8.(4分)因式分解:x2﹣9y2=(x+3y)(x﹣3y).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣9y2=(x+3y)(x﹣3y).【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.9.(4分)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=1.【分析】本题需先根据已知条件列出关于m的等式,即可求出m的值.【解答】解:∵x的方程x2﹣2x+m=0(m为常数)有两个相等实数根∴△=b2﹣4ac=(﹣2)2﹣4×1•m=04﹣4m=0m=1故答案为:1【点评】本题主要考查了根的判别式,在解题时要注意对根的判别式进行灵活应用是本题的关键.10.(4分)函数的定义域是x≤3.【分析】二次根式有意义,被开方数为非负数,即3﹣x≥0,解不等式即可.【解答】解:依题意,得3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查了函数的自变量取值范围的求法.关键是根据二次根式有意义时,被开方数为非负数建立不等式.11.(4分)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是y=﹣.【分析】根据图象过(﹣1,2)可知,此点满足关系式,能使关系式左右两边相等.【解答】解:把(﹣1,2)代入反比例函数关系式得:k=﹣2,∴y=﹣,故答案为:y=﹣,【点评】此题主要考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.12.(4分)一次函数y=3x﹣2的函数值y随自变量x值的增大而增大(填“增大”或“减小”).【分析】根据一次函数的性质判断出一次函数y=3x﹣2中k的符号,再根据一次函数的增减性进行解答即可.【解答】解:∵一次函数y=3x﹣2中,k=3>0,∴函数值y随自变量x值的增大而增大.故答案为:增大.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,k>0时,y随x的增大而增大.13.(4分)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是.【分析】共有八只型号相同的杯子,每只杯子被抽到的机会是相同的,故可用概率公式解答.【解答】解:在8只型号相同的杯子中,一等品有5只,则从中随机抽取1只杯子,恰好是一等品的概率是P=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)某小区2016年绿化面积为2000平方米,计划2018年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是20%.【分析】本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x 的值,即可得出答案.【解答】解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.15.(4分)如图,AM是△ABC的中线,设向量,,那么向量=+(结果用、表示).【分析】首先由AM是△ABC的中线,即可求得的长,又由=+,即可求得答案.【解答】解:∵AM是△ABC的中线,,∴==,∵,∴=+=+.故答案为:+.【点评】此题考查了平面向量的知识.题目难度不大,注意数形结合思想的应用.16.(4分)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=54°.【分析】由∠ACB=90°,∠ECD=36°,求得∠ACE的度数,又由CE∥AB,即可求得∠A的度数.【解答】解:∵∠ECD=36°,∠ACB=90°,∴∠ACD=90°,∴∠ACE=∠ACD﹣∠ECD=90°﹣36°=54°,∵CE∥AB,∴∠A=∠ACE=54°.故答案为:54°.【点评】此题考查了平行线的性质.解题的关键是注意数形结合思想的应用.17.(4分)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=6.【分析】由AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,根据垂径定理可知M、N为AB、AC的中点,线段MN为△ABC的中位线,根据中位线定理可知BC=2MN.【解答】解:∵AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,∴M、N为AB、AC的中点,即线段MN为△ABC的中位线,∴BC=2MN=6.故答案为:6.【点评】本题考查了垂径定理,三角形的中位线定理的运用.关键是由垂径定理得出两个中点.18.(4分)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0°<m<180°)后,如果点B恰好落在初始Rt△ABC的边上,那么m=80°或120°.【分析】本题可以图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B′,交直角边AC于B″,此时DB′=DB,DB″=DB=2CD,由等腰三角形的性质求旋转角∠BDB′的度数,在Rt△B″CD中,解直角三角形求∠CDB″,可得旋转角∠BDB″的度数.【解答】解:如图,在线段AB取一点B′,使DB=DB′,在线段AC取一点B″,使DB =DB″,∴①旋转角m=∠BDB′=180﹣∠DB′B﹣∠B=180°﹣2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋转角∠BDB″=180°﹣∠CDB″=120°.故答案为:80°或120°.【点评】本题考查了旋转的性质.关键是将图形的旋转转化为点的旋转,求旋转角.三、解答题(本大题共7题,满分78分)19.(10分)计算:(﹣3)0﹣+|1﹣|+.【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.【解答】解:=1﹣3+﹣1+,=﹣3++﹣,=﹣2.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.(10分)解方程组:.【分析】用代入法即可解答,把①化为x=1+y,代入②得(1+y)2+2y+3=0即可.【解答】解:由①得y=x﹣2③把③代入②,得x2﹣2x(x﹣2)﹣3(x﹣2)2=0,即x2﹣4x+3=0解这个方程,得x1=3,x2=1代入③中,得或.∴原方程组的解为或.【点评】考查了高次方程,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.21.(10分)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC =2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.【分析】(1)根据CD∥AB可知,△OAB∽△OCD,再根据相似三角形的对应边成比例即可求出OD的长;(2)过O作OE⊥CD,连接OM,由垂径定理可知ME=MN,再根据tan∠C=可求出OE的长,利用勾股定理即可求出ME的长,进而求出答案.【解答】解:(1)∵CD∥AB,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴=,即=,又OA=3,AC=2,∴OB=3,∴=,∴OD=5;(2)过O作OE⊥CD,连接OM,则ME=MN,∵tan∠C=,即=,∴设OE=x,则CE=2x,在Rt△OEC中,OC2=OE2+CE2,即52=x2+(2x)2,解得x=,在Rt△OME中,OM2=OE2+ME2,即32=()2+ME2,解得ME=2.∴MN=4,答:弦MN的长为4.【点评】本题考查的是垂径定理,涉及到锐角三角函数的定义、相似三角形的判定与性质及勾股定理,根据题意作出辅助线是解答此题的关键.22.(10分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是12%;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是36~45岁(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是5%;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有700名.【分析】(1)本题需先根据已知条件,再结合图形列出式子,解出结果即可.(2)本题需先根据中位数的概念即可得出答案.(3)本题需先求出25岁以下的总人数,再用5除以总人数即可得出答案.(4)本题需先求出这次被调查公民中支持的人所占的百分比,再乘以总人数即可得出答案.【解答】解:(1)图2中所缺少的百分数是:1﹣39%﹣18%﹣31%=12%(2)∵共1000名公民,∴这个中位数所在年龄段是第500和第501个数的平均数,∴这个中位数所在年龄段是:36~45岁(3)∵年龄段是“25岁以下”的公民中“不赞成”的有5名,“25岁以下”的人数是1000×10%,∴它占“25岁以下”人数的百分数是×100%=5%,(4)∵所持态度中“很赞同”和“赞同”的人数所占的百分比分别是;39%,31%,∴这次被调查公民中“支持”的人有1000×(39%+31%)=700(人),故答案为:12%,36~45,5%,700.【点评】本题主要考查了条形统计图和扇形统计图的有关知识,在解题时要注意综合利用这两种统计图是本题的关键.23.(12分)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.【分析】(1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,利用一组对边平行且相等判定平行四边形;(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.【解答】证明:(1)连接BD,∵梯形ABCD中,AD∥BC,AB=CD,∴AC=BD,∵DE⊥BC,EF=DE,∴BD=BF,CD=CF,∴AC=BF,AB=CF,∴四边形ABFC是平行四边形;(2)∵DE2=BE•CE∴,∵∠DEB=∠DEC=90°,∴△BDE∽△DCE,∴∠CDE=∠DBE,∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,∴四边形ABFC是矩形.【点评】本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但题目的难度不算大.24.(12分)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.【分析】(1)先求出根据OA垂直平分线上的解析式,再根据两点的距离公式求出线段AM的长;(2)二次函数y=x2+bx+c的图象经过点A、M.待定系数法即可求出二次函数的解析式;(3)可设D(n,n+3),根据菱形的性质得出C(n,n2_n+3)且点C在二次函数y =x2_x+3上,得到方程求解即可.【解答】解:(1)在一次函数y=x+3中,当x=0时,y=3.∴A(0,3).∵MO=MA,∴M为OA垂直平分线上的点,可求OA垂直平分线上的解析式为y=,又∵点M在正比例函数,∴M(1,),又∵A(0,3).∴AM=;(2)∵二次函数y=x2+bx+c的图象经过点A、M.可得,解得.∴y=x2﹣x+3;(3)∵点D在一次函数的图象上,则可设D(n,n+3),设B(0,m)(m<3),C(n,n2﹣n+3)∵四边形ABCD是菱形,∴|AB|=3﹣m,|DC|=|y D﹣y C|=|n+3﹣(n2_n+3)|=|n﹣n2|,|AD|==|n|,∵|AB|=|DC|,∴3﹣m=n﹣n2,①,∵|AB|=|DA|,∴3﹣m=n,②解①②得,n1=0(舍去),n2=2,将n=2,代入C(n,n2_n+3),∴C(2,2).即:满足条件的点C坐标为C(2,2).【点评】本题是二次函数的综合题型,其中涉及的知识点有抛物线解析式的确定,两点的距离公式,菱形的性质,解二元一次方程,综合性较强,难度较大.25.(14分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y 关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.【分析】(1)本题需先根据已知条件得出AC的值,再根据CP⊥AB求出CP,从而得出CM的值.(2)本题需先根据EN,设出EP的值,从而得出EM和PM的值,再得出△AEP∽△ABC,即可求出=,求出a的值,即可得出y关于x的函数关系式,并且能求出函数的定义域.(3)本题需先设EP的值,得出则EM和MP的值,然后分①点E在AC上时,根据△AEP∽△ABC,求出AP的值,从而得出AM和BN的值,再根据△AME∽△ENB,求出a的值,得出AP的长;②点E在BC上时,根据△EBP∽△ABCC,求出AP的值,从而得出AM和BN的值,再根据△AME∽△ENB,求出a的值,得出AP的长.【解答】解:(1)∵∠ACB=90°,∴AC=,=,=40,∵CP⊥AB,∴=,∴=,∴CP=24,∴CM=,=,=26;(2)∵,∴设EP=12a,则EM=13a,PM=5a,∵EM=EN,∴EN=13a,PN=5a,∵△AEP∽△ABC,∴,∴x=16a,∴a=,∴BP=50﹣16a,∴y=50﹣21a,=50﹣21×,=50﹣x,∵当E点与A点重合时,x=0.当E点与C点重合时,x=32.∴函数的定义域是:(0<x<32);(3)①当点E在AC上时,如图2,设EP=12a,则EM=13a,MP=NP=5a,∵△AEP∽△ABC,∴,∴,∴AP=16a,∴AM=11a,∴BN=50﹣16a﹣5a=50﹣21a,∵△AME∽△ENB,∴,∴=,∴a=,∴AP=16×=22,②当点E在BC上时,如图(备用图),设EP=12a,则EM=13a,MP=NP=5a,∵△EBP∽△ABC,即=,解得BP=9a,∴BN=9a﹣5a=4a,AM=50﹣9a﹣5a=50﹣14a,∵△AME∽△ENB,∴,即=,解得a=,∴AP=50﹣9a=50﹣9×=42.所以AP的长为:22或42.【点评】本题主要考查了相似三角形、勾股定理、解直角三角形的判定和性质,在解题时要注意知识的综合应是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-2011年上海市中考试题汇编
——方程与不等式(组)
【2008】
2.如果2x =是方程1
12x a +=-的根,那么a 的值是( )
A .0
B .2
C .2-
D .6-
7.不等式30x -<的解集是 .
9.用换元法解分式方程21
221x x
x x --=-时,如果设21
x y x -=,并将原方程化为关于y
的整式方程,那么这个整式方程是 .
10.方程32x -=的根是 .
20.(本题满分10分) 解方程:
2654111x x x x x ++=--+
【2009】
2.不等式组1021x x +>⎧⎨-<⎩,的解集是( ) A .1x >- B .3x <
C .13x -<<
D .31x -<< 3.用换元法解分式方程1
3101x x
x x --+=-时,如果设
1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )
A .230y y +-=
B .2310y y -+=
C .2310y y -+=
D .2310y y --= 8.方程11x -=的根是 .
9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k = .
20.(本题满分10分)
解方程组:21220y x x xy -=⎧⎨--=⎩,①.②
【2010】
3.已知一元二次方程 x 2
+ x ─ 1 = 0,下列判断正确的是( )
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定
10.不等式 3 x ─ 2 > 0 的解集是____________.
11.方程 x + 6 = x 的根是____________.
20.解方程:x x ─ 1 ─ 2 x ─ 2x
─ 1 = 0 【2011】
2.如果a >b ,c <0,那么下列不等式成立的是( ).
(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a
b
c c >
9.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =______.
14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.
20.(本题满分10分)解方程组:222,230.
x y x xy y -=⎧⎨--=⎩。