材料力学第六章简单的超静定问题

合集下载

材料力学-力法求解超静定结构

材料力学-力法求解超静定结构
3 优化结构设计
力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。

材料力学 简单的超静定问题

材料力学  简单的超静定问题
l1 F N 1l1 E 1 A1
FN 3 l 3 E 3 A3
FN1
FN3
a a A
A1 FN2
l3
FN 3l3 E 3 A3
(3)
(4)补充方程:由几何方程和物理方程得:
F N 1l1 E1 A1
2

cos a
(5)联解(1)、(2)、(3)式,得:
FN 1 FN 2 E1 A1 F cos a 2 E1 A1 cos a E 3 A3
第六章
简单的超静定问题
1
第六章
§6-1
§6-2
简单的超静定问题
超静定问题及其解法
拉压超静定问题
§6-3 §6-4
扭转超静定问题 简单超静定梁
2
§6-1
超静定问题及其解法
1.单纯依靠静力平衡方程能够确定全部未知力(支反 力、内力)的问题,称为静定问题。 相应的结构称为静定结构。
2.单纯依靠静力平衡方程不能确定全部未知力(支反 力、内力)的问题,称为超静定问题。 相应的结构称为超静定结构。
3
F N3 A3 9F 14 A [ ]
F
[F ]
14 9
14 9
[ ] A
[ ] A
11
[例6-2-4]木制短柱的四角用四个40404的等边角钢 加固,角钢和木材的许用应力分别为[]1=160MPa和 []2=12MPa,弹性模量分别为E1=200GPa 和 E2 =10GPa;求许可载荷P。 解:(1)以压头为研究对象, 设每 个角钢受力为FN1,木柱受力为FN2.
14
B
1
D
C
3 2
(2) 几何方程
l1 ( l 3 ) cos a

第6章超静定问题

第6章超静定问题

T =7 kN.m d1=0.1 m
2m
A
1m
B
1m
C 2m d2
材料力学电子教案
例 7 答案 解:联立三式求出 FN ,即可得结果:
∆l = FN ⋅2 8FN = π d 22 Eπd 2 E 4 ∆l 2 ⋅∆l = = d1 d1 2 T ⋅1 FN d1 ⋅2 = − GI P GI P
材料力学电子教案
对(c)图: (1) 平衡方程
A
1
a
2 C
a
3 B
l
∑F
y
= 0, F1 + F2 + F3 − F = 0
A
F
∑M
= 0, aF2 + 2aF3 = 0
F1
F2
F3
(2) 变形协调方程
∆l1 − ∆l2 = ∆l2 − ∆l3
即∆l1 − 2∆l2 + ∆l3 = 0 (3) 物理方程 F1l ∆l1 = E1 A1
(4)补充方程变为 (4)
FN1 = FN 3
EA cos 2 α E3 A3
材料力学电子教案
联立平衡方程、补充方程,求解得
FN1 = FN 2 =
F E3 A3 2 cos α + EA cos 2 α
FN 3
F = EA 3 1+ 2 cos α E3 A3
在超静定杆系中,各杆轴力的大小和该杆的刚度与其它杆 的刚度的比值有关,杆系中任一杆刚度的改变都将引起杆系各 轴力的重新分配。这些特点在静定杆系中是不存在的。
F N3
α
FN2
A F
x
ΣFy = 0, FN3 + FN1 cos α + FN2 cos α − F = 0

材料力学第六章静不定

材料力学第六章静不定

FHale Waihona Puke 5、列补充方程将物理方程代入几何方程得补充方程
材料力学
.
6
FN2l2FN3l3FN1l1cos
E2A2 E3A3 E1A1
解得
FN1
1
F 2E2A2l1
cos2
E1 A1l2
FN2 FN3 2cosE F2A E21l1 Ac1lo2s
材料力学
.
7
OAB为刚性梁,写几何方程。
450


O
A
B
l
l1 l l2
l
OAB为刚性梁, ①、②两杆材料相同, 抗弯刚度相等,求两杆轴力之比。
F

F
O
B l1 C
bA
l2 sin 45o
2l1

l
l
l
EAsF in N 1 2 clos2EAsiF nN b2closb
FN1 sin 2 FN2 sin 2b
l1 2 l2
sin sin b
l1F E N A 1(co 2 sl), l2F E N A 2(colsb)
材料力学
.
8
OAB为刚性梁,①、②两杆材料相同,
EA2=2EA1。求②杆与①杆的应力之比。
解:变形协调关系
O
l2 sin 450
2l1
即 l2 2l1
450


a
A l1
a
l2
B
F
由物理关系建立补充方程,考虑对O取矩得平衡方程,联 立求出两杆轴力,再求应力后得结果。
小技巧
2
l2 l2
2l1 2l1
变形协调方程 。

材料力学——6简单的超静定问题

材料力学——6简单的超静定问题

M
(x)
X
1
x
X1x, P(x
x l ), 2
l 2
x
l 2
B
l 0
M
(x)M EI
( x)dx
0
如果B处支撑为弹簧 (弹簧系数K) ?
例 P
A
l
l
2
2
BA
P
B
l
l
2
2
X1

M
(x)
X1
x
X1x, P(x
x l ), 2
l 2
x
静定基
l 2
x
B
l 0
M (x)M EI
(x)dx
X1 K
求解 线性方程
未知力
以一例说明解法
q
12 3
X1 X2 X3
• 静定基(含未知数)
1 0, 2 0, 3 0
• 位移协调条件
建立方程的过程
以1为例说明
X1 X2 X3
1
M (x)M1(x) dx EI
(M X1 M X2 M X3 M q )M1(x) dx EI
M X1M1 dx M X2 M1(x) dx M X3 M1(x) dx M qM1(x) dx
A
P0 =1 B
M (x) x
解: 协调条件——D截面转
角为零
A
静定基
D
/2
0
M
( )M
EI
()Rd
0
DX
P 2
二、装配应力
1、静定问题无装配应力
B
C
2、静不定问题存在装配应力
1
2
A
下图,3号杆的尺寸误差为,

《材料力学》第6章 简单超静定问题 习题解

《材料力学》第6章 简单超静定问题 习题解

第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

第六章静不定

第六章静不定

刚性梁AB悬挂于三根平行杆上。l=2m,a=1.5m,b=1m,c=0.25m, d=0.2m。1杆由黄铜制成,E1=100GPa,A1=2cm2,a1=16.5×10-6/ 0C。 2和3杆由碳钢制成,E2=E3=200GPa,A2=1cm2, A3=3cm2 , a2=a3=12.5×10-6/0C,F=40kN。 设温度升高20 0C,求各杆的应力。
9
中南大学土木工程学院
OAB为刚性梁,①、②两杆材料相同, EA2=2EA1。求②杆与①杆的应力之比。
解:变形协调关系
450 ① ②
Dl 2 2Dl1 0 sin 45

O a
D l1
A a
D l2
B
F
Dl2 2Dl1
由物理关系建立补充方程,考虑对O取矩得平衡方程,联 立求出两杆轴力,再求应力后得结果。
∆l2
( c)
∆l3
材料力学
中南大学土木工程学院
5
还可列出其它变形图,但必须保证变形图与受力图一致。 FN1
∆l1
FN2
FN3
∆l2
∆l3
(a)
∆l1 ∆l2 ∆l3
(a)
F FN3
对应受力图
FN1
FN2
(b)
(b)
F FN3
FN1
∆l1 ∆l2
FN2
( c)
∆l3
( c)
F
6
材料力学
中南大学土木工程学院
5、列补充方程:物理方程代入几何方程即得补充方程。
材料力学
中南大学土木工程学院
4
图示静不定结构, 可列如右变形图。
几何方程
∆l1
∆l2
∆l3

材料力学-第六章 简单的超静定问题

材料力学-第六章 简单的超静定问题

变形协调条件:
l1 l 3 cos
F N1
F N3
F N2
l3
l1
A

A
l2

例2.图示AB为刚性梁,1、2两杆的抗拉(压)
刚度均为EA,制造时1杆比原长l短,将1杆装
到横梁后,求两杆内力。
解: 装配后各杆变形 1杆伸长 l1 2杆缩短 l 2 变形协调条件
A
1

l1
4、联解方程
FN 1 F E3 A3 2 cos 2 E1 A 1 cos
FN 3
F E1 A 3 1 1 2 cos E3 A3
●装配应力的计算
装配应力:超静定结构中由于加工误差, 装 配产生的应力。 平衡方程:
FN 1 FN 2
1
3 2

A
l
FN 3 ( FN1 FN 2 ) cos
2、AC和BC材料相同,面积不同,外力作用在 连接界面处,在外力不变的情况下,要使AC上 轴力增加,错误的方法有( )。 A、 增加AC的横截面积 B、 减小BC的横截面积 C、 增加AC的长度 D、 增加BC的长度
A l1 C F B l2
3、AB为等截面杆,横截面面积为A,外力F作 用在中间,则AC和BC上应力分别( )。
2
l 2
B
2( l1 ) l 2
解: 分析AB
A
aF 1 2aF 2 0
F1l 物理方程 l1 EA 变形协调条件
FA
F1
F2
B
F2 l l 2 (缩短) EA
2( l1 ) l 2
4EA 2EA F1 (拉力) F2 (压力) 5l 5l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列静力平衡方程 MA0
F NC 1 E k 3N 53F NBD
变形协调方程
D
F LN DB 31 m C LC 3 E k E / m 0 2 N 3 m F N 0 1 1 . 5 FB 6 m 1 m N0 0 . 8 B2 D l D F N E 65 F 4 N3 m B C3 E 0 1 0 F N D 6 m 0 0 C 2 l E E
EAcos
3P-2N2cos-N1=0
l2
cos
=
2l1
所以
N2l
EAcos2
=2
N1l
EA
最后解得
N1 =
3P
4cos3+1
N2 =
6Pcos2
4cos3+1
L
1.8L LDB
例5
图示刚性梁AB受均布载荷作用,梁在A端铰支,在B点和C点由
两根钢杆BD和CE支承。已知钢杆的横截面面积ADB=200mm2, ACE=400mm2,其许用应力[σ]=170MPa,试校核钢杆的强度。
250 250
查表知40mm×40mm×4mm等边角钢 Ast3.08c6m 2 故 A st4A s t1.3 2c42 m , A W2 5 2 562 cm 2 5
代入数据,得 F W 0 .7F 1F 7 s t 0 .2F 83
F
根据角钢许用应力,确定F
st0.2As8tF3st F69k8N
水平杆缩短 l2 F E N 2 2 A l2 2 2 1 . 3 0 1 7 9 1 2 0 2 3 1 0 .7 5 1 6 3 0 0 .6 2 1 3 m 0 0 .6 mm
l1
FN1l1 E1A1
1mm
l2
FN2l2 E2A2
0.6mm
3、节点A的位移(以切代弧)
处受荷载F作用,试求B点的位移δB。
αD
B1B B2C1C
FNCD
F
A
C
a
CC1 ccoCoLssCCD
C
C1
L/2
L/2
B
mA0
FNCDc2oFs
B1
LC F D LF N1 2 C E L D c L A CoDs F CD
E2A F c o2as
BE4 A cFo3 as
二、拉压超静定问题解法
FN 1
FN 2
300
A2
A
y
A2
A
Ax
F A1
A3
A
A A4
A1A l11mm
A2A l20.6mm
A1
xl20.6mm
yA3 AA 3A 4s i3 l1 n0 t al3 2n0
21.0 339 .0 3 m9m
AAx2y2 0.623.032 9
3.1mm
图所示结构,刚性横梁AB由斜杆CD吊在水 例2 平位置上,斜杆CD的抗拉刚度为EA,B点
材料力学第六章简单 的超静定问题
§6-1 超静定问题
静定结构:
约束反力 可由静力平 衡方程全部 求得
超静定结构:结构的强度和刚度均得到提高 约束反力不能全 部由平衡方程求得 超静定次数:
约束反力多于 独立平衡方程的数
独立平衡方程数: 平面任意力系:
3个平衡方程 平面共点力系:
2个平衡方程
平面平行力系:2个平衡方程 共线力系:1个平衡方程
固, 已知角钢的许用应力[σst]=160MPa,Est=200GPa;木材
的许用应力[σW]=12MPa,EW=10GPa,求许可载荷F。
解: 平衡方程:FFWFst (1)
F
F
变形协调关系: lstlw
物理关系:
lW
FWl EWAW
FW
lst
ห้องสมุดไป่ตู้
Fst l EstAst
Fst
补充方程: Fst FW (2) EstAst EWAW
一、小变形放大图与位移的求法。
求各杆的变形量△Li ,如图;
A
B
变形图精确画法,图中弧线;
L1
L2
C
变形图近似画法,图中弧之切线。
L2 P L1 C' C"
例1
AB长2m, 面积为200mm2。AC面积为250mm2。 E=200GPa。F=10kN。试求节点A的位移。
解:1、计算轴力。(设斜杆为1杆,水
根据木柱许用应力,确定F
W0.7AW 1F7W F10k4N 6 许可载荷 F69k8N
250 250
例4
AB为刚性梁, 1、2两杆的横 截面面积相等。 求1、2两杆的 内力。

由平衡方程得 3P-2N2cos-N1=0
由变形协调条件得
l2
cos
=
2l1
由物理关系
l1 =
N1l
EA
l2 =
N2l
超静定结构的求解方法:
1、列出独立的平衡方程
F x 0F N 1 F N 2
F y 0 2 F N 1 c o F N 3 s F
2、变形几何关系
l1 l2
l1 l2 l3co s
l3
3、物理关系
l1
FN1l
EAcos
l3
FN3l EA
4、补充方程
EFcA N1losF E N3lA cos FN1FN3co2s
5、求解方程组得
FN1FN21 F2 cco2o 3 ss FN312cFo3s
超静定问题的方法步骤:
平衡方程; 几何方程——变形协调方程; 物理方程——弹性定律; 补充方程:由几何方程和物理方程得; 解由平衡方程和补充方程组成的方程组。
例题3
木制短柱的四角用四个40mm×40mm×4mm的等边角钢加
平杆为2杆)取节点A为研究对象
Fx 0 F N 1co s F N 20
FN 1
FN 2 300
y
Ax
Fy 0 F N 1sin F0 F N 1 F /sin 2 F 2k0N
F N 2 F N 1 co s3 F 1 .3 7 k 2N
2、根据胡克定律计算杆的变形。
斜杆伸长 l1 F F E N 1 A 1 l1 1 2 0 2 1 9 1 0 0 0 2 3 0 2 0 1 6 0 0 1 1 3 m 0 1mm
D
FN 1 FN 2
FN 3
3杆材料相同,AB杆面积为200mm2,AC
杆面积为300 mm2,AD杆面积为400 mm2,
若F=30kN,试计算各杆的应力。
A 解:设AC杆杆长为 l,则AB、AD杆长为
F
lABlAD
2l 3
列出平衡方程:
y
Fx 0 F N 1 c3 o 0 0 sF N 2 F N 3 c3 o 00 s
30kN/m
B
A
C
1m
2m
E
FNB D32.2kN
FNCE38.4kN
BD
FNBD ADB
31 22.20M 6 m 010m32N 1 Pa
D
30kN/m
FBD B
A
C
B FBD
1m
CE
FNCE ACE
39 8.4M 6 103 NPa
40m 0 m2
2m
E LCE
例题6
B 1
C2 30 30 3
相关文档
最新文档