第九章 不等式与不等式组导学案 第一课时

合集下载

七下第九章导学案讲解

七下第九章导学案讲解

9.1.1不等式及其解集【学习目标】1、知识与技能:使学生掌握不等式的概念,理解不等式解集的意义,会用不等式表示简单的数量关系和不等式解集的表示法。

2、过程与方法:经历由具体实例建立不等式模型的过程,通过解决简单的实际问题,使学生自发的寻找不等式的解3、情感态度与价值观:让学生充分体会到数学在实际生活中的广泛存在,并能将他们应用到生活的各个领域,让学生感受到学习数学的乐趣。

【教学重点】不等式的解集的表示.【教学难点】不等式解集的确定.一、自学展示1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:(1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数;(4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5;(6)a与b两数的和的平方不可能大于3.解:(1)__________ (2)___________ (3)_____________ (4)___________ (5)_____________ (6)像上面那样,用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。

注意:≤的含义:,≥的含义:。

2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。

与方程类似,我们把使不等式______的____________叫做不等式的解。

3、一个含有未知数的不等式的________的解,组成这个不等式的_________。

求不等式的_______的过程叫做解不等式。

二、合作学习:1、认真阅读P122小贴士,说出下列两个数轴所表示解集的不同之处,并与你的同伴交流:(1)(2)2、你能画出数轴并在数轴上表示出下列不等式的解集吗?(1)x﹥3 (2)x﹤2 (3)y≥-1归纳:含有___________,未知数的次数是____的不等式,叫做一元一次不等式。

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

人教版七下第九章 不等式与不等式组全章导学案

人教版七下第九章 不等式与不等式组全章导学案
1、如果 2 x 2、已知方程 12x 1 7 y 1,写出用y表
2 a b 1
3a 2b 16
示x的式子得______。当x=2时,y=___ 。
3、方程 x 3 y 9 的正整数解是________。
x 2 x 2 x 1 x 2 4、下列各组数中① ② ③ ④ y 1 y 2 y 6 y 2 是方程的 4 x y 10 解的有( )
y 10 6( x 10), C. y 10 2( x 10).
y 10 6( x 10), D. 10). y 10 2( x -
新世纪教育网 版权所有
3.王大伯承包了25亩地,今年春季改种茄子 和西红柿两种大棚蔬菜,用去了44000元.其 中茄子每亩用了1700元,获得纯利2400元; 种西红柿每亩用了1800元,获得纯利2600元, 问王大伯一共获纯利多少元?
2 x 3 y 5,① 3 x 2 y 7,②
下列解法不正确的是( ) A. ① 3 ② 2 ,消去 x B. ① 2 ② 3,消去
y
C.① (3) ② 2 ,消去 D. ① 2 ② (3) ,消去
x
y
- 新世纪教育网 版权所有
A.先将①变形为 x 3 y 2 ,再代入② 2 B.先将①变形为 y 2 2 x ,再代入② 3
C.先将②变形y 9(4 x 1) ,再代入①
- 新世纪教育网 版权所有
2.用加减法解方程组
- 新世纪教育网 版权所有
实际问题
设未知数,列方程组
数学问题 (二元一次方程组)
解 方 程 组
代入法 加减法 (消元)

天元区第一中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式第1课时解一元一次不等式教案新

天元区第一中学七年级数学下册第九章不等式与不等式组9.2一元一次不等式第1课时解一元一次不等式教案新

9.2 一元一次不等式第1课时解一元一次不等式【知识与技能】1.掌握一元一次不等式的解法.2.列一元一次不等式解决简单的实际问题.【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式.【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心.【教学重点】一元一次不等式的解法.【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式.一、情境导入,初步认识问题 1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________.当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________.(3)在乙店花费小,列不等式:__________________.问题 2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果.二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1.注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向.三、运用新知,深化理解1.解下列不等式,并在数轴上表示解集.(1)256x-≤314x+;(2)10.5x--210.75x+≥18.2.当x取什么值时,3x+2的值不大于732x-的值.3.一次知识竞赛共30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了___道题.4.已知方程组2315x y ax y a-=⎧⎨+=-⎩,的解x与y的和为正数,求a的取值范围.5.已知关于x的不等式52x+-1>22ax+的解集是x<1/2,求a的值.6.已知不等式4x-3a>-1与不等式2(x-1)+3>5的解集相同,求a的值.7.当k是什么自然数时,方程2/3x-3k=5(x-k)+6的解是负数?8.当x取什么值时,代数式546x+的值不小于7/8-13x-的值,并求出此时x的最小值.【教学说明】题1可由两名学生在黑板上板书解题过程.其它学生在草稿纸上解答,教师巡视,适时指导有困难的学生;板书完后,教师给予点评,加深印象:题2~3,教师给予提示,帮助学生理解题意,寻找不等关系;题4~8,先让学生自主思考,交流,寻找解题思路.然后,师生共同完成解答.教师可根据实际情况选取部分习题来讲解.【答案】1.解:(1)去分母得:2(2x-5)≤3(3x+1),4x-10≤9x+3,-5x≤13,x≥-13/5.解集在数轴上表示为:(2)化简得:2(x-1)-4/3(2x+1)≥18, 6(x-1)-4(2x+1)≥54,6x-6-8x-4≥54,-2x≥64,x≤-32.解集在数轴上表示为:2.解:由题意得:73 322xx-+≤6x+4≤7x-3-x≤-7.x≥73.24 解析:设小明答对了x道题,则4x-(30-x)≥90,5x≥120,x≥24.即小明至少答对了24道题.4.解:将两个方程相加得2x+2y=1-3a.∴x+y= 123a -.∵x+y>0,∴123a->0,∴a<1/3.5.解:化简不等式得(1-a)x>-1.∵x<1/2,∴1-a<0.∴x<1 1a --∴11a--=1/2,∴a=3.6.解:解不等式4x-3a>-1得,4x>3a-1,x>31 4a-;解不等式2(x-1)+3>5得,2x-2+3>5,2x>4,x>2;由于上述两个不等式的解集相同,∴314a-=2,∴a=3.7.解:解方程得x=61813k-<0,6k-18<0,k<3,故自然数可取k=2,1,0.8.解:依题意:546x+≥78-13x-,解得x≥-1/4,即当x≥-1/4时,代数式546x+的值不小于78-13x-的值,此时x的最小值为-14.四、师生互动,课堂小结1.解一元一次不等式的一般步骤与解一元一次方程相同,只是在系数化为1时,若遇到运用不等式性质3,一定要改变不等号方向.2.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.1.布置作业:从教材“习题9.2”中选取.2.完成练习册中本课时的练习.本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( ) A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.一元一次方程的解法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程变形是移项的是( )A.由3=x得,9=8xB.由x=-5+2x,得x=2x-5C.由2x-3=x+5,得x-=+D.由y-1=y+2,得y-y=2+1【解析】选D.A是根据等式性质2,两边同乘以3得到的,B是利用了加法交换律得到的,C是将方程两边同除以2得到的,D中变形是移项.2.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1,②移项,得4x+x-2x=1+4,③合并同类项,得3x=5,④两边都除以3,得x=,经检验,x=不是原方程的解,说明解题的四个步骤中有错误,其中开始出现错误的一步是( )A.①B.②C.③D.④【解析】选B.步骤②中等号左边的-x没有移动,不能变号.3.(2013·淄博中考)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )A.70 cmB.65 cmC.35 cmD.35 cm或65 cm【解析】选 A.设一段木棍长为xcm,则另一段长为(2x-5)cm,根据两段木棍共长100cm,可列方程x+(2x-5)=100,解得x=35,2x-5=65,因为这两段没有顺序,所以锯出的木棍的长可能为65cm或35cm.二、填空题(每小题4分,共12分)4.(2013·贵阳中考)方程3x+1=7的解是.【解析】移项,得3x=7-1,合并同类项,得3x=6,方程两边同除以3,得x=2.答案:x=25.若单项式-4x m-1y n+1与x2m-3y3n-5是同类项,则m= ,n= .【解析】根据同类项的概念可得m-1=2m-3,n+1=3n-5,由m-1=2m-3,移项,得m-2m=-3+1,合并同类项得-m=-2,两边都除以-1,得m=2.由n+1=3n-5,移项,得n-3n=-5-1,合并同类项,得-2n=-6,两边都除以-2,得n=3.答案:2 36.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.【解析】设鸡有x只,则兔有(33-x)只,根据题意可得2x+4(33-x)=88,解得x=22,33-x=11,即鸡有22只,兔有11只.答案:22 11三、解答题(共26分)7.(8分)解方程:(1)2(y-2)-(4y-1)=9(1-y).(2)4(y-7)-2[9-4(2-y)]=22.【解析】(1)去括号,得2y-4-4y+1=9-9y,移项,得2y-4y+9y=9+4-1,合并同类项,得7y=12,两边都除以7,得y=.(2)去小括号,得4y-28-2[9-8+4y]=22,去中括号,得4y-28-18+16-8y=22,移项,得4y-8y=22+28+18-16,合并同类项,得-4y=52,两边都除以-4,得y=-13.8.(8分)关于x的方程4x+2m=3x+1和3x+2m=4x+1的解相同,求m的值和方程的解. 【解析】解两个方程得x=1-2m和x=2m-1.因为它们的解相同,所以1-2m=2m-1,解得m=.将m=代入x=1-2m或者x=2m-1,得x=0.所以m=,方程的解为x=0.【培优训练】9.(10分)当m取何值时,关于x的方程2mx=(m+1)x+6的解是正整数?【解析】2mx=(m+1)x+6,去括号,得2mx=mx+x+6,移项,合并同类项,得(m-1)x=6,当m-1=0时,原方程无解,当m-1≠0时,两边都除以m-1,得x=(m-1≠0).因此当m-1=1或2或3或6时,方程的解是正整数,因此,m的值为2或3或4或7.。

第九章《不等式与不等式组》全章教案(共6份)

第九章《不等式与不等式组》全章教案(共6份)

(总第三七课时)9.1.1 不等式及其解集教学过程设计探究活动三(三)不等式的解集的表示方法例题:在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1 分析:按画数轴,定界点,走方向的步骤答解: 。

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.教师引导学生分析规范操作,并总结规律:1.实心点表示包括这个点,空心点表示不包括这个点2.大于向右走,小于向左走.尝试应用1、下列哪些是不等式x+3 > 6的解?哪些不是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,122、用不等式表示:(1)a是正数;(2)a是负数(3)a与5的和小于7;(4)a与2的差大于-1;(5)a的4倍大于8;(6)a的一半小于3。

3、在数轴上表示下列不等式的解集:① x < 2 ② x≥-34、不等式x < 5有多少个解?有多少个正整数解?学生先独立完成,教师指4生到黑板上板书答案。

完成后师生共同纠错。

补充提高1、无论x为何值,下列不等式总成立的是( )A.)3(2>+x B.0)3(2<+x C.0)3(2≥+xD.)3(2≤+x2、已知13222>-+kxk是关于x的一元一次不等式,求关于y的方程3)1(=+-yk的解.3、小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他的钱超过280元才可以买,设个月后小刚的钱超过280元请你列出不等式,并找出满足此不等式的最小整数是几?学生小组合作交流完成教师巡视点拔学生展示师生总结规律(总第三八课时)9.1.2 不等式的性质(1)教学过程设计(总第三九课时)9.1.2 不等式的性质(2)教学过程设计(总第四十课时)9.2一元一次不等式(1)教学过程设计(总第四一课时)9.2一元一次不等式(2)教学过程设计模思想巩固应用某单位计划“五一”黄金周期间组织10~25名员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人50元,经过协商,家旅行社表示可给予每位旅客六五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余旅客按七折优惠,该单位选择那一家旅行社支付的旅游费用较少/学生独立思考,类比探究三完成,把实际问题转化为数学问题(一元一次方程或一元一次不等式)解决。

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
数学 七年级下册 人教版
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:

初中数学教学课例《第九章一元一次不等式组的概念及其解法》课程思政核心素养教学设计及总结反思

初中数学教学课例《第九章一元一次不等式组的概念及其解法》课程思政核心素养教学设计及总结反思

解不等式组的意义;会解简单的一元一次不等式组,并
会用数轴确定解集。本课内容是一元一次不等式知识的
综合运用和拓展延伸,是进一步刻画现实世界数量关系 教材分析
的数学模型,是下有概念教学又有解题教
学,而概念教学,应该从生活、生产实例或学生熟悉的
已有知识引入,引导学生通过观察比较、分析、综合,
1、在对整节课的时间把握上有所欠缺,学生探究 的时间过多,以致堂堂清无法在课堂上完成。
2、课堂的节奏还可以更紧凑些。 3、如果重新上这节课,我一定再会改正以上不足 之处,使本课的课堂教学效益更高。
力分析 生一定的困惑。而七年级的学生,以感性认识为主,并
向理性认知过渡,所以,我对本节课的设计是通过学生
所熟悉的问题情境,让学生独立思考,动手操作,合作
交流,从而引导其自主学习。
对本节课的设计是通过学生所熟悉的问题情境,让
教学策略选 学生独立思考,动手操作,合作交流,从而引导其自主
择与设计 学习。基于对学情的分析,我确定了本节课的教学难点
思考,合作交流、求解 直观的感受如何利用数轴找各解集的公共部分 自学例题、小组讨论不等式组的解集的意义。 代表发言,全班交流。 归纳总结 请第一组同学任点其余三组的同学板演(板演的同 学如不会做,可请本组同学教。),然后第一组的同学 给予评价。 思考,归纳,发言,测试
1、整体的思路比较清晰:先从实际生活中遇到的 问题出发引出一元一次不等式组的概念,体现了数学是 源于生活的,然后通过练习进行辨析,并让学生自己归 纳注意点,再接下去是应用新知、巩固新知、再探新知、 巩固新知、知识梳理、布置作业。整个流程比较流畅、 自然; 课例研究综
思想方法,感受类比与划归的思想。3、通过解一元一
次不等式组的训练,培养运算能力。情感态度与价值观:

新人教版七年级下数学第九章不等式和不等式组复习学案

新人教版七年级下数学第九章不等式和不等式组复习学案

仪陇县大罗乡小学校 初中七年级(下)数学 导学案 制作人:吴春伶 组别:初中数学组 制作时间:2014-4-8多一份睿智 少一份嬉戏 展一份风采 审核人: 复核人:1 第 1 页 共 1 页 513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩第九章小结一、知识结构二、回顾与思考1、什么是不等式?什么是一元一次不等式?什么是一元一次不等式组?2、一元一次不等式的解法与一元一次方程的解法有什么异同?什么是一元一次不等式的解集? 若a >b,请你指出下列不等式组的解集:①,;x a x b ⎧⎨⎩ ②,;x a xb ⎧⎨⎩ ③,;xa xb ⎧⎨⎩ ④,.xa xb ⎧⎨⎩3、什么是一元一次不等式组的解集?怎样解一元一次不等式组?4、运用不等式解决实际问题与运用一元一次方程解决实际问题有什么异同? 三、例题导引例1 已知方程组2,456 3.x y m x y m +=+⎧⎨+=+⎩的解是正数,求m 的取值范围。

例2 若不等式组,.x ab x ab +⎧⎨-⎩的解集是-1<x <3,求ax+b ≤0解。

例3 某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李。

(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元,1800元,请你选择最省钱的一种方案。

例4 某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,•在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.求该次活动中获赠顾客人数及所准备的礼品数.三、练习升华1、在数轴上表示不等式组x+2>0x 1⎧⎨≤⎩ 的解,其中正确的是( )2、不等式组⎩⎨⎧--≥-31201 x x 的整数解是( ) A、-1,0 B、-1,1 C、0,1 D、无解3、不等式组⎩⎨⎧-≤->+x x x 284133的最小整数解是( ) A 、0 B 、1 C 、2 D 、-14、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与方程类似,我们把使不等式______的____________叫做不等式的解。
完成P115思考中提出的问题。
3一个含有未知数的不等式的________的解,组成这个不等式的________。
求不等式的_______的过程叫做解不等式。
4、认真阅读P115,说出下列数轴所表示解集的不同之处,并与你的同伴交流:
2、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+2﹥6;(2)2x﹤10;(3)x-2≥0.5.
3、求不等式x﹤4的非负整数解的个数。

(教)后
反思
通过本节课的学习:对自己说,你有哪些收获?对老师说,你有哪些困惑
通过闲事情境学会建模感受同类之间的大小比交流意识培养学生对问题实质的认识与理解以及感知事物变化规律的重要模型和最优化思想
第九章不等式与不等式组
第1学时9.1.1不等式及其解集
主备人
审核人
审核时间
课型
班级
姓名
流程
导学内容
助教策略
(学习随笔)
目标导学
知识目标:1.感知生活中的不等式关系,了解不等式的意义,初步体会不等式是研究量与量之间关系的重要模型之一;理解不等式的解与解集的意义,了解不等式解集的数轴表示。.
1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥ +1﹥5;⑦a+b﹥0.
不等式有______________,一元一次不等式有__________。(只填序号)
2、下列哪些数值是不等式x+3﹥6的解?那些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,12 .
你能画出数轴并在数轴上表示出下列不等式的解集吗?
(1)x﹥3(2)x﹤2(3)y≥-1
5、类似于一元一次方程,含有___________,未知数的次数是____的不等式,叫做一元一次不等式。
自主学习的方法
用时5分钟
合作探究
3、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5;(2)2x﹤8;(3)x-2≥0.
(3)x的一半与x的2倍的和是非正数; (4)c与4的和的30%不大于-2;(5)x除以2的商加上2,至多为5;(6)a与b两数的和的平方不大于3.
像上面那样,用符号“____”或“____”表示_______关系的式子叫做不等式;用“____”表示不等关系的式子也是不等式。
2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。
学习重点:不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。
学习难点:不等式解集的理解与表示是难点。
自主学习
预习P114—115,完成下列问题:
1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:
(1)a与1的和是正数(2)y的2倍与1的和不等于3;
能力目标:经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化能力。通过闲事情境学会“建模”,感受同类之间的大小比较方法,在问题解决中发展学生归纳、猜想的能力。
情感目标:进一步培养学生的数学思维和参与数学活动的自信心、合作交流意识,培养学生对问题实质的认识与理解以及感知事物变化规律的重要模型和最优化思想。
你还能找出这个不等式的其他解吗?这个不等式有多少个解?
小组合作的技巧
课堂小结
本节课我们学习了哪些内容?
达标检测
1、用不等式表示.
(1)a与5的和是正数;(2)b与15的和小于27;
(3)x的4倍大于或等于8;(4)d与e的和不大于0
(5)a的相反数是正数(6)y的2倍与1的和大于3;
(7)d与5的积不小于0;(8)x的2倍与1的和是非正数.
相关文档
最新文档