高三|函数题中求参数的取值范围有7种类型,你掌握了吗?
重难点专题18 三角函数中w取值范围问题八大题型汇总(原卷版) 备战2024年高考数学重难点突破

题型8新定义 (9)已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2-x 1≤12T =πω,求得0<ω≤πx 2-x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[―π2+2kπ,π2+2kπ],解得ω的范围;第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围.结合图象平移求ω的取值范围1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数=平移后的函数.2、平移后与新图象重合:平移后的函数=新的函数.3、平移后的函数与原图象关于轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于轴对称:平移前的函数=平移后的函数-;5、平移后过定点:将定点坐标代入平移后的函数中。
()f x ()g x ()f x ()g x y x ()f x ()g x三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T,相邻的对称轴和对2,也就是说,我们可以根据三角函数的对称性来研究其周期称中心之间的“水平间隔”为T4性,进而可以研究ω的取值。
三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.已知三角函数的零点个数问题求ω的取值范围对于区间长度为定值的动区间,若区间上至少含有k个零点,需要确定含有k个零点的区间长度,一般和周期相关,若在在区间至多含有k个零点,需要确定包含k+1个零点的区间长度的最小值.三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.ππ。
高三一轮复习函数及其表示 (1)

第四课时函数及其表示考纲要求:函数的概念(B)知识梳理:函数由定义域、对应关系和值域三个要素构成,对函数y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做定义域,与x的值对应的y值叫做函数值,函数值的集合{f(x)|x ∈A}叫做值域.3.函数的表示法表示函数的常用方法有:解析法、列表法、图象法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是建立在其定义域到值域的映射.()(2)函数y=f(x)的图象与直线x=a最多有2个交点.()(3)函数f(x)=x2-2x与g(t)=t2-2t是同一函数.()(4)若两个函数的定义域与值域相同,则这两个函数是相等函数.()(5)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.()(6)分段函数是由两个或几个函数组成的.()(7)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.()答案:(1)√(2)×(3)√(4)×(5)×(6)×(7)√2.下列四组函数中,表示同一函数的是________.(填序号)①y=x-1与y=(x-1)2;②y=x-1与y=x-1x-1;③y=4lg x与y=2lg x2;④y=lg x-2与y=lgx 100.答案:④3.函数f(x)=x-4|x|-5的定义域为________.答案:[4,5)∪(5,+∞)4.已知函数y=f(x)满足f(1)=2,且f(x+1)=3f(x),则f(4)=________.答案:545.已知函数f (x )=⎩⎪⎨⎪⎧4x ,x ≤1,-x ,x >1则f (2)=________,f (-2)=________.答案:-21166.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫13x ,x ≤0,则满足方程f (a )=1的所有a 的值组成的集合为________.答案:{0,3}例题讲解:[典题1](1)函数f (x )=3x 21-x+lg(3x +1)的定义域是________.(2)函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.(3)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.解析:(1)要使函数有意义,需满足⎩⎪⎨⎪⎧1-x >0,3x +1>0.解得-13<x <1.(2)由⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2].(3)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[0,1).答案:(1)⎝⎛⎭⎫-13,1 (2)(0,2] (3)[0,1) 小结:(1)给出解析式的函数的定义域是使解析式中各个部分都有意义的自变量的取值集合,在求解时,要把各个部分自变量的限制条件列成一个不等式(组),这个不等式(组)的解集就是这个函数的定义域,函数的定义域要写成集合或者区间的形式.(2)①若f (x )的定义域为[a ,b ],则f (g (x ))的定义域为a ≤g (x )≤b 的解集;②若f (g (x ))的定义域为[a ,b ],则f (x )的定义域为y =g (x )在[a ,b ]上的值域.[典题2] (1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________.(2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )=________. 解析:(1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(2)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.答案:(1)12x 2+12x ,x ∈R (2)x 2-2,x ∈(-∞,-2]∪[2,+∞)[探究1] 若将本例(2)的条件改为f ⎝⎛⎭⎫2x +1=lg x ,如何求解?解:令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.[探究2] 若将本例(2)的条件改为“f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1”,如何求解?解:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x-1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.即函数f (x )的解析式为f (x )=2x 3+13,x ∈(1,+∞).小结:函数解析式的求法(1)待定系数法:适合已知函数的类型(如一次函数、二次函数).(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件将x 换成1x 或-x 构造出另外一个等式组成方程组,通过解方程组求出f (x ).练习:定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当 -1≤x ≤0时,f (x )=________.解析:当0≤x ≤1时,f (x )=x (1-x ),当-1≤x ≤0时,0≤x +1≤1, ∴f (x +1)=(x +1)[1-(x +1)]=-x (x +1),而f (x )=12f (x +1)=-12x 2-12x .∴当-1≤x ≤0时,f (x )=-12x 2-12x .答案:-12x 2-12x分段函数是一类重要的函数,是高考的命题热点,多以填空题的形式呈现,试题难度不大,多为容易题或中档题,且主要有以下几个命题角度:角度一:求分段函数的函数值[典题3](1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. [听前试做] (1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.(2)∵f ⎝⎛⎭⎫π4=-tan π4=-1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. 答案:(1)9 (2)-2小结:求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.角度二:求解参数的值或取值范围 [典题4](1)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:(1)由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a +1=8,a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(1)-74(2)(-∞,8]小结:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.角度三:研究分段函数的性质 [典题5](1)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则下列结论正确的是________.(填序号)①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x .(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是________.(填序号)①f (x )是偶函数;②f (x )是增函数;③f (x )是周期函数;④f (x )的值域为[-1,+∞). 解析:(1)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,故④正确. (2)因为f (π)=π2+1,f (-π)=-1,所以f (-π)≠f (π),所以函数f (x )不是偶函数,故①错误;因为函数f (x ) 在(-2π,-π)上单调递减,故②错误;函数f (x )在(0,+∞)上单调递增,所以函数f (x )不是周期函数,故③错误;因为x >0时,f (x )>1,x ≤0时,-1≤f (x )≤1,所以函数f (x )的值域为[-1,+∞),故④正确.答案:(1)④ (2)④ 注意:解决分段函数问题时,一定要注意自变量的取值所在的区间,要注意分类讨论的应用.总结:1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数表达式有意义的准则一般有:(1)分式中的分母不为0;(2)偶次根式的被开方数非负;(3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 5.复合函数的定义域(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.注意:1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化. 2.利用换元法求解析式时,要注意函数的定义域.3.分段函数中,各段函数的定义域不可以相交,这是由函数定义的惟一性决定的. 4.求分段函数应注意的问题:在求分段函数的值f (x )时,首先要判断x 属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.课后作业:1.函数g (x )=x +3+log 2(6-x )的定义域是________.解析:由⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6,故函数的定义域为[-3,6).答案:{x |-3≤x <6}2.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={x |0≤x ≤1}为值域的函数的是________.(填序号)解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是________. 解析:因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1. 答案:g (x )=2x -14.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12. 答案:125.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有________对.解析:由题意函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊂[-2,2].由于x =0时,y =1,x =±2时,y =0,故在定义域中一定有0,而±2必有其一,又a ,b ∈Z ,取b =2时,a 可取-2,-1,0,取a =-2时,b 可取0,1.故满足条件的整数数对(a ,b )共有5对. 答案:56.下列集合A 到集合B 的对应f 中:①A ={-1,0,1},B ={-1,0,1},f :A 中的数平方; ②A ={0,1},B ={-1,0,1},f :A 中的数开方; ③A =Z ,B =Q ,f :A 中的数取倒数;④A =R ,B ={正实数},f :A 中的数取绝对值, 是从集合A 到集合B 的函数的为________.解析:其中②,由于1的开方数不惟一,因此f 不是A 到B 的函数;其中③,A 中的元素0在B 中没有对应元素;其中④,A 中的元素0在B 中没有对应元素.答案:①7.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=________.解析:因为-2<0,所以f (-2)=2-2=14>0,所以f ⎝⎛⎭⎫14=1-14=1-12=12. 答案:128.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a , 由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足f ⎝⎛⎭⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析:要使f ⎝⎛⎭⎫2x +|x |=log 2x |x |有意义,则x |x |>0,即x >0.故f ⎝⎛⎭⎫1x =log 2x ,即f (x )=log 21x =-log 2x .答案:f (x )=-log 2x10.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于________. 解析:f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.答案:311.定义域为R 的函数f (x )满足f (x +2)=2f (x )-2,当x ∈(0,2]时,f (x )=⎩⎪⎨⎪⎧x 2-x ,x ∈(0,1),1x,x ∈[1,2],若x ∈(0,4]时,t 2-7t 2≤f (x )恒成立,则实数t 的取值范围是________.解析:当x ∈(2,3)时,x -2∈(0,1),则f (x )=2f (x -2)-2=2(x -2)2-2(x -2)-2,即为f (x )=2x 2-10x +10,当x ∈[3,4]时,x -2∈[1,2],则f (x )=2f (x -2)-2=2x -2-2.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-52;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为-1.综上可得,f (x )在(0,4]的最小值为-52.若x ∈(0,4]时,t 2-7t2≤f (x )恒成立,则有t 2-7t 2≤-52.解得1≤t ≤52.答案:⎣⎡⎦⎤1,52 12.如图展示了一个由(0,1)到实数集R 的映射过程;(0,1)中的实数x 对应数轴上的点M ,如图①;将线段AB 围成一个圆,使两端点A ,B 恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为(0,1),如图③.图③中直线AM 与x 轴交于点N (n,0),则x 的象就是n ,记作f (x )=n .下列命题中正确的是________(填上所有正确命题的序号). ①f (x )在定义域上单调递增; ②f (x )的图象关于y 轴对称; ③12是f (x )的零点; ④f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=1;⑤f (x )>1的解集是⎝⎛⎭⎫34,1.解析:①正确,由图③知,当m 由0增大到1时,点M 由A 运动到B ,此时N 由x 轴的负半轴向正半轴运动,由此可知此时N 点的横坐标逐渐变大,即函数在定义域(0,1)上为增函数;②错,函数定义域不关于原点对称,故为非奇非偶函数,因此其图象不关于y 轴对称;③正确,当m =12时,M 位于圆与y 轴的下交点处,直线为x =0,故f ⎝⎛⎭⎫12=0,即12是函数的零点;④错,因为f (x )=-f (1-x ),即其图象关于点⎝⎛⎭⎫12,0成中心对称,故f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫23=0;⑤正确,由已知定义可求得f ⎝⎛⎭⎫34=1,又函数在定义域(0,1)上为增函数,故f (x )>1=f ⎝⎛⎭⎫34的解集是⎝⎛⎭⎫34,1.综上可知,正确命题的序号是①③⑤.答案:①③⑤13.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.解:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. 14.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2,即y =110x -2.综上,f (x )=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].。
【高考数学】高考数学常考问题-三十六大闯关(36关)

高考数学常考问题-大闯关(36关)目录高考数学常考问题-大闯关(36关) (1)目录 (1)第1关:极值点偏移问题--对数不等式法 ...........................................................................错误!未定义书签。
第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (8)第4关:绝对值不等式解法问题—7大类型 (12)第5关:三角函数最值问题—解题9法 (18)第6关:求轨迹方程问题—6大常用方法 (22)第7关:参数方程与极坐标问题—“考点”面面看 (34)第8关:均值不等式问题—拼凑8法 (39)第9关:不等式恒成立问题—8种解法探析 (44)第10关:圆锥曲线最值问题—5大方面 (49)第11关:排列组合应用问题—解题21法 (52)第12关:几何概型问题—5类重要题型 (58)第13关:直线中的对称问题—4类对称题型 (61)第14关:利用导数证明不等式问题—4大解题技巧 (63)第15关:函数中易混问题—11对 (67)第16关:三项展开式问题—破解“四法” (72)第17关:由递推关系求数列通项问题—“不动点”法 (73)第18关:类比推理问题—高考命题新亮点 (76)第19关:函数定义域问题—知识大盘点 (81)第20关:求函数值域问题—7类题型16种方法 (88)第21关:求函数解析式问题—7种求法 (107)第22关:解答立体几何问题—5大数学思想方法 (110)第23关:数列通项公式—常见9种求法 (115)第24关:导数应用问题—9种错解剖析 (125)第25关:三角函数与平面向量综合问题—6种类型 (128)第26关:概率题错解分类剖析—7大类型 (134)第27关:抽象函数问题—分类解析 (136)第28关:三次函数专题—全解全析 (139)第29关:二次函数在闭区间上的最值问题—大盘点 (149)第30关:解析几何与向量综合问题—知识点大扫描 (158)第31关:平面向量与三角形四心知识的交汇 (158)第32关:数学解题的“灵魂变奏曲”—转化思想 (162)第33关:函数零点问题—求解策略 (172)第34关:求离心率取值范围—常见6法 (176)第35关:高考数学选择题—解题策略 (178)第36关:高考数学填空题—解题策略 (187)文档说明:本文档内容全部来源于网络,经过本人精心挑选,选取了一些高考常考问题以及高考中的重点、难点、热点问题进行汇编,整理成高考数学常考问题—大闯关(36关)!每一关的内容力求精小而内容充实实用,希望通过本文档可以对老师和学生们有所帮助,时间比较紧促,内容有不全不当之处或者出现错误,敬请指教!以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p 视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
高考数学重难点第9讲 函数的定义域、解析式与值域8大题型(原卷版及答案)新高考用)(全国通用)

重难点第9讲函数定义域、解析式与值域8大题型——每天30分钟7天掌握函数定义域、解析式与值域8大题型【命题趋势】函数的定义域、解析式与值域问题是高考数学的必考内容。
函数问题定义域优先,在解答函数问题时切记要先考虑定义域;函数解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题;基本不等式及“耐克函数”、“瘦腰函数”模型;数列的最大项、最小项;向量与复数的四则运算及模的最值;向量与复数的几何意义的最值;解析几何的函数性研究问题等;都需要转化为求最值问题。
在复习过程中,在熟练掌握基本的解题方法的同时,要多加训练综合性题目。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、求函数的定义域的依据函数的定义域是指使函数有意义的自变量的取值范围1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥(21,)n k k N *=+∈其中中.3、零次幂的底数不能为零,即0x 中0x ≠.4、如果函数是一些简单函数通过四则运算复合而成的,那么它的定义域是各个简单简单函数定义域的交集。
【注意】定义域用集合或区间表示,若用区间表示熟记,不能用“或”连接,而应用并集符号“∪”连接。
二、抽象函数及定义域求法1、已知)(x f 的定义域为A ,求))((x g f 的定义域,其实质是)(x g 的取值范围为A ,求x 的取值范围;2、已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中的x 的取值范围为B ,求)(x g 的范围(值域),此范围就是)(x f 的定义域.3、已知))((x g f 的定义域,求))((x h f 的定义域,要先按(2)求出)(x f 的定义域.三、函数解析式的四种求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含有待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
高三数学函数的定义域与值域试题答案及解析

高三数学函数的定义域与值域试题答案及解析1.已知集合,则= .【答案】【解析】因为,所以,即=.【考点】函数的定义域,集合的运算.2.函数的定义域为()A.B.C.D.【答案】C【解析】由已知,解得,故选C.【考点】函数的定义域,对数函数的性质.3.以表示值域为R的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当,时,,.现有如下命题:①设函数的定义域为,则“”的充要条件是“,,”;②函数的充要条件是有最大值和最小值;③若函数,的定义域相同,且,,则;④若函数(,)有最大值,则.其中的真命题有 .(写出所有真命题的序号)【答案】①③④【解析】对①,若对任意的,都,使得,则的值域必为R;反之,的值域为R,则对任意的,都,使得.故正确.对②,比如函数属于B,但是它既无最大值也无最小值.故错误.对③,因为,而有界,故,所以.故正确.对④,.当或时,均无最大值.所以若有最大值,则,此时,.故正确【考点】1、新定义;2、函数的定义域值域.4.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.5.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是()A.1,3B.﹣1,1C.﹣1,3D.﹣1,1,3【答案】A【解析】当a=﹣1时,y=x﹣1的定义域是x|x≠0,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是x|x≥0且为非奇非偶函数.当a=3时,函数y=x的定义域是R且为奇函数.故选A.6.函数的定义域为()A.B.C.D.【答案】A【解析】由二次根式的定义可得,所以函数的定义域为,故选A.【考点】定义域一次不等式7.设函数若是的三条边长,则下列结论正确的是_____ _.(写出所有正确结论的序号)①②,使不能构成一个三角形的三条边长;③若【答案】①②③【解析】由题意得.令,则是单调递减函数.对①,..②,令,因为是单调递减函数,所以在上一定存在零点,即,此时不能构成三角形的三边.③,为钝角三角形,则由余弦定理易知,即,又,且连续,所以使.故①②③都正确.【考点】1、函数的单调性;2、三角形.8.函数的定义域是.【答案】【解析】由题意,.【考点】函数的定义域.9.设函数若,则实数( )A.4B.-2C.4或D.4或-2【答案】C【解析】因为,所以得到或所以解得或.所以或.当可时解得.当时可解得.【考点】1.复合函数的运算.2. 分类讨论的思想.10.函数的定义域是( )A.B.C.D.【答案】A【解析】根据题意可得,所以该函数定义域为,故选A.【考点】定义域二次不等式11.如图,两个工厂A、B相距2km,点O为AB的中点,要在以O为圆心,2km为半径的圆弧MN上的某一点P处建一幢办公楼,其中MA⊥AB,NB⊥AB.据测算此办公楼受工厂A的“噪音影响度”与距离AP的平方成反比,比例系数为1;办公楼受工厂B的“噪音影响度”与距离BP的平方也成反比,比例系数为4,办公楼与A、B两厂的“总噪音影响度”y是A、B两厂“噪音影响度”的和,设AP为xkm.(1)求“总噪音影响度”y关于x的函数关系式,并求出该函数的定义域;(2)当AP为多少时,“总噪音影响度”最小?【答案】(1)y=(≤x≤)(2)AP=km【解析】(1)(解法1)如图,连结OP,设∠AOP=α,则≤α≤.在△AOP中,由余弦定理得x2=12+22-2×1×2cosα=5-4cosα,在△BOP中,由余弦定理得BP2=12+22-2×1×2cos(π-α)=5+4cosα,∴BP2=10-x2,∴y=.∵≤α≤,∴≤x≤,∴y=(≤x≤).(解法2)建立如图所示的直角坐标系,则A(-1,0),B(1,0),设P(m,n),则PA2=(m+1)2+n2,PB2=(m-1)2+n2.∵m2+n2=4,PA=x,∴PB2=10-x2(后面解法过程同解法1).(2)(解法1)y==[x2+(10-x2)]=(5+)≥(5+2)=,当且仅当,即x=∈[,]时取等号.故当AP=km时,“总噪音影响度”最小.(解法2)由y=,得y′=-.∵≤x≤,∴令y′=0,得x=,且当x∈时,y′<0;当x∈(,]时,y′>0.∴x=时,y=取极小值,也即最小值.故当AP=km时,“总噪音影响度”最小12.已知函数f(x)=x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.【答案】(1){x|x∈R,且x≠0}(2)偶函数(3)a>1.【解析】(1)由于a x-1≠0,则a x≠1,所以x≠0,所以函数f(x)的定义域为{x|x∈R,且x≠0}.(2)对于定义域内任意的x,有f(-x)=(-x)3=-x3=-x3=x3=f(x)所以f(x)是偶函数.(3)①当a>1时,对x>0,所以a x>1,即a x-1>0,所以+>0.又x>0时,x3>0,所以x3>0,即当x>0时,f(x)>0.由(2)知,f(x)是偶函数,即f(-x)=f(x),则当x<0时,-x>0,有f(-x)=f(x)>0成立.综上可知,当a>1时,f(x)>0在定义域上恒成立.②当0<a<1时,f(x)=,当x>0时,0<a x<1,此时f(x)<0,不满足题意;当x<0时,-x>0,有f(-x)=f(x)<0,也不满足题意.综上可知,所求a的取值范围是a>113.函数f(x)=x2+2x-3,x∈[0,2]的值域为________.【答案】[-3,5]【解析】由f(x)=(x+1)2-4,知f(x)在[0,2]上单调递增,所以f(x)的值域是[-3,5].14.已知函数f(x)=-的定义域为R,则f(x)的值域是.【答案】【解析】∵2x>0,∈(0,1),∴-<-<,故函数值域为.15.函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【答案】D【解析】要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).16.函数的定义域为.【答案】【解析】要使函数有意义,则,解得.【考点】函数的定义域.17.函数f(x)=的定义域为________.【答案】(-1,0)∪(0,2]【解析】根据使函数有意义的条件求解.由得-1<x≤2,且x≠0.18.函数f(x)=+的定义域为().A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1]【答案】A【解析】由题意,解得-3<x≤0.19.函数f(x)=e x sin x在区间上的值域为 ().【答案】A【解析】f′(x)=e x(sin x+cos x).∵x∈,f′(x)>0.∴f(x)在上是单调增函数,∴f(x)=minf(0)=0,f(x)=f=.max20.设函数,若和是函数的两个零点,和是的两个极值点,则等于( )A.B.C.D.【答案】C【解析】,若和是函数的两个零点,即和是方程的两根,得到,,,由已知得和是的两根,所以,故选C.【考点】1.函数的零点;2.函数的极值点.21.函数的定义域为______________.【答案】【解析】为使有意义,须解得,所以函数的定义域为【考点】函数的定义域,对数函数的性质,简单不等式的解法.22.函数的定义域为( )A.;B.;C.;D.;【答案】C【解析】函数的定义域包含三个要求,由不等式组解得.所以选C.本题要注意的解法将不等式化为.由于函数是递增的,所以结合另两个的式子可得结论.【考点】1.偶次方根的定义域.2.分母的定义域.3.对数的定义域.23.函数的定义域是( )A.(-¥,+¥)B.[-1,+¥)C.[0,+¥]D.(-1,+¥)【答案】B【解析】依题意可得.故选B.本小题是考查函数的定义域问题;函数的偶次方根的被开方数要大于或等于零这种情况.函数的定义域是函数三要素之一,也是研究函数的首要组成部分,大致情况有四种.在接触函数的题型时就得考虑函数的定义域.【考点】函数的定义域.24.函数的单调递减区间是( )A.B.C.D.【答案】C【解析】由题意可知函数的定义域为..又有函数在上递增,所以函数在区间上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.【考点】1.函数的定义域.2.复合函数的单调性.25.已知函数.(1)求函数的定义域;(2)若函数在上单调递增,求的取值范围.【答案】(1)若即时,;若即时,;若即时,.(2).【解析】(1)对数函数要有意义,必须真数大于0,即,这是一个含有参数的不等式,故对m分情况进行讨论;(2)根据复合函数单调性的判断法则,因为是增函数,要使得若函数在上单调递增,则函数在上单调递增且恒正,据些找到m满足的不等式,解不等式即得m的范围.试题解析:(1)由得:若即时,若即时,若即时,(2)若函数在上单调递增,则函数在上单调递增且恒正。
山东省高中名校2025届高三第三次模拟考试数学试卷含解析

山东省高中名校2025届高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李B .小王C .小董D .小李2.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)23.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④4.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613655.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .607.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .28.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .439.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .111.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<12.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .8二、填空题:本题共4小题,每小题5分,共20分。
高考数学复习考点知识讲解课件6 函数的定义域与值域

— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —
高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略主讲人:黄冈中学高级教师汤彩仙一、复习策略1、函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2):均值不等式法和单调性加以选择;(3)多元函数:数形结合或转化为一元函数.3、三角函数、数列、解析几何中的最值问题,往往将问题转化为函数问题,利用求函数最值的方法或基本不等式法求解.4、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,二次函数的最值).5、不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.6、参数范围问题内容涉及代数和几何的多个方面,解题的关键是不等关系的建立,其途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.解决这一类问题,常用的思想方法有:函数思想、数形结合等.二、典例剖析问题1:函数的最值问题例1、(07江苏卷)已知二次函数的导数为,,对于任意实数,都有,则的最小值为()A.3B.C.2D.解:=,依题意,有:,可得,==+1≥2+1≥2+1=2,故选(C).例2、如下图(1)所示,定义在D上的函数,如果满足:对任意,存在常数A,都有≥A成立,则称函数在D上有下界,其中A称为函数的下界. (提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)(1)(2)(Ⅰ)试判断函数在(0,+)上是否有下界?并说明理由;(Ⅱ)又如具有上右图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数在D上有上界的定义,并判断(Ⅰ)中的函数在(-,0)上是否有上界?并说明理由;(Ⅲ)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.分析:利用导数判断函数的单调性,求出函数的最值,从而可以确定函数的下界或上界;或用重要不等式求最值.解:(Ⅰ)解法1:∵,由得,∵,∴x=2,∵当时,,∴函数在(0,2)上是减函数;当时,,∴函数在(2,+)上是增函数;∴是函数在区间(0,+)上的最小值点,.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.解法2:.当且仅当即x=2时“=”成立.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:定义在D上的函数,如果满足:对任意,存在常数B,都有≤B 成立,则称函数在D上有上界,其中B称为函数的上界.设则,由(Ⅰ)知,对任意,都有,∴,∵函数为奇函数,∴.∴,∴.即存在常数B=-32,对任意,都有,∴函数在(-,0)上有上界.(Ⅲ)质点在上的每一时刻的瞬时速度.依题意得对任意有.对任意恒成立.令,∵函数在[0,+∞)上为减函数.∴.∴.问题2:三角函数、数列、解析几何中的最值问题将问题转化为函数问题,利用求函数最值的方法求解.例3、(05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.分析:将d用点M的坐标表示出来,,然后求其最小值.解:(1)由已知可得点A(-6,0),F(0,4).设点P(x,y),则={x+6,y},={x-4,y},由已知可得,则2x2+9x-18=0,解得x=或x=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2) 直线AP的方程是x-y+6=0.设点M(m,0),则M到直线AP的距离是.于是=,又-6≤m≤6,解得m=2.椭圆上的点(x,y)到点M的距离d有,由于-6≤≤6,∴当=时,d取得最小值.例4、(05年辽宁)如图,在直径为1的圆中,作一关于圆心对称、邻边互相垂直的十字形,其中.(Ⅰ)将十字形的面积表示为的函数;(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?分析:将十字型面积S用变量表示出来,转化为三角函数的极值问题,利用三角函数知识求出S的最大值.(Ⅰ)解:设S为十字形的面积,则(Ⅱ)解法一:其中当最大.所以,当最大. S的最大值为解法二:因为所以令S′=0,即可解得,所以,当时,S最大,S的最大值为例5、已知点A(-1,0),B(1,-1)和抛物线,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(I)若△POM的面积为,求向量与的夹角;(II)试探求点O到直线PQ的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.分析:可先设出M与P点的坐标,再利用斜率相等求出的值,利用向量的数量积求出夹角.第二问中可用重要等式求出最值.解:(I)设点、M、A三点共线,设∠POM=α,则由此可得tanα=1.又(II)由第(I)问答案知,令,则. ∴O到PQ的距离:,即当且仅当t=16时取最大值,且最大值为.故存在最大值,且最大值为.问题3:最值的实际应用在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.例6、(06年江苏卷)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示).试问当帐篷的顶点O到底面中心O的距1离为多少时,帐篷的体积最大?分析:将帐蓬的体积用x表示(即建立目标函数),然后求其最大值.解:为,则.设OO1由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:)求导得.令,解得(不合题意,舍去),,当时,,为增函数;当时,,为减函数.∴当时,最大.答:当OO为2m时,帐篷的体积最大,最大体积为.1点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.例7、(05年湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99,有两种方案可供选择.方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是.用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方法用水量较小.(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.点拨与提示:设初次与第二次清洗的用水量分别为与,,.于是+,利用均值不等式求最值.方案甲与方案乙的用水量分别为x与z,由题设有,解得x=19,由c=0.95得方案乙初次用水量为3,第二次用水量y满足方程:,解得y=4a,故z=4a+3,即两种方案的用水量分别为19与4 a +3,因为当1≤a≤ 3时,x-z =4(4-a)>0,即x>z.故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+.当a为定值时,.当且仅当时等号成立,此时(不合题意,舍去)或.将代入(*)得,.故时用水量最少,此时第一次与第二次用水量分别为与,最少总用水量为.当1≤a≤3时,,故T(a)是增函数(也可用二次函数的单调性来判断),这说明随着a的值的增加,最少总用水量增加.问题4:恒成立问题不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.例8、已知函数f(x)=.(Ⅰ)当时,求的最大值;(Ⅱ) 设,是图象上不同两点的连线的斜率,是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.分析:利用导数求出函数的单调性,再比较其极大值与端点值的大小求出的最大值.解:(Ⅰ)当-2≤<时,由=0得x1=显然-1≤x1<,<x2≤2,又=-.当≤x≤x2时,≥0,单调递增;当x<x≤2时,<0,单调递减,2=(x2)=∴max=-(Ⅱ)答:存在符合条件.解:因为=.不妨设任意不同两点,其中.则.由知:1+<1.又,故.故存在符合条件.解法二:据题意在图象上总可以找一点,使以P为切点的切线平行于图象上任意两点的连线,即存在.故存在符合条件.问题五:参数的取值范围问题参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力.在历年高考中占有较稳定的比重.解决这一类问题,常用的思想方法有:函数思想、数形结合等.例9、设直线过点P(0,3)且和椭圆顺次交于A、B两点,求的取值范围.分析:=.要求的取值范围,一是构造所求变量关于某个参数(自然的想到“直线AB的斜率k”)的函数关系式(或方程),通过求函数的值域来达到目的.二是构造关于所求量的一个不等关系,由判别式非负可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称式.问题找到后,解决的方法自然也就有了,即我们可以构造关于的对称式:.由此出发,可得到下面的两种解法.解法1:当直线垂直于x轴时,可求得;当l与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得.解之得由椭圆关于y轴对称,且点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以,即.解法2:设直线的方程为:,代入椭圆方程,消去得(*)则,令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.例10、在直角坐标平面中,过点作函数的切线,其切点为;过点作函数的切线,其切点为;过点作函数的切线,其切点为;如此下去,即过点作函数的切线,其切点为;过点作函数的切线,其切点为….(1)探索与,与的关系,说明你的理由,并求,的值;(2)求数列通项公式;(3)是否存在正实数,使得对于任意的自然数,不等式恒成立?若存在,求出这样的实数的取值范围;若不存在,则说明理由.分析:利用导数先找出切线方程,从而可以确定数列与,与的关系,再分奇数项与偶数项来求出数列的通项,在第三问中可用错位相消法求出不等式左端的和,再证明其单调性来求解.解:(1)∵,∴切线的方程为,又切线过点,∴,且,∴∴.又,∴切线的方程为,而切线过点,∴,且,∴∴.(2)由(1) 可知,即,∴数列为等比数列,且首项为4,∴,即.而,故数列通项公式为(3)令∴,两式相减得∴.∴,∴数列递增.又当时,.∴,而,∴.∴对于任意的正整数和任意的实数不等式恒成立等价于,而,所以有,解得或(舍).故存在这样的正实数,其取值范围为.冲刺练习一、选择题1、若,则a的取值范围是()A.B.C.D.2、下列结论正确的是()A.当B.C.的最小值为2D.当无最大值3、在R上定义运算:.若不等式对任意实数x 成立,则()A.B.C.D.4、设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.5、若动点()在曲线上变化,则的最大值为()A.B.C.D.2b6、已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则()A.⊥B.⊥(-)C.⊥(-)D.(+)⊥(-)7、已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.38、设,对于函数,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值9、在约束条件下,当时,目标函数的最大值的变化范围是()A.B.C.D.10、已知不等式对任意正实数恒成立,则正实数的最小值为()A.2B.4C.6D.8[提示]二、填空题11、已知,则的最小值是__________.12、在△OAB中,O为坐标原点,,则△OAB的面积达到最大值时,__________.13、设实数x,y满足__________.14、在中,O为中线AM上一个动点,若AM=2,则的最小值是__________.15、已知函数在[0,1]上的最大值与最小值的和为a,则a的值为____________.[答案]三、解答题16、若函数的最大值为,试确定常数a的值.[答案]17、已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.(1)求a、b的值与函数f(x)的单调区间.(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.[答案]18、已知函数,其中0<a<4.(Ⅰ)将的图像向右平移两个单位,得到函数,求函数的解析式;(Ⅱ)函数与函数的图像关于直线对称,求函数的解析式;(Ⅲ)设,已知的最小值是,且,求实数的取值范围.[答案]19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.[答案]20、已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.提示:1、①当,即时,无解;②当,即时,,故选C.2、A中lgx不满足大于零,C中的最小值为2的x值取不到,D中当x=2时有最大值,选B.3、∵,∴不等式对任意实数x成立,则对任意实数x成立,即使对任意实数x成立,所以,解得,故选C.4、因为,所以(A)恒成立;在(B)两侧同时乘以得,所以(B)恒成立;(C)中,当a>b时,恒成立,a<b时,不成立;(D)中,分子有理化得恒成立,故选(C).5、由曲线方程得,=,∵-b≤y≤b,∴若即b≥4,则当y=b时,最大值为2b;若即0<b<4,则当时,最大值为.(本题也可用三角代换求解).6、由|-t|≥|-|得|-t|2≥|-|2展开并整理得,由,所以,得,即,选(C).7、,解得,选B.8、令,则函数的值域为函数的值域,又,所以是一个减函减,故选B.9、解:由,交点为,(1)当时可行域是四边形OABC,此时,.(2)当时可行域是△OA此时,.10、,∴≥9,≥4.11、12、13、14、-2 15、提示:11、表示直线=0上动点P(x,y)到点(1,1)的距离,的最小值就是点(1,1)到直线=0的距离,可求得.12、,当即时,面积最大.13、表示两点(0,0),P(x,y)的斜率,作出不等式组表示的平面区域即△ABC及其内部,由图形可得AO的斜率最大,可求得A(1,),.14、如图,即的最小值为-2.15、若a>1,与是增函数,为增函数,f(x)的最大值为f(1),最小值为f(0),所以f(1)+f(0)=a;若0<a<1,与是减函数,为减函数,f(x)的最大值为f(0),最小值为f(1),所以f(0)+f(1)=a;故+=a,解得a =.16、解:因为的最大值为的最大值为1,则所以17、解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.由f′()=,f′(1)=3+2a+b=0得a=,b=-2.f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:,-) -,所以函数f(x)的递增区间是(-∞,-)与(1,+∞).递减区间是(-,1).(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.解得c<-1或c>2.18、(Ⅰ);(Ⅱ)设点是函数上任一点,点关于的对称点是,由于函数与函数的图像关于直线对称,所以,点在函数的图像上,也即:.所以,;(Ⅲ).解法一:注意到的表达式形同,所以,可以考虑从的正负入手.(1)当,即时,是R上的增函数,此时无最小值,与题设矛盾;(2) 当,即时,.等号当且仅当,即时成立.由及,可得:,解之得:.解法二:由可得:.令,则命题可转化为:当时,恒成立.考虑关于的二次函数.因为,函数的对称轴,所以,需且只需,解之得:.此时,,故在取得最小值满足条件.19、解:(Ⅰ)设双曲线方程为由已知得故双曲线C的方程为(Ⅱ)将由直线l与双曲线交于不同的两点得即①设,则而于是②由①、②得故k的取值范围为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三|函数题中求参数的取值范围有7种类型,你掌握了吗?
高考函数题中求参数的范围往往具有知识点容量大、能力要求高等特点,它能够综合考察数学知识、数学思想与数学方法,对考生灵活运用所学知识解决实际问题的能力以及创新能力的要求较高。
因此解高考能力题没有一种“放之四海而皆准”的统一方法,即使这样,我们可以夯实基础,突破难点,归纳概括总结对其进行研究。
当我们对数学知识、数学思想方法的学习和运用达到了一定水平时,应该把一般的思维升华到策略的境界。
只有掌握了一定的解题策略,才会在遇到问题时找到问题的思考点和突破口,迅速、正确地解题,增强应试的信心。
函数题中求参数范围大概有:
1.单元参数和多元参数恒成立求参数范围;
2.由零点个数求参数范围;
3.分类讨论思想求参数范围;
4.数形结合思想求参数范围;
5.用最值求参数范围;
6.用变换主元法求参数;
7.逻辑联结词不等式恒成立求参数范围.。