第六章-简单超静定问题-习题选解
材料力学-简单的超静定问题

2021/6/16
4
2021/6/16
5
2021/6/16
6
§6-2 拉压超静定问题
拉压变形时的胡克定律 l FN l EA
综合考虑变形的协调条件、虎克定律和静力 学平衡条件求解拉压超静定问题。
2021/6/16
7
例 已知1、2杆抗拉刚度为E1A1, 3杆抗拉刚度为E3A3, F的大小已知,求各杆内力。
13
2
l
A
A*
l3
FN 3l E3 A3
9
4、联解方程
FN1
2 cos
F
E 3 A3
E 1 A1 c o s 2
FN 3
1
2
F E 1 A1
cos3
E 3 A3
2021/6/16
10
装配应力的计算:超静定结构中由于加工误 差, 装配产生的应力。
平衡方程:
FN1 FN2
F N 3(F N 1F N 2)cos
超静定问题:若未知力的个数多于独立的平
衡方程的个数,仅用静力平衡方程便无法确定
全部未知力,这类问题为超静定问题。相应结
构称为超静定结构。
2021/6/16
2
超静定次数:未知力个数与独立平衡方程数之 差,也等于多余约束数。
多余约束:在结构上加上的一个或几个约束, 对于维持平衡来说是不必要的约束称多余约束。 对应的约束力称多余约束反力。
由于超静定结构能有效降低结构的内力及变 形,在工程上应用非常广泛。
2021/6/16
3
基本静定系:解除多余约束代之于未知力后的 结构。
●超静定问题的解法:综合考虑变形的几何相 容条件、物理关系和静力学平衡条件。
7第六章简单的超静定问题

E3 A3
FN 1
FN 2
2COS
F E3 A3
EACOS
2
解超静定问题的步骤
(1)列 静力平衡方程 确定超静定次数; (2)根椐变形相容条件建立变形几何方程。变形几何方程的
个数与超静定次数相等; (3)将 物理方程 (胡克定律)代入变形几何方程得补充方程; (4)联立补充方程与静力平衡方程求解。
第六章
简单的超静定问题
• 超静定问题及其解法 • 拉压超静定问题 • 扭转超静定问题 • 简单超静定梁
§6—1 超静定问题及其解法
1,静定问题 约束反力或杆件的内力可以用静力平衡方程求出,这种情 况称作静定问题。
2,超静定问题
只凭静力平衡方程已不能解出全部未知力,这种情况称做超 静定问题。
F
A
C
2
3
1
A
B
C
P 40
80
FN1
FN2
80
FN3
P
几何方程
2 l2 l1 l3
物理方程
l1
F N1l1 EA
l 2
F N2l2 EA
l3
F N3l3 EA
2
3
1
A
B
C
l1
P l2
l3
4080807575补充方程
2 F N 2 l2 F N1l1 F N 3 l3 EA EA EA
2
3
1
A
B
2
A
F
B
D
C
3 1
2
A
FN1
FN3
FN2
αα
A
F
F
解:列静力平衡方程
F N1 F N2
材料力学——6简单的超静定问题

M
(x)
X
1
x
X1x, P(x
x l ), 2
l 2
x
l 2
B
l 0
M
(x)M EI
( x)dx
0
如果B处支撑为弹簧 (弹簧系数K) ?
例 P
A
l
l
2
2
BA
P
B
l
l
2
2
X1
解
M
(x)
X1
x
X1x, P(x
x l ), 2
l 2
x
静定基
l 2
x
B
l 0
M (x)M EI
(x)dx
X1 K
求解 线性方程
未知力
以一例说明解法
q
12 3
X1 X2 X3
• 静定基(含未知数)
1 0, 2 0, 3 0
• 位移协调条件
建立方程的过程
以1为例说明
X1 X2 X3
1
M (x)M1(x) dx EI
(M X1 M X2 M X3 M q )M1(x) dx EI
M X1M1 dx M X2 M1(x) dx M X3 M1(x) dx M qM1(x) dx
A
P0 =1 B
M (x) x
解: 协调条件——D截面转
角为零
A
静定基
D
/2
0
M
( )M
EI
()Rd
0
DX
P 2
二、装配应力
1、静定问题无装配应力
B
C
2、静不定问题存在装配应力
1
2
A
下图,3号杆的尺寸误差为,
简单的超静力问题

简单的超静定问题
20
例题 6-2
2. 取1杆和2杆为AB杆的多余约束,FN1和FN2 为多余未知力。得基本静定系如图c。
F
3
AC
B
(c)
材料力学(Ⅰ)电子教案
简单的超静定问题
21
例题 6-2
3. 由变形图(图d)可得变形相容条件为
E
(d) C Dl1 FN1
Δl1 2Δl3 Δl2 2Δl1
F
A
F
FN3
2E F 1A 1F cNo 2 3 l 1sF N E l1 3 3c A 3o s
于是可求出多余未知力FN3 。
材料力学(Ⅰ)电子教案
简单的超静定问题
例2
y
q
A
C
BxA
l/2
l/2
l
8
B
超静定梁
q
A
l/2
FC
l
基本静定系统
B 补充方程为 5ql4 FCl3 0 38E4 I 48EI
材料力学(Ⅰ)电子教案
简单的超静定问题
1
第 6 章 简单的超静定问题
§6-1 超静定问题及其解法 §6-2 拉压超静定问题 §6-3 扭转超静定问题 §6-4 简单超静定梁
材料力学(Ⅰ)电子教案
简单的超静定问题
2
§6-1 超静定问题及其解法
Ⅰ. 关于超静定问题的概述
(b)
材料力学(Ⅰ)电子教案
简单的超静定问题
mm×30 mm的矩形,钢的弹性
模量E=210 GPa,铜的弹性模
量E3=100 GPa。
材料力学(Ⅰ)电子教案
简单的超静定问题
29
例题 6-3
解:1. 装配后有三个未知的装配内力FN1, FN2 , FN3,如 图d所示。但平行力系只有二个独立的平衡方程,
材料力学(I)第六章

(2) 几何方程
L2
( L3 ) cos L1
材料力学(Ⅰ)电子教案
简单的超静定问题
15
(3)、物理方程及补充方程:
FN 1L1 FN 3 L3 ( ) cos E1 A1 E3 A3
(4) 、解平衡方程和补充方程,得:
FN1 FN 2
E1 A1 cos2 L3 1 2 cos3 E1 A1 / E3 A3
FN 1L FN 3 L 得: cos E1 A1 cos E3 A3
5)联立①、④求解:
FN ! F
④
E 3 A3 2 co s E1 A1 co s2
FN 3
F E1 A1 1 2 co s3 E A
材料力学(Ⅰ)电子教案
简单的超静定问题
[例2-19]刚性梁AD由1、2、3杆悬挂,已知三杆材料 相同,许用应力为[σ ],材料的弹性模量为 E,杆长 均为l,横截面面积均为A,试求各杆内力。
5
1.比较变形法 把超静定问题转化为静定问题解,但 必须满足原结构的变形约束条件。
[例2-16] 杆上段为铜,下段为钢杆,
E1 A1
A
1
上段长 1 , 截面积A1 , 弹性模量E1 下段长 2 , 截面积A2 , 弹性模量E2
杆的两端为固支,求两段的轴力。
C
E 2 A2
F
FB
B
2
(1)选取基本静定结构(静定基如图),B 解: 端解除多余约束,代之以约束反力RB
2E1 A1 cos3 FN 3 3 L3 1 2 cos E1 A1 / E3 A3
例2-22
材料力学(Ⅰ)电子教案
简单的超静定问题

M A Me M B 0
Me MB
A
C
B
2、变形协调方程
B 0
即
BM BM 0
e B
Me
MB
A
C
B
3、补充方程
BM
e
M e a GI p
BM
BM Bl GI p NhomakorabeaM e a M Bl 0 GI p GI p
M ea MB l
4、联立解得
3、物理方程
FN 1l l1 EA FN 3 l l 3 EA FN 2 l l 2 EA
得
FN 1 FN 2 FN 3
F 12 F 3
C′
补充方程 FN 1 FN 3 2FN 2
7F 12
例题3:如图所示结构,杆①、②的刚度为EA,梁BD 为刚体,载荷F=50kN,许用应力[s]160MPa。试确 定各杆的横截面积。 解: 1、确定各杆内力 取横梁为研究对象 平衡方程
FB aEAT
由平衡方程得 FA FB aEAT
例题5:如图所示结构,三杆的刚度均为EA,杆③的长 度比设计长度l短了d。试求装配后各杆的轴力。
A
D
① ③ a a C′ C l2 ②
B
解:对称结构,内力对称 变形协调方程
l1 d l 3 cos a
l
d
l3 l1
lt a1 T l1 a 2 T l 2
A
l1
C
l2
B
约束力产生的变形
l FB FB l1 F l B2 E1 A1 E2 A2
lt
FB
变形协调方程
孙训方材料力学06简单的超静定问题

B
DC
1
3
2
A
F
10
材料力学
第六章 简单的超静定问题
解:(1)判断超静定次数 结构为一次超静定。
(2)列平衡方程
Fx 0 FN1 FN2
Fy 0
FN1 cos FN2 cos FN3 F 0
B
D
1
3 2
l2 C
l1 A
A
B
F (6)联立平衡方程与补充方程求解
FN1 FN2 FN3 F 0 2aFN1 aFN2 0 FN1 FN3 2FN2
FN1 F / 6 FN2 F / 3 FN3 5F / 6
材料力学
Ⅱ. 装配应力
B
杆系装配好后,各杆将处于
材料力学
【例】 图示等直杆 AB 的两端分别与刚性支承连结。设两 支承的距离(即杆长)为 l,杆的横截面面积为 A,材料的弹
性模量为 E,线膨胀系数为 。试求温度升高 T 时杆内的
温度应力。
A
B
l
材料力学 A
解: 这是一次超静定问题
l
变形相容条件:杆的长度不变
A
Δl 0
杆的变形为两部分:
q B
l/2
FC
l
基本静定系 或相当系统
材料力学
第六章 简单的超静定问题
求解超静定问题的步骤
(1) 判断超静定次数:去掉多余约束,画上相应约束反力 —建立基本静定系。
(2) 列平衡方程: 在已知主动力,未知约束反力及多余约束 反力共同作用下;
(3) 列几何方程:根据变形相容条件; (4) 列物理方程:变形与力的关系; (5) 组成补充方程:物理方程代入几何方程即得。
第六章超静定问题PPT课件

1 2
EA
,
E3 A3
FN3
eE3 A3 l
1
1 E3 A3
2EA
所得结果为正,说明原先假定杆1,2的装配内力为拉力和杆3的装配内力为 压力是正确的。
5. 各杆横截面上的装配应力如下:
1
2
FN1 A
74.53 MP a
(拉应力)
3
FN3 A3
19.51MP a
(压应力)
第26页/共59页
钢管横截面上任意点的切应力为
b
Tb
I pb
GbM e
Ga Ipa Gb Ipb
cos3
E3 A3
解答表明,各杆的轴力与其刚度有关。
第11页/共59页
例6-2 求图示杆的支反力。
RA
解: 平衡方程:
A
A
RA RB P 0
(1)
变形协调条件:
lAB lAC lBC 0 (2)
物理关系:
LAB
RAa EA
RB b EA
(3)
a l
b
C
P
P
B
B
RB
联解得:
RA
b l
M A
M eb l
C
TAC a GIp
Meab
lGIp
第36页/共59页
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧配合而成的组合杆,受 扭转力偶矩Me作用,如图a。试求铜杆和钢管横截面上的扭矩Ta和Tb,并绘 出它们横截面上切应力沿半径的变化情况。
(a)
第37页/共59页
Tb Ta
(b)
第9页/共59页
Bx
Bx FB
§6-2 拉压超静定问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1 / 4
a
a2
a
图习题16
A
B
EA
F2
F
C
D
A
B
C
D
mkN/30
m1m2
E
l
l8.1
1
2
图习题56
习 题
[6-1] 试作图示等直杆的轴力图.
解:把A支座去掉,代之以约束反力AR〔↑〕.
变形协调条件为:
故:47FRNAAC
轴力图如图所示.
[6-5] 图示刚性梁受均布荷载作用,梁在A端铰支,在B点和C点由
两根钢杆BD和CE支承.已知钢杆BD和CE的横截面面积22200mmA和
2
1
400mmA
,钢杆的许用应力MPa170][,试校核该钢杆的强度.
解:以AB杆为研究对象,则:
135321NN
……………<1>
变形协调条件:
21
2.1NN
…………………<2>
<2>代入〔1〕得:
)(143.322.41352kNN
〔拉力〕
)(571.38143.322.12.121kNNN
〔压力〕
按轴力正负号的规定,记作:
kNN571.381;kNN143.322
强度校核:
MPaMPammNAN170][4275.9640038571||||2111
,符合强度条件.
.
2 / 4
A
B
C
F
2l2
l
图习题176
A
C
2
l
‘
C
F
MPaMPammNAN170][715.160200321432122
,符合强度条件.
因此,钢杆符合强度条件,即安全.
[6-15] 试求图示超静定梁的支反力.
解:把B支座去掉,代之以约束反力BR,则变形协调方程为:
查附录IV,得:
故, 038232EIaREIaMwwBeRBMBe
aMReB4
3
〔负号表示方向向下,即↓〕
由0Y得:aMReA43 〔↑〕
由0AM得:eeAMaaMM243,aMMeA2〔逆时针方向转
动〕
[习题6-17] 梁AB因强度和刚度不足,用同一材料和同样截面的短梁AC加固,如
图所示.试求:
〔1〕二梁接触处的压力CF;
〔2〕加固后梁AB的最大弯矩和B点的挠度减小的百分数.
解:〔1〕求二梁接触处的压力CF
以AB为研究对象,把C处的圆柱垫去掉,代之以约束反力CF〔↑〕;
AC为研究对象,作用在C处的力为
'
C
F
以
〔↓〕.CF与'CF是一对作用与反作用
力,'CCFF.受力如图所示.
.
3 / 4
A
B
F
2l2
l
A
BFL图MA
B
C
F
2l2
l
A
B
C
图M
2Fl8
3Fl
AB梁在C处的挠度:
C
CFCFABCwww,
.
查附录IV得:
故,EIlFEIFlwwwCCFCFABCC2448533,
AC梁在C处的挠度:
变形协调方程:
4
5F
FC
〔↑〕
〔2〕求加固后梁AB的最大弯矩和B点的挠度减小的百分数
① 弯矩的变化情况
加固前:22FllFMC
加固后:
显然,AB梁的最大弯矩
减小:%5021FlFlFl
〔负弯矩只表示AB梁上侧受拉〕
② B点挠度的变化情况
加固前:
.
4 / 4
加固后:2'lwwwCCCFCFCFB
故,2'lwwwCCCFCFCFB
B点挠度减小的百分数为: