2019年莆田市中考模拟数学试卷(一)及答案

合集下载

1_2019年莆田市初中毕业班质量检查试卷数学试题答案及评分参考1

1_2019年莆田市初中毕业班质量检查试卷数学试题答案及评分参考1

2019 年莆田市初中毕业班质量检查试卷数学参考答案及评分标准说明:(一) 考生的解法与“参考答案”不同时,可参考“答案的评分标准”的精神进行评分.(二) 如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面应得分数的二分之一,如果属严重的概念性错误,就不给分.(三) 以下解答各行右端所注分数表示正确做完该步骤应得的累计分数.(四) 评分的最小单位 1 分,得分和扣分都不能出现小数点.一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.C 3.A 4.A 5.D 6.C 7.A 8.B 9.B 10.C二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.x 11.3.1×104 12.y 213.6 14.2315.2r²16.24三、解答题:本大题共 9 小题,共 86 分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.解:原式=1-2+12…………………………………………………………………………………………6 分=1 (8)分218.已知:如图,OC 是∠AOB 的平分线,P 是 OC 上一点,PE⊥OA,PF⊥OB,垂足分别为 E、F.求证:PE=PF. (2)分 (4)分证明:∵OC 是∠AOB 的平分线,∴∠POE=∠POF,∵PE⊥OA,PF⊥OB,∴∠PEO=∠PFO, (6)分又∵OP=OP,∴△POE≌△POF,∴PE=PF. (8)分19.解:原式=1mm (1mm)(1m)………………………………………………………………………4 分数学参考答案第 1 页(共 6 页)1= , (6)分m 11 1当 m=2 时,= . (8)分m 1 320.(1)………………………………………………………………………………………4 分如图,点 F 为所求作的点.……………………………………………………………………………………5 分(2)△ADE 和△FCE;旋转中心为点 E,旋转角为100°.……………………………………………………8 分21.解:(1)17,20;……………………………………………………………………………………………4 分(2)扇形统计图中“3 次”所对应扇形的圆心角的度数为 360°×20%=72°;……………………………………6 分(3)估计该小区居民在一周内前往“木兰溪左岸绿道”锻炼“4 次及以上”的人数为2000×350=120 人. (8)分22.(1)证明:∵AC⊥BD,∴∠BEC=90°,∴∠CBD+∠BCA=90°, (2)分∵∠AOB=2∠BCA,∠COD=2∠CBD,∴∠AOB+∠COD=2(∠CBD+∠BCA)=180°; (4)分(2)解:如图,延长 BO 交⊙O 于点 F,连接AF.……………………………………………………………5 分则∠AOB+∠AOF=180°,又由(1)得:∠AOB+∠COD=180°,∴∠AOF=∠COD,∴AF=CD=6, (8)分∵BF 为⊙O 的直径,∴∠BAF=90°,在 Rt△ABF 中,BF 62 82 10,∴⊙O 的直径为 10.…………………………………………………………………………………………10 分23.解:(1)如图,以点 B 为原点,BC 所在的直线为 x 轴,建立平面直角坐标系,则点 A(0,5),E(5,3),C(13,0),………………………………………………………………………………………………………1 分数学参考答案第 2 页(共 6 页)5法一:可得直线 AC:y x 5,…………………………………………………………………4 分135 40当 x=5 时,y 5 5 3 ,故点 E 不在直线 AC 上,13 13因此 A、E、C 三点不共线.同理 A、G、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了 1cm ².…………………5 分法二:可得 AC= 132 52 194 ,AE= 52 22 29 ,CE= 82 3273 ,……………4 分由于 AE+EC≠AC,故点 E 不在 AC 上,因此 A、E、C 三点不共线.同理 A、G、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了 1cm².…………………5 分(2)如图,设剪开的三角形的短边长为 xcm,依题意得:(13-x)(13+13-x)=13×13-1,……………………………………………………………8 分解得 x1=5,x2=34(舍去),故能将 13cm×13cm 的正方形做这样的剪开拼合,可以拼合成一个 8×21 长方形,但面积少了1cm².……………………………………………………………………………………………………………10 分24.证明:(1)由旋转 45°,可知:∠ADE=∠ABC=90°,∠EAD=∠CAB=45°,AE=AC,AD=AB,∴△CAE 中,∠ACE=∠AEC=67.5°,△DAB 中,∠ABD=∠ADB=67.5°, (1)分∴∠FDC=∠ADB=67.5°,∴∠FDC=∠DCF,∴CF=DF, (2)分在 Rt△EDC 中,∠CED=∠EDF=22.5°,∴EF=DF,∴EF=CF; (3)分(2)法一:过点 E 作 EG∥CB 交 BF 延长线于点G.…………………………………………………………4 分∵AD=AB,∴∠ADB=∠ABD,∵∠EDG+∠ADB=∠CBF+∠ABD=90°,∴∠EDG=∠CBF,∵EG∥CB,∴∠G=∠CBF,∴∠EDG=∠G,∴EG=ED,∵ED=BC,∴EG=BC,……………………6 分∵∠EFG=∠CFB,∴△FEG≌△FCB,∴EF=CF;…………………………………………………………7 分数学参考答案第 3 页(共 6 页)法二:分别过点 A,C,E,作 AP⊥BF 于点 P,CN⊥BF 于点 N,EM⊥BF 交 BF 延长线于点 M. (4)分证△EMD≌△DPA,得 EM=PD,证△APB≌BNC,得 CN=BP,又等腰△ABD 中,AP⊥BD,得 PD=PB,故 EM=CN,............................................................6 分故△EMF≌△CNF,因此 EF=CF; (7)分法三:过点 C 作 CP∥DF 交 ED 延长线于点 P,EP 交 BC 于点Q.………………………………………4 分由∠EDF=∠BDQ,∠EDF=∠DBC,得∠BDQ=∠DBQ,则 DQ=BQ,又 CP∥BD,得∠QCP=∠QBD,∠QPC=∠QDB,则∠QCP=∠QPC,可得 CQ=PQ,故 CQ+QB=PQ+DQ,PD=BC=DE,……………………………………………………………………………6 分EF ED因此 1,即EF=CF;……………………………………………………………………………7 分CFDP(3)过点 A 作 AP⊥BD 于点 P.1∵AB=AD,∴∠PAB= ∠DAB= ,2 2∵∠PAB+∠PBA=∠CBD+∠PBA=90°,∴∠CBD=∠PAB=2AEAC ∵2 ADABCE AE ,∠EAC=∠DAB ,∴△AEC ∽△ADB ,∴2 BDAD, ∴∠ACE=∠ABD ,∴∠CFB=∠CAB=45°,…………………………………………………………………9 分数学参考答案第 4 页(共 6 页)①当∠CDF=90°时,如图,△CDF 为等腰直角三角形,则 CF= 2 DF ,∵EF=CF ,∴CF=2 2BD ,∴DF= 1 2BD ,∵CD=DF ,∴CD=1 2BD ,∴t a n2= tan CBD=CD BD②当∠FCD=90°时,如图,△CDF 为等腰直角三角形,则 CF= 2 2DF ,过点 C 作 CG ⊥DF 于点 G .∵EF=CF ,∴CF=2 2BD ,∴DF=BD ,∵CG ⊥DF ,∵CG=12DF ,∴CG=1 3BG ,CG ∴ tan= tanCBG == 2BG 11综上所述: tan= 或 .2 2 31 3.…………………………………………………………………………12 分y k x2ax a,………………………………………………………………………25.(1)联立ykx2bx b得 kx2ax a kx 2 bx b .整理,得(a -b)x=b -a .x 1∵a ≠b ,∴x=-1,∴.………………………………………………………………………………2 分yk∴函数 y 1 与 y 2 的图象交点坐标为(-1,k). 所以该交点落在直线 x=-1上.………………………………………………………………………………3 分数学参考答案第 5 页(共 6 页)(2)分别令 y 1=0,y 2=0,得 kx2ax a 0,kx 2 bx b 0 .则a a4akb b 4bk22x ,x,……………………………………………………5 分A, 2BC ,D2 kk∴AB=a 24ak k,CD=b 2 4bk k.………………………………………………………………………6 分 ∵AB=CD ,∴a 24ak k=b 24bk k, ∴a 2-4ak=b 2-4bk >0,∴(a+b)(a -b)=4k(a -b). ∵a ≠b ,∴a +b=4k 且 ab <0.…………………………………………………………………………………8 分 (3)①当点 C 在点 B 左侧,则 AC=BC=BD ,∴AB=CD ,∴x C -x A =x B -x C ,∴2x C =x A +x B ,………………………………………………………………………………9 分 ∴b b 4bk a a 4ak aa4ak2222,2k2k 2k ∴a -b= b24bk ,∴ (ab)2b 24bk ,(a >b).又由(2)得 a+b=4k,∴a 2 b 2 ab0 .…………………………………………………………………10 分a a依题意 b≠0,得( )21 0b b,△=1-4=-3<0,∴不存在实数 a,b,使得 B,C 为线段 AD 的三等分点.…………………………………………………11 分②当点 C 在点 B 右侧,则 AB=BC=CD.∴x B-x A=x C-x B,∴2x B=x A+x C, (12)分∴a a 2 4ak a a 4ak bb 4bk2 22,2k 2k 2k由(2)得a2 4ak b2 4bk ,则4 a 2 4ak a b,又 a+b=4k,∴16ab a 2 2ab b ,(a>b),2整理,得:a 214ab b20 .……………………………………………………………………………13 分a a依题意 b≠0,得:( )2 141 0.bba 14 142 4解得:74 3b 2 ,(a>b). (14)分a综上所述,存在这样的函数 y1,y2,使得 B,C 为线段 AD 的三等分点,且74 3b,(a>b).数学参考答案第 6 页(共 6 页)1、一知半解的人,多不谦虚;见多识广有本领的人,一定谦虚。

福建省莆田市2019-2020学年中考数学四模考试卷含解析

福建省莆田市2019-2020学年中考数学四模考试卷含解析

福建省莆田市2019-2020学年中考数学四模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°3.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣64.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是()A.相交B.相切C.相离D.无法确定5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.56.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A .16B .13C .12D .237.如果2a b -=,那么22b a a b a a-+÷的值为( ) A .1 B .2 C .1- D .2-8.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D9.一次函数y=2x+1的图像不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在矩形ABCD 中,AB=3,AD=4,点E 在边BC 上,若AE 平分∠BED ,则BE 的长为( )A .35B .93C .7D .4﹣711.如图,四边形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,分别以ED ,EC 为折痕将两个角(∠A ,∠B )向内折起,点A ,B 恰好落在CD 边的点F 处.若AD=3,BC=5,则EF 的值是( )A 15B .15C 17D .1712.如图,Rt △ABC 中,∠C=90°,∠A=35°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=( )A .35°B .60°C .70°D .70°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .14.如果一个矩形的面积是40,两条对角线夹角的正切值是43,那么它的一条对角线长是__________. 15.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.16.如图,在直角坐标平面xOy 中,点A 坐标为()3,2,90AOB ∠=o ,30OAB ∠=o ,AB 与x 轴交于点C ,那么AC :BC 的值为______.17.瑞士的一位中学教师巴尔末从光谱数据9162536,,,5122132,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.18.计算:|-3|-1=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若23DF FO =,求证:CD =DH .20.(6分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120︒角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)21.(6分)解不等式组:()3x12xx1x132⎧-<⎪⎨+-<⎪⎩22.(8分)计算:(﹣2)2+20180﹣3623.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为»BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=6,求AB的长.24.(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?25.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE 与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.26.(12分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB 的度数及P点坐标.27.(12分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.2.A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.3.A【解析】【分析】根据异号两数相加的法则进行计算即可.【详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【点睛】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.4.C【解析】【分析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与与圆相离.【详解】∵x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,∵点O到直线l距离是方程x2-4x-12=0的一个根,即为6,∴点O到直线l的距离d=6,r=5,∴d>r,∴直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.5.A【解析】【分析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D为AB中点∴CD=∵点E、F分别为BC、BD中点∴.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF 与题目已知长度的线段的数量关系.6.B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B .点评:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )="m" /n .7.D【解析】【分析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【详解】22()()=b a a b b a b a b a a a ba a a -++-÷⨯=-+ 2ab -=Q()2b a a b ∴-=--=-故选:D .【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.8.C【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.9.D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.10.D【解析】【分析】首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.【详解】∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分线,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,,∴故答案选D.【点睛】本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.11.A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC ﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.12.D【解析】【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.14.1.【解析】【分析】如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH43BHOH==,可得BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,求出a即可解决问题.【详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH43BHOH==,∴BH=4a,OH=3a,由题意:212⨯⨯1a×4a=40,∴a=1,∴AC=1.故答案为:1.【点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.15.1【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.16.3 3【解析】【分析】过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.先证△ADO ∽△OEB ,再根据∠OAB =30°求出三角形的相似比,得到OD:OE=2∶3,根据平行线分线段成比例得到AC:BC=OD:OE=2∶3=23 【详解】解:如图所示:过点A 作AD ⊥y 轴,垂足为D ,作BE ⊥y 轴,垂足为E.∵∠OAB =30°,∠ADE =90°,∠DEB =90°∴∠DOA+∠BOE =90°,∠OBE+∠BOE =90°∴∠DOA=∠OBE∴△ADO ∽△OEB∵∠OAB =30°,∠AOB =90°,∴OA ∶3∵点A 坐标为(3,2)∴AD=3,OD=2 ∵△ADO ∽△OEB∴3AD OA OE OB==∴OE 3=∵OC ∥AD ∥BE根据平行线分线段成比例得:AC:BC=OD:OE=2323 23. 【点睛】 本题考查三角形相似的证明以及平行线分线段成比例.17.121117.【解析】【分析】分子的规律依次是:32,42,52,62,72,82,92…,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45…,即分子为(n+2)2,分母为n(n+4).【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1.因而第九个数是:121 117.故答案为:121 117.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.18.2【解析】【分析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)34;(3)证明见解析.【解析】【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=14CE,根据等腰三角形的性质证明.【详解】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt △ABD 中,AB =1,BD =8,∠ADE =∠ACB ,∴sin ∠ADB =68=34,即sin ∠ACB =34; (3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA =12DE . ∴△CDF ∽△AOF , ∴CD DF AO OF ==23, ∴CD =23OA =13DE ,即CD =14CE , ∵AC =AE ,AH ⊥CE ,∴CH =HE =12CE , ∴CD =12CH , ∴CD =DH .【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.20.1234-【解析】【分析】设灯柱BC 的长为h 米,过点A 作AH ⊥CD 于点H ,过点B 作BE ⊥AH 于点E ,构造出矩形BCHE ,Rt △AEB ,然后解直角三角形求解.【详解】解:设灯柱BC 的长为h 米,过点A 作AH CD ⊥于点H ,过点B 做BE AH ⊥于点E ,∴四边形BCHE 为矩形,∵120ABC ∠=︒,∴30ABE ∠=︒,又∵90BAD BCD ∠=∠=︒,∴60ADC ∠=︒, 在Rt AEB V 中,∴sin301AE AB =︒=,cos303BE AB =︒=,∴3CH =,又12CD ,=∴123DH =, 在Rt AHD △中,tan 3123AH ADH HD ∠===-,解得,1234h =-(米)∴灯柱BC 的高为()1234-米.21.﹣9<x <1.【解析】【分析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x ﹣1)<2x ,得:x <1,解不等式﹣<1,得:x >﹣9, 则原不等式组的解集为﹣9<x <1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.22.﹣1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.详解:原式=4+1-6=-1. 点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质. 23.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-2CD AD DE =⋅,根据勾股定理得到223CE CD DE +=90ACB ∠=︒,即可得到结论.【详解】 ()1相切,连接OC ,∵C 为¶BE的中点, ∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O e 相切;()2方法1:连接CE ,∵2AD =,6AC =∵90ADC ∠=o , ∴222CD AC AD -∵CD 是O e 的切线,∴2CD AD DE =⋅,∴1DE =, ∴223CE CD DE =+∵C 为¶BE的中点, ∴3BC CE ==∵AB 为O e 的直径,∴90ACB ∠=o , ∴223AB AC BC =+=.方法2:∵DCA B ∠=∠,易得ADC ACB V V ∽, ∴AD AC AC AB=, ∴3AB =.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.24.(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48≤m≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升1.套方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a>3时,取m=48时费用W最省.当0<a<3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.25.(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB 的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM 与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.(3)结论:AE=BF.理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.【点睛】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.26.(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】【分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P 点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.27. (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【解析】【分析】(1)设购进甲、乙两种商品分别为x 件与y 件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x 与y 的方程组,求出方程组的解即可得到x 与y 的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a 的不等式组,求出不等式组的解集,得到a 的取值范围,根据a 为正整数得出a 的值,再表示总利润W ,发现W 与a 成一次函数关系式,且为减函数,故a 取最小值时,W 最大,即可求出所求的进货方案与最大利润.【详解】(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:10015352700x y x y +⎧⎨+⎩==, 解得:4060x y ==⎧⎨⎩, 答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件,根据题意列得:()()15351003100510100890a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:20≤a≤22,∵总利润W=5a+10(100﹣a )=﹣5a+1000,W 是关于a 的一次函数,W 随a 的增大而减小, ∴当a=20时,W 有最大值,此时W=900,且100﹣20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.。

2019年莆田市初中毕业班质量检查数学试卷word

2019年莆田市初中毕业班质量检查数学试卷word

2019年莆田市初中毕业班质量检查试卷数 学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。

一、精心选一选:本大题共10小题,每小题4分,共40分,每小题给出的四个选项中有且只有一个选项是是符合题目要求的. 答对的得4分;答错、不答或答案超过一个的一律得0分. 1.21的绝对值是( ) A .2 B .﹣2 C .21 D .21- 2. 下列等式中,正确的是( )A .3a+2b=5abB . 2(a ﹣b) =2a-bC .(a ﹣b )2=a 2﹣b 2D .(﹣2a 3)2=4a 63. 如图,将一个小球摆放在圆柱上,该几何体的俯视图是( )A B C D4.则这50名学生这一周在校的体育锻炼时间的中位数是( ) A. 6 B. 6.5 C. 7D. 8 5.下列说法中错误..的是( ) A .两条对角线互相平分的四边形是平行四边形 B .两条对角线相等的四边形是矩形 C .两条对角线互相垂直的矩形是正方形 D .两条对角线相等的菱形是正方形 6.在数轴上表示不等式组20,2(1) 1.x x x +>⎧⎨-≤+⎩的解集,正确的是( )第3题图A B C D7.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,D是优弧BC上一点,∠A=30°,则∠D为()A.25°B.30°C.35°D.45°8.一只不透明的袋子中装有除颜色外都相同的4个黑球、2个白球,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球9.如图,菱形纸片ABCD的对角线AC、BD相交于点O,折叠纸片使点A与点O重合,折痕为EF,若AB=5,BD=8,则△OEF的面积为().A.12 B.6 C.3 D.2310.规定:如图1,在平面内选一定点O,引一条有方向的射线OX,再选定一个单位长度,那么平面上任一点M的位置可由∠MOX的度数θ与OM的长度m确定,有序数对(θ,m)称为点M的“极坐标”,这样建立的坐标系称为“极坐标系”。

2019年莆田市初中毕业班质量检查模拟试卷

2019年莆田市初中毕业班质量检查模拟试卷

2019年莆田市初中毕业班质量检查模拟试卷数学一、选择题1.数a的相反数是()A.|a| B.C.﹣a D.2.如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A.B.C.D.3.下列各整式中,次数为3次的单项式是()A.xy2B.xy3C.x+y2D.x+y34.在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.下列运算正确的是()A.4a﹣a=3 B.a6÷a3=a3C.(ab)2=ab2 D.(a﹣b)2=a2﹣b26.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)7.如图,平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20 B.22 C.29 D.31二、填空题8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠.分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P,Q是双曲线上不同的两点,过点P,Q分别作PB⊥y轴于B点、QA⊥x轴于A点,两垂线的交点为E点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A,B是双曲线y=上不同的两点,直线AB与x轴、y轴相交于点C,D:①求证:AC=BD.②已知:直线AB的关系为y=﹣x+2,CD=4AB.试求出k的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P 作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.2019年莆田市初中毕业班质量检查模拟试卷参考答案与试题解析一、选择题1.数a的相反数是()A.|a| B.C.﹣a D.【考点】实数的性质.【分析】根据相反数的定义进行选择即可.【解答】解:∵数a的相反数是﹣a,∴故选C.【点评】本题考查了实数的性质,掌握一个数相反数的求法是解题的关键.2.如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A.B.C.D.【考点】平行线的性质.【分析】先判断出∠1与∠2是内错角,然后根据平行线的性质即可得出答案.【解答】解:∵∠1与∠2,∴能直接利用“两直线平行,内错角相等”判定∠1=∠2的是B,故选B.【点评】本题考查了平行线的性质,两直线平行内错角相等、同位角相等,同胖内角互补,是需要同学们熟练记忆的内容.3.下列各整式中,次数为3次的单项式是()A.xy2B.xy3C.x+y2D.x+y3【考点】单项式.【分析】根据单项式中,所有字母的指数和叫做这个单项式的次数对各选项分析判断即可得解.【解答】解:A、xy2的次数是1+2=3,故本选项正确;B、xy3的次数是4,故本选项错误;C、x+y2是多项式,故本选项错误;D、x+y3是多项式,故本选项错误.故选A.【点评】本题考查了单项式,主要是次数的确定,熟记单项式中,所有字母的指数和叫做这个单项式的次数是解题的关键.4.在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【考点】统计量的选择.【分析】学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.下列运算正确的是()A.4a﹣a=3 B.a6÷a3=a3C.(ab)2=ab2 D.(a﹣b)2=a2﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据整式的运算,合并同类项,完全平方式,积的乘方,幂的乘方运算.【解答】解:A、4a﹣a=a≠3,所以A错误,B、a6÷a3=a3,所以B正确;C、(ab)2=a2b2≠ab2,所以C错误;D、(a﹣b)2=a2+b2﹣2ab≠a2﹣b2,所以D错误.故选B.【点评】此题是同底数幂的除法题,主要考查了合并同类项,完全平方式,积的乘方,解本题关键是整式的运算的熟练掌握.6.如图,在4×4的正方形网格中,已有四个小正方形被涂黑.若将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形,则该小正方形的位置可以是()A.(一,2)B.(二,4)C.(三,2)D.(四,4)【考点】轴对称图形.【分析】根据轴对称图形的概念、结合图形解答即可.【解答】解:如图,把(二,4)位置的S正方形涂黑,则整个图案构成一个以直线AB为轴的轴对称图形,故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7.如图,平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20 B.22 C.29 D.31【考点】三角形中位线定理;平行四边形的性质.【分析】先由平行四边形ABCD,可得,AD=BC=6,CD=AB=10,再由E、F分别是AD、DC 的中点,可得AE=AD=3,CF=CD=5,根据三角形中位线定理,可得AC=2EF=14,从而求出四边形EACF的周长.【解答】解:已知平行四边形ABCD,∴AD=BC=6,CD=AB=10,又E、F分别是AD、DC的中点,∴AE=AD=3,CF=CD=5,∴由三角形中位线定理得:AC=2EF=2×7=14,∴四边形EACF的周长为:EA+AC+CF+EF=3+14+5+7=29,故选:C.【点评】此题考查的知识点平行四边形性质和三角形中位线定理的应用,关键是由平行四边形性质得出AD=BC=6,CD=AB=10,再由再由E、F分别是AD、DC的中点,得出AE 和CF,根据三角形中位线定理得出AC=2EF=14.二、填空题8.计算:a2•a4= a6.【考点】同底数幂的乘法.【专题】计算题.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【解答】解:a2•a4=a2+4=a6.故答案为:a6.【点评】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则.9.分解因式:x2﹣9= (x+3)(x﹣3).【考点】因式分解-运用公式法.【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.10.计算: = 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示: 1.95×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:195 000 000=1.95×108,故答案为:1.95×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= 50 °.【考点】矩形的性质.【分析】求出∠3,根据矩形的性质得出AD∥BC,根据平行线的性质得出即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠3,∵∠1=130°,∴∠3=180°﹣∠1=50°,∴∠2=50°,故答案为:50.【点评】本题考查了矩形的性质的应用,能根据矩形的性质得出AD∥BC是解此题的关键.13.一个正多边形的每个外角都是36°,这个正多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据余弦是邻边比斜边,可得答案.【解答】解:由勾股定理,得AB==5,cos∠A==,故答案为:.【点评】本题考查了锐角三角函数的定义,利用余弦是邻边比斜边是解题关键.15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.【考点】垂径定理;勾股定理.【分析】直接利用垂径定理的推论得出CO⊥AB,进而利用勾股定理得出答案.【解答】解:∵点C是AB的中点,∴CO⊥AB,∵AB=4cm,OC=1cm,∴BC=2,则BO==(cm).故答案为:.【点评】此题主要考查了垂径定理以及勾股定理,正确得出OC⊥AB是解题关键.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为y=(x﹣4)2+3 .【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先利用顶点式得到抛物线y=x2的顶点坐标为(0,0),再利用点平移的坐标规律得到点(0,0)平移后所得对应点的坐标为(4,3),然后利用顶点式写出平移后得到的抛物线的解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向右平移4个单位,再向上平移3个单位所得对应点的坐标为(4,3),所以平移后的抛物线L的解析式为y=(x﹣4)2+3.故答案为y=(x﹣4)2+3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.如图,在△ABC中,AB=AC,∠.分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 25 度;②若BC=9,与的长度之和为π.【考点】弧长的计算.【分析】①根据线段垂直平分线的判定和等腰三角形的性质即可得到结论;②由等腰三角形的性质得出∠ABC=∠ACB=65°,由等边三角形的性质得出∠DBC=∠DCB=60°,再由平角的定义求出∠DBE=∠DCF=55°,然后根据弧长公式求出,的长度,即可得出结果.【解答】解:①连接CD,BD,∵AB=AC,BD=CD,∴AD垂直平分BC,∴∠DAE=∠BAC=25°;故答案为:25;②∵AB=AC,∠BAC=50,∴∠ABC=∠ACB=65°,∵BD=CD=BC,∴△BDC为等边三角形,∴∠DBC=∠DCB=60°,∴∠DBE=∠DCF=55°,∵BC=9,∴BD=CD=9,∴的长度=的长度==π;∴,的长度之和为π.故答案为:π.【点评】本题考查了弧长的计算,等腰三角形的性质,等边三角形的判定与性质,平角的定义;熟练掌握等边三角形的判定与性质,并能进行推理计算是解决问题的关键.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,=360元;∴当x=5时,w取得最大值,w最大②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,=576元;∴当x=9时,w取得最大值,w最大③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w=138元;最大综上,当x=9时,w取得最大值,w=576元,最大答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P,Q是双曲线上不同的两点,过点P,Q分别作PB⊥y轴于B点、QA⊥x轴于A点,两垂线的交点为E点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A,B是双曲线y=上不同的两点,直线AB与x轴、y轴相交于点C,D:①求证:AC=BD.②已知:直线AB的关系为y=﹣x+2,CD=4AB.试求出k的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE的值;(2)①过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P 作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC 可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。

福建省莆田市2019-2020学年中考数学模拟试题(3)含解析

福建省莆田市2019-2020学年中考数学模拟试题(3)含解析

福建省莆田市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)2.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米3.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.514.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对53xx的取值范围是()A.x≥﹣3 B.x≠0C.x≥﹣3且x≠0D.x≥36.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣87.如图,AD∥BC,AC平分∠BAD,若∠B=40°,则∠C的度数是()A.40°B.65°C.70°D.80°8.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=cx在同一坐标系中的图象可能是()A.B.C.D.9.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟10.如图,函数y=()()()4022824x x xx x⎧--≤<⎪⎨-+≤≤⎪⎩的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.4∠=∠的是()11.以下各图中,能确定12A.B.C. D.12.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()A.30 B.27 C.14 D.32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.14.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.15.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.16.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.17.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.18.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:(元)19 20 21 30(件)62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?20.(6分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.21.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?22.(8分)AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是»AB中点,连接CE,BE,若BE=2,求CE的长.23.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.24.(10分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.26.(12分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.27.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到22AD OA'-3,于是得到结论.【详解】解:∵AD′=AD=4,AO=12AB=1,∴22AD OA'-3,∵C′D′=4,C′D′∥AB,∴C′(4,3),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.2.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM ⊥ED 交ED 的延长线于M ,CN ⊥DM 于N .在Rt △CDN 中,∵140.753CN DN ==,设CN=4k ,DN=3k , ∴CD=10, ∴(3k )2+(4k )2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC 是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt △AEM 中,tan24°=AM EM , ∴0.45=866AB +, ∴AB=21.7(米),故选A .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.D【解析】试题解析:第①个图形中有3 盆鲜花,第②个图形中有336+=盆鲜花,第③个图形中有33511++=盆鲜花,…第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+,则第⑥个图形中的鲜花盆数为26238.+=故选C.4.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .5.C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.6.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7, 故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C【解析】【分析】根据平行线性质得出∠B+∠BAD =180°,∠C =∠DAC ,求出∠BAD ,求出∠DAC ,即可得出∠C 的度数.【详解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=12∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故选C.【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.8.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置. 【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键. 9.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x =;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C .【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.10.C【解析】【分析】求出1C 与x 轴的交点坐标,观察图形可知第奇数号抛物线都在x 轴上方,然后求出到抛物线25C 平移的距离,再根据向右平移横坐标加表示出抛物线26C 的解析式,然后把点P 的坐标代入计算即可得解.【详解】令0y =,则()428x x x ⎧--⎨-+⎩=0, 解得120,4x x ==,()14,0A ∴,由图可知,抛物线26C 在x 轴下方,相当于抛物线1C 向右平移4×(26−1)=100个单位得到得到25C ,再将25C 绕点25A 旋转180°得26C , ∴26C 此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),Q 103P m (,)在第26段抛物线26C 上, ∴m=(103−100)(103−104)=−3.故答案是:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p 点所在函数表达式. 11.C【解析】【分析】逐一对选项进行分析即可得出答案.【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误.故选:C .【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.12.A【解析】∵四边形ABCD 是平行四边形,∴AB//CD ,AB=CD ,AD//BC ,∴△BEF ∽△CDF ,△BEF ∽△AED , ∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, , ∵BE :AB=2:3,AE=AB+BE ,∴BE :CD=2:3,BE :AE=2:5, ∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, , ∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21,∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:因为等腰△ABC 的周长为33,底边BC=5,所以AB=AC=8,又DE 垂直平分AB ,所以AE=BE,所以△BEC 的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.14.45a ≤<【解析】【详解】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1,∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解,∴a 的范围为45a ≤<,故答案为45a ≤<.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.15.62【解析】【分析】根据折叠的性质得出∠2=∠ABD ,利用平角的定义解答即可.【详解】解:如图所示:由折叠可得:∠2=∠ABD ,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC ,∴∠1=∠2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD 是关键. 16.(﹣2,2)【解析】试题分析:∵直线y=2x+4与y 轴交于B 点,∴x=0时,得y=4,∴B (0,4).∵以OB 为边在y 轴右侧作等边三角形OBC ,∴C 在线段OB 的垂直平分线上,∴C 点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.17.1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.18.2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】【分析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式.20.(1)见解析;(2)【解析】【分析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.【详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠3【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。

2019年福建省中考数学试题(原卷+解析)

2019年福建省中考数学试题(原卷+解析)

2019年福建省中考数学试卷含答案【精品】一、选择题(每小题4分,共40分)1.(4分)计算22+(﹣1)0的结果是()A.5B.4C.3D.22.(4分)北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106 3.(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.(4分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.(4分)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.66.(4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.(4分)下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346859.(4分)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.(4分)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1二、填空题(每小题4分,共24分)11.(4分)因式分解:x2﹣9=.12.(4分)如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.13.(4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.14.(4分)在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是.15.(4分)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)16.(4分)如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k =.三、解答题(共86分)17.(8分)解方程组.18.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.19.(8分)先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.20.(8分)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.22.(10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.23.(10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数89101112频率(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.25.(14分)已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.2019年福建省中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【解答】解:原式=4+1=5故选:A.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:将720000用科学记数法表示为7.2×105.故选:B.3.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.5.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.6.【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.7.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.8.【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.10.【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B (0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.二、填空题(每小题4分,共24分)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣113.【分析】用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.【解答】解:由题意得:2000×=1200人,故答案为:1200.14.【分析】由题意得出OA=3,由平行四边形的性质得出BC∥OA,BC=OA=3,即可得出结果.【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(4,2),∴点C的坐标为(4﹣3,2),即C(1,2);故答案为:(1,2).15.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.16.【分析】连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.【解答】解:连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D 作DG⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O、A、C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.三、解答题(共86分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.19.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.20.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB=AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=25°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.22.【分析】(1)求出该车间处理35吨废水所需费用,将其与350比较后可得出m<35,根据废水处理费用=该车间处理m吨废水的费用+第三方处理超出部分废水的费用,即可得出关于m的一元一次方程,解之即可得出结论;(2)设一天产生工业废水x吨,分0<x≤20及x>20两种情况考虑,利用每天废水处理的平均费用不超过10元/吨,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)∵35×8+30=310(元),310<350,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤20.23.【分析】(1)利用概率公式计算即可.(2)分别求出购买10次,11次的费用即可判断.【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,某台机器使用期内维修次数89101112该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,某台机器使用期内维修次数89101112该台机器维修费用2600026500270002750032500此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.24.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.25.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k,C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.。

2019年莆田市初中毕业班质量检查试卷数学及答案(1)

2019 年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个数中,最大的数是A .-2B .-1C .0D .|-3|2.下列几何体中,俯视图为三角形的是A .B .C .D .3.下列式子中,可以表示为32-的是A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)4.将一把直尺和一块含30°的直角三角板ABC 按如图所示的位置放置,若∠CDE =40°,则∠BAF 的大小为A .10°B .15°C .20°D .25°5.若4<k <5,则k 的可能值是A .23B .8C .32D .54+6.点E (m ,n )在平面直角坐标系中的位置如图所示,则坐标(m +1,n -1)对应的点可能是A .A 点B .B 点C .C 点D .D 点7.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高A .平均数变小,中位数变小B .平均数变小,中位数变大C .平均数变大,中位数变小D .平均数变大,中位数变大8.下列直线与过(-2,0),(0,3)的直线的交点在第一象限的是A .x =-3B .x =3C .y =-3D .y =39.如图,AB ,AC 均为⊙O 的切线,切点分别为B ,C ,点D 在优弧BC 上.则下列关系式中一定成立的是A .∠A +∠D =180°B .∠A +2∠D =180°C .∠B +∠C =270°D .∠B +2∠C =270°10.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系为c bt at p ++=2(a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟二、填空题:本大题共6小题,每小题4分,共24分.11.莆田市政府推出“YouBike 微笑自行车”的社会公共服务项目,旨在发展全民健身,打造健康莆田.预计2019年年底将建设970个公共自行车租赁站点,投入自行车31000辆.将31000写成科学记数法为.12.方程组⎩⎨⎧=+=-42,2y x y x 的解是.13.如图,△ABC 中,AB +AC =6,BC 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则△ACD 的周长为.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸出两个球,这两个球中有白球的概率是.15.尺规作图特有的魅力使无数人沉湎其中.传说拿破仑曾通过下列尺规作图将圆等分:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,两弧相交于点G ;③连接OG ,以OG 长为半径,从点A 开始,在圆周上依次截取,刚好将圆等分.顺次连接这些等分点构成的多边形面积为.16.如图,点P 为函数x y 2=(x >0)上一点,过点P 作x 轴、y 轴的平行线,分别与函数xy 10=(x >0)的图象交于点A 、B ,则△AOB 的面积为.三、解答题:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.(本小题满分8分)计算:︒+-60cos 830π.18.(本小题满分8分)求证:角的平分线上的点到角的两边的距离相等.19.(本小题满分8分)化简求值:m m m m 21121-÷⎪⎭⎫ ⎝⎛+-,其中m =2.20.(本小题满分8分)如图,△ABC 中,AB =AC ,∠A =80°,点D ,E 分别在边AB ,AC 上,且DA =DE=CE .(1)求作点F ,使得四边形BDEF 为平行四边形;(要求:尺规作图,保留痕迹,不写作法)(2)连接CF ,写出图中经过旋转可完全重合的两个三角形,并指出旋转中心和旋转角.21.(本小题满分8分)我市“木兰溪左岸绿道”工程已全部建成并投入使用,10公里的河堤便道铺满了彩色的透水沥青,堤岸旁的各类花草争奇斗艳,与木兰溪河滩上的特色花草相映成趣,吸引着众多市民在此休闲锻炼、散步观光.某小区随机调查了部分居民在一周内前往“木兰溪左岸绿道”锻炼的次数,并制成如图不完整的统计图表.居民前往“木兰溪左岸绿道”锻炼的次数统计表锻炼次数0次1次2次3次4次及以上人数713a 103请你根据统计图表中的信息,解答下列问题:(1)a =,b =;(2)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(3)若该小区共有2000名居民,根据调查结果,估计该小区居民在一周内前往“木兰溪左岸绿道”锻炼“4次及以上”的人数.22.(本小题满分10分)如图,在⊙O 中,弦AC ⊥BD 于点E ,连接AB ,CD ,BC .(1)求证:∠AOB +∠COD =180°;(2)若AB =8,CD =6,求⊙O 的直径.23.(本小题满分10分)直觉的误差:有一张8cm×8cm 的正方形纸片,面积是64cm².把这些纸片按图1所示剪开成四小块,其中两块是三角形,另外两块是梯形.把剪出的4个小块按图2所示重新拼合,这样就得到了一个13cm×5cm 的长方形,面积是65cm²,面积多了1cm ².这是为什么?小明给出如下证明:如图2可知,38tan =∠CEF ,25tan =∠EAB ,∵EAB CEF ∠>∠tan tan ,∴EAB CEF ∠>∠,∵EF ∥AB ,∴∠EAB +∠AEF =180°,∴∠CEF +∠AEF >180°,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm².(1)小红给出的证明思路为:以B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,证明三点不共线.请你帮小红完成她的证明;(2)将13cm×13cm 的正方形做类似的剪开拼合,是否可以拼合成一个长方形,但面积少了1cm²?如果能,求出剪开的三角形的短边长;如果不能,请说明理由.24.(本小题满分12分)如图1,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点A 逆时针旋转,得到△ADE ,旋转角为)900(︒<<︒αα,连接BD 交CE 于点F .(1)如图2,当︒=45α时,求证:CF =EF ;(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD ,当△CDF 为等腰直角三角形时,求2tan α的值.25.(本小题满分14分)函数y 1=kx ²+ax +a 的图象与x 轴交于点A ,B (点A 在点B 的左侧),函数y 2=kx ²+bx +b 的图象与x 轴交于点C ,D (点C 在点D 的左侧),其中k ≠0,a ≠b .(1)求证:函数y 1与y 2的图象交点落在一条定直线上;(2)若AB =CD ,求a ,b 和k 应满足的关系式;(3)是否存在函数y 1和y 2,使得B ,C 为线段AD 的三等分点?若存在,求ba 的值;若不存在,说明理由.2019 年莆田市初中毕业班质量检查试卷数学参考答案及评分标准说明:(一)考生的解法与“参考答案”不同时,可参考“答案的评分标准”的精神进行评分.(二)如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如果属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数.(四)评分的最小单位1分,得分和扣分都不能出现小数点.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.C 3.A 4.A 5.D 6.C 7.A 8.B 9.B 10.C二、填空题:本大题共6小题,每小题4分,共24分.11.3.1×10412.⎩⎨⎧==02y x 13.614.3215.2r ²16.24三、解答题:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.解:原式=1-2+21…………………………………………………………………………………………6分=21-……………………………………………………………………………………………8分18.已知:如图,OC 是∠AOB 的平分线,P 是OC 上一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F .求证:PE =PF .……………………………………………………………………………………………2分……………………………………………………………………………………………4分证明:∵OC 是∠AOB 的平分线,∴∠POE =∠POF ,∵PE ⊥OA ,PF ⊥OB ,∴∠PEO =∠PFO ,………………………………………………………………………………………6分又∵OP =OP ,∴△POE ≌△POF ,∴PE =PF .…………………………………………………………………………………………………8分19.解:原式=)1)(1(1m m m m m -+⋅-………………………………………………………………………4分=11+m ,……………………………………………………………………………………6分当m =2时,11+m =31.…………………………………………………………………………8分20.(1)………………………………………………………………………………4分如图,点F 为所求作的点.……………………………………………………………………………5分(2)△ADE 和△FCE ;旋转中心为点E ,旋转角为100°.………………………………………………8分21.解:(1)17,20;……………………………………………………………………………………………4分(2)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;…………………………6分(3)估计该小区居民在一周内前往“木兰溪左岸绿道”锻炼“4次及以上”的人数为2000×503=120人.……………………………………………………………………………8分22.(1)证明:∵AC ⊥BD ,∴∠BEC =90°,∴∠CBD +∠BCA =90°,………………………………………2分∵∠AOB =2∠BCA ,∠COD =2∠CBD ,∴∠AOB +∠COD =2(∠CBD +∠BCA )=180°;………………………………………………4分(2)解:如图,延长BO 交⊙O 于点F ,连接AF .………………………………………………………5分则∠AOB +∠AOF =180°,又由(1)得:∠AOB +∠COD =180°,∴∠AOF =∠COD ,∴AF =CD =6,………………………………………………………8分∵BF 为⊙O 的直径,∴∠BAF =90°,在Rt △ABF 中,108622=+=BF ,∴⊙O 的直径为10.………………………………………………10分23.解:(1)如图,以点B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,则点A (0,5),E (5,3),C (13,0),…………………………………………………………………………………………1分法一:可得直线AC :5135+-=x y ,………4分当x =5时,3134055135≠=+⨯-=y ,故点E 不在直线AC 上,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm².………………………………………………………………………5分法二:可得AC =19451322=+,AE =292522=+,CE =733822=+,……4分由于AE +EC ≠AC ,故点E 不在AC 上,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm².…………5分(2)如图,设剪开的三角形的短边长为x cm ,依题意得:(13-x )(13+13-x )=13×13-1,………………………………………………………8分解得x 1=5,x 2=34(舍去),故能将13cm×13cm 的正方形做这样的剪开拼合,可以拼合成一个8×21长方形,但面积少了1cm².………………………………………………………………………………………………10分24.证明:(1)由旋转45°,可知:∠ADE =∠ABC =90°,∠EAD =∠CAB =45°,AE =AC ,AD =AB ,∴△CAE 中,∠ACE =∠AEC =67.5°,△DAB 中,∠ABD =∠ADB =67.5°, (1)分∴∠FDC =∠ADB =67.5°,∴∠FDC =∠DCF ,∴CF =DF ,………………………………………………………………………………………2分在Rt △EDC 中,∠CED =∠EDF =22.5°,∴EF =DF ,∴EF =CF ;………………………………………………………………………………………3分(2)法一:过点E 作EG ∥CB 交BF 延长线于点G .……………………………………………4分∵AD =AB ,∴∠ADB =∠ABD ,∵∠EDG +∠ADB =∠CBF +∠ABD =90°,∴∠EDG =∠CBF ,∵EG ∥CB ,∴∠G =∠CBF ,∴∠EDG =∠G ,∴EG =ED ,∵ED =BC ,∴EG =BC , (6)分∵∠EFG =∠CFB ,∴△FEG ≌△FCB ,∴EF =CF ;……………………………………………………………………………………7分法二:分别过点A ,C ,E ,作AP ⊥BF 于点P ,CN ⊥BF 于点N ,EM ⊥BF 交BF 延长线于点M .…………………………………………4分证△EMD ≌△DPA ,得EM =PD ,证△APB ≌BNC ,得CN =BP ,又等腰△ABD 中,AP ⊥BD ,得PD =PB ,故EM =CN ,……………………6分故△EMF ≌△CNF ,因此EF =CF ;…………………………………7分法三:过点C 作CP ∥DF 交ED 延长线于点P ,EP 交BC 于点Q .………………………4分由∠EDF =∠BDQ ,∠EDF =∠DBC ,得∠BDQ =∠DBQ ,则DQ =BQ ,又CP ∥BD ,得∠QCP =∠QBD ,∠QPC =∠QDB ,则∠QCP =∠QPC ,可得CQ =PQ ,故CQ +QB =PQ +DQ ,PD =BC =DE ,………………………6分因此1==DPED CF EF ,即EF =CF ;………………………7分(3)过点A 作AP ⊥BD 于点P .∵AB =AD ,∴∠PAB =21∠DAB =2α,∵∠PAB +∠PBA =∠CBD +∠PBA =90°,∴∠CBD =∠PAB =2α∵2==AB AC AD AE ,∠EAC =∠DAB ,∴△AEC ∽△ADB ,∴2==AD AE BD CE ,∴∠ACE =∠ABD,∴∠CFB =∠CAB =45°,…………………………………………………9分①当∠CDF =90°时,如图,△CDF 为等腰直角三角形,则CF =2DF ,∵EF =CF ,∴CF =22BD ,∴DF =21BD ,∵CD =DF ,∴CD =21BD ,∴2tan α=CBD ∠tan =BD CD =21;……………………………………………………………11分②当∠FCD =90°时,如图,△CDF 为等腰直角三角形,则CF =22DF ,过点C 作CG ⊥DF 于点G .∵EF =CF ,∴CF =22BD ,∴DF =BD ,∵CG ⊥DF ,∵CG =21DF ,∴CG =31BG ,∴2tan α=CBG ∠tan =BG CG =31.…………………………………………………………12分综上所述:2tan α=21或31.25.(1)联立⎪⎩⎪⎨⎧++=++=bbx kx y a ax kx y 22,………………………………………………………………………………1分得b bx kx a ax kx ++=++22.整理,得(a -b )x =b -a .∵a ≠b ,∴x =-1,∴⎩⎨⎧=-=ky x 1.………………………………………………………………………2分∴函数y 1与y 2的图象交点坐标为(-1,k ).所以该交点落在直线x =-1上.………………………………………………………………………3分(2)分别令y 1=0,y 2=0,得0,022=++=++b bx kx a ax kx .则a 2-4ak >0,kak a a x B A 242,-±-=,b 2-4bk >0,kbk b b x D C 242,-±-=,……………………………………………………………5分∴AB =k ak a 42-,CD =kbk b 42-.……………………………………………………………6分∵AB =CD ,∴k ak a 42-=kbk b 42-,∴a 2-4ak =b 2-4bk ,∴(a +b )(a -b )=4k (a -b ),∵a ≠b ,∴a +b =4k .又a 2-4ak >0,∴a 2-a (a +b )>0,得ab <0.故a +b =4k 且ab <0.………………………………………………………………………………8分(3)若k >0时,①当点C 在点B 左侧,则AC =BC =BD ,∴AB =CD ,∴x C -x A =x B -x C ,∴2x C =x A +x B ,………………………………………………………………………9分∴kak a a k ak a a k bk b b 2424242222-+-+---=---⋅,∴a -b =bk b 42-,∴bk b b a 4)(22-=-且a >b ,整理得022=-+ab b a ,………………………………………10分依题意b ≠0,得01)(2=+-ba b a,△=1-4=-3<0,∴不存在实数a ,b ,使得B ,C 为线段AD 的三等分点.…………………………………………11分②当点C 在点B 右侧,则AB =BC =CD .∴x B -x A =x C -x B ,∴2x B =x A +x C ,……………………………………………………………………12分∴kbk b b k ak a a k ak a a 2424242222---+---=-+-⋅,由(2)得bk b ak a 4422-=-,则b a ak a -=-442,所以22)()4(16b a ak a -=-且a >b ,则22216b ab a ab +-=-,整理,得:01422=++b ab a ,……………………………………………………………………13分依题意b ≠0,得:0114(2=+⋅+b a b a .解得:3472414142±-=-±-=b a .因为由(2)得a +b =4k >0且ab <0,又a >b ,所以0a b >>,且a b>-所以1-<b a ,所以347+-=b a 舍去,则347--=b a .若k <0时,同理可得347--=ba .………………………………………………………………14分综上所述,存在这样的函数y 1,y 2,使得B ,C 为线段AD 的三等分点,且347--=b a .。

2019年福建省中考数学试题及参考答案(word解析版)

2019年福建省中考数学试题(满分150分,考试时间120分钟)第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.计算22+(﹣1)0的结果是()A.5 B.4 C.3 D.22.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.已知正多边形的一个外角为36°,则该正多边形的边数为()A.12 B.10 C.8 D.66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685 C.x+2x+2x=34685 D.x+x+x=34685 9.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E (2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分。

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

2019年莆田市初中毕业班质量检查试卷数学试题答案及评分参考

2019年莆田市初中毕业班质量检查试卷数学参考答案及评分标准说明:(一) 考生的解法与 “参考答案” 不同时,可参考 “答案的评分标准” 的精神进行评分.(二) 如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如果属严重的概念性错误,就不给分.(三) 以下解答各行右端所注分数表示正确做完该步骤应得的累计分数.(四) 评分的最小单位1分,得分和扣分都不能出现小数点.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.C 3.A 4.A 5.D 6.C 7.A 8.B 9.B 10.C二、填空题:本大题共6小题,每小题4分,共24分.11.3.1×104 12.⎩⎨⎧==02y x 13.6 14.32 15.2r ² 16.24 三、解答题:本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤.17.解:原式=1-2+21…………………………………………………………………………………………6分 =21-……………………………………………………………………………………………8分 18.已知:如图,OC 是∠AOB 的平分线,P 是OC 上一点,PE ⊥OA ,PF ⊥OB ,垂足分别为E 、F . 求证:PE =PF .……………………………………………………………………………………………2分……………………………………………………………………………………………4分证明:∵OC 是∠AOB 的平分线,∴∠POE =∠POF ,∵PE ⊥OA ,PF ⊥OB ,∴∠PEO =∠PFO ,………………………………………………………………………………………6分 又∵OP =OP ,∴△POE ≌△POF ,∴PE =PF .…………………………………………………………………………………………………8分19.解:原式=)1)(1(1m m m m m -+⋅-………………………………………………………………………4分=11+m ,……………………………………………………………………………………6分 当m =2时,11+m =31.…………………………………………………………………………8分 20.(1)………………………………………………………………………………4分如图,点F 为所求作的点.……………………………………………………………………………5分(2)△ADE 和△FCE ;旋转中心为点E ,旋转角为100°.………………………………………………8分21.解:(1)17,20;……………………………………………………………………………………………4分(2)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;…………………………6分(3)估计该小区居民在一周内前往“木兰溪左岸绿道”锻炼“4次及以上”的人数为2000×503=120人.……………………………………………………………………………8分 22.(1)证明:∵AC ⊥BD ,∴∠BEC =90°,∴∠CBD +∠BCA =90°,………………………………………2分∵∠AOB =2∠BCA ,∠COD =2∠CBD ,∴∠AOB +∠COD =2(∠CBD +∠BCA )=180°;………………………………………………4分(2)解:如图,延长BO 交⊙O 于点F ,连接AF .………………………………………………………5分则∠AOB +∠AOF =180°,又由(1)得:∠AOB +∠COD =180°,∴∠AOF =∠COD ,∴AF =CD =6,………………………………………………………8分∵BF 为⊙O 的直径,∴∠BAF =90°,在Rt △ABF 中,108622=+=BF ,∴⊙O 的直径为10.………………………………………………10分23.解:(1)如图,以点B 为原点,BC 所在的直线为x 轴,建立平面直角坐标系,则点A (0,5),E (5,3),C (13,0),…………………………………………………………………………………………1分法一:可得直线AC :5135+-=x y ,………4分 当x =5时,3134055135≠=+⨯-=y ,故点E 不在 直线AC 上,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm².………………………………………………………………………5分 法二:可得AC =19451322=+,AE =292522=+,CE =733822=+,……4分 由于AE +EC ≠AC ,故点E 不在AC 上,因此A 、E 、C 三点不共线.同理A 、G 、C 三点不共线,所以拼合的长方形内部有空隙,故面积多了1cm².…………5分(2)如图,设剪开的三角形的短边长为x cm ,依题意得:(13-x )(13+13-x )=13×13-1,………………………………………………………8分解得x1=5,x2=34(舍去),故能将13cm×13cm的正方形做这样的剪开拼合,可以拼合成一个8×21长方形,但面积少了1cm². (10)分24.证明:(1)由旋转45°,可知:∠ADE=∠ABC=90°,∠EAD=∠CAB=45°,AE=AC,AD=AB,∴△CAE中,∠ACE=∠AEC=67.5°,△DAB中,∠ABD=∠ADB=67.5°,……………………………………………………………1分∴∠FDC=∠ADB=67.5°,∴∠FDC=∠DCF,∴CF=DF,………………………………………………………………………………………2分在Rt△EDC中,∠CED=∠EDF=22.5°,∴EF=DF,∴EF=CF;………………………………………………………………………………………3分(2)法一:过点E作EG∥CB交BF延长线于点G.……………………………………………4分∵AD=AB,∴∠ADB=∠ABD,∵∠EDG+∠ADB=∠CBF+∠ABD=90°,∴∠EDG=∠CBF,∵EG∥CB,∴∠G=∠CBF,∴∠EDG=∠G,∴EG=ED,∵ED=BC,∴EG=BC,……………………………………………………6分∵∠EFG=∠CFB,∴△FEG≌△FCB,∴EF=CF;……………………………………………………………………………………7分法二:分别过点A,C,E,作AP⊥BF于点P,CN⊥BF于点N,EM⊥BF交BF延长线于点M.…………………………………………4分证△EMD≌△DP A,得EM =PD ,证△APB ≌BNC ,得CN =BP ,又等腰△ABD 中,AP ⊥BD ,得PD =PB ,故EM =CN ,……………………6分故△EMF ≌△CNF ,因此EF =CF ;…………………………………7分法三:过点C 作CP ∥DF 交ED 延长线于点P ,EP 交BC 于点Q .………………………4分由∠EDF =∠BDQ ,∠EDF =∠DBC ,得∠BDQ =∠DBQ ,则DQ =BQ ,又CP ∥BD ,得∠QCP =∠QBD ,∠QPC =∠QDB ,则∠QCP =∠QPC ,可得CQ =PQ ,故CQ +QB =PQ +DQ ,PD =BC =DE ,………………………6分 因此1==DPED CF EF ,即EF =CF ;………………………7分(3)过点A 作AP ⊥BD 于点P . ∵AB =AD ,∴∠P AB =21∠DAB =2α, ∵∠P AB +∠PBA =∠CBD +∠PBA =90°,∴∠CBD =∠P AB =2α ∵2==ABAC AD AE ,∠EAC =∠DAB ,∴△AEC ∽△ADB ,∴2==ADAE BD CE , ∴∠ACE =∠ABD ,∴∠CFB =∠CAB =45°,…………………………………………………9分 ①当∠CDF =90°时,如图,△CDF 为等腰直角三角形,则CF =2DF ,∵EF =CF ,∴CF =22BD , ∴DF =21BD , ∵CD =DF , ∴CD =21BD , ∴2tan α=CBD ∠tan =BD CD =21;……………………………………………………………11分 ②当∠FCD =90°时,如图,△CDF 为等腰直角三角形,则CF =22DF ,过点C 作CG ⊥DF 于点G .∵EF =CF ,∴CF =22BD , ∴DF =BD ,∵CG ⊥DF ,∵CG =21DF , ∴CG =31BG , ∴2tan α=CBG ∠tan =BG CG =31.…………………………………………………………12分 综上所述:2tan α=21或31. 25.(1)联立⎪⎩⎪⎨⎧++=++=b bx kx y a ax kx y 22,………………………………………………………………………………1分 得b bx kx a ax kx ++=++22.整理,得(a -b )x =b -a . ∵a ≠b ,∴x =-1,∴⎩⎨⎧=-=k y x 1.………………………………………………………………………2分 ∴函数y 1与y 2的图象交点坐标为(-1,k ).所以该交点落在直线x =-1上.………………………………………………………………………3分(2)分别令y 1=0,y 2=0,得0,022=++=++b bx kx a ax kx . 则a 2-4ak >0,kak a a x B A 242,-±-=, b 2-4bk >0,kbk b b x D C 242,-±-=,……………………………………………………………5分 ∴AB =k aka 42-,CD =kbk b 42-.……………………………………………………………6分 ∵AB =CD , ∴k ak a 42-=kbk b 42-, ∴a 2-4ak =b 2-4bk ,∴(a +b )(a -b )=4k (a -b ),∵a ≠b ,∴a +b =4k .又a 2-4ak >0,∴a 2-a (a +b )>0,得ab <0.故a +b =4k 且ab <0.………………………………………………………………………………8分(3)若k >0时,①当点C 在点B 左侧,则AC =BC =BD ,∴AB =CD ,∴x C -x A =x B -x C ,∴2x C =x A +x B ,………………………………………………………………………9分 ∴kak a a k ak a a k bk b b 2424242222-+-+---=---⋅, ∴a -b =bk b 42-, ∴bk b b a 4)(22-=-且a >b ,整理得022=-+ab b a ,………………………………………10分 依题意b ≠0,得01)(2=+-ba b a,△=1-4=-3<0, ∴不存在实数a ,b ,使得B ,C 为线段AD 的三等分点.…………………………………………11分 ②当点C 在点B 右侧,则AB =BC =CD .∴x B -x A =x C -x B ,∴2x B =x A +x C ,……………………………………………………………………12分 ∴kbk b b k ak a a k ak a a 2424242222---+---=-+-⋅, 由(2)得bk b ak a 4422-=-,则b a ak a -=-442,所以22)()4(16b a ak a -=-且a >b ,则22216b ab a ab +-=-, 整理,得:01422=++b ab a ,……………………………………………………………………13分 依题意b ≠0,得:0114)(2=+⋅+ba b a .解得:3472414142±-=-±-=b a . 因为由(2)得a +b =4k >0且ab <0,又a >b ,所以0a b >>,且a b >- 所以1-<ba , 所以347+-=b a 舍去,则347--=ba . 若k <0时,同理可得347--=b a .………………………………………………………………14分综上所述,存在这样的函数y 1,y 2,使得B ,C 为线段AD 的三等分点,且347--=ba .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试卷
2019年莆田市九年数学中考模拟试卷(一)
满分:150分,考试时间:120分钟
一、精心选一选。

(每小题4分,共32分) 1.-3的绝对值是( ) A 、-3 B 、3 C 、31 D 、-3
1
2.下列计算正确的是( ) A 、()
62
3
a a -=- B 、()222
b a b a -=-
C 、5
3
2
523a a a =+ D 、3
3
6
a a a =÷ 3.下列说法不正确的是( )
A 、了解一批电视机的使用寿命适合用抽样调查
B 、若甲组数据方差S 2
甲=0.27,乙组数据方差S 2
乙=0.2,则乙组数据比甲组数据稳定 C 、某种彩票中奖的概率是
1000
1
,买1000张该种彩票一定会中奖 D 、在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 4.某种的细胞的直径是4
10
5-⨯毫米,这个数是( )
A 、0.05毫米
B 、0.005毫米
C 、0.0005毫米
D 、0.00005毫米
5.如图,下列四个几何体中,它们各自的三视图有两个相同,而另一个不同的几何体是( )
①正方体 ②圆柱 ③圆锥 ④球 A 、①② B 、②③ C 、②④ D 、③④
6.在△ABC 中,∠C =900
; AC=4,BC=3,则cos ∠B 的值是( ) A 、
54 B 、53
C 、34
D 、4
3
7.如图,已知⊙O 的半径OA =6,∠AOB =900
,则∠AOB 所对的弧AB 的长为( ) A 、2π B 、3π C 、6π D 、12π
8. 已知二次函数2
(0)y ax bx c a =++≠的图象如图所示, 给出以下结论①0a b c ++<;②0a b c -+<;③20b a +<; ④0abc >其中所有正确结论的序号是( ) 二、细心填一填。

(每小题4分,共32分) 9.当有意义。

时,二次根式
2_________-x x
10.分解因式:______________422
=-a a 11.已知圆锥的底面半径为3cm ,母线长为5cm , 则这个圆锥的侧面积为_____________。

12.已知两圆半径分别为2cm 和4cm ,圆心距为1cm , 则这两个圆的位置关系是_____________。

13.已知:一次函数象限,的图象经过一,三,四2-+=m x y
的取值范围则m ____________。

14.已知:如图①,△ABC 为等边三角形,BD 为中线,延长BC 至E , 使CE =CD=1,连接DE ,则DE =____________。

15.如图,正方形ABCD 的顶点B 、C 都在x 轴上,若点A 的坐标 是(-1,4),则点C 的坐标是____________。

16.如图,在x 轴的正半轴上依次截取OA 1=A 1 A 2=A 2 A 3,过点A 1、A 2、A 3
分别作x 轴的垂线与反比例函数()02
≠=
x x
y 的图象相交于点P 1、P 2、P 3, 得Rt △OP 1A 1、Rt △A 1P 2A 2、Rt △A 2P 3A 3,并设其面积分别为S 1、S 2、S 3, 则S n 的值为____________。

1/n
三、耐心做一做。

(本大题共9小题,共86分)
17.(8分)计算: 45tan 23191
--⎪⎭

⎝⎛+
18.(8分)解方程:
12
2311+-=-x x
19.(8分)如图,在梯形ABCD 中,已知AD ∥BC ,AB=CD ,延长线段CB 到E ,做BE=AD ,连接AE 、AC 。

求证:(1)△ABE ≌△CDA
(2)∠DAC =400
,求∠EAC 的度数。

图 1
学校:___ __ _________ 班级:_____________ 姓名:______________ 考号:____________
数学试卷
20.(8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了 名同学. (2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学
习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. 21.(8分)某电子厂投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y (万件)与销售单价x (元)之间关系可以近似地看作一次函数2100y x =-+.
(1)写出每月的利润w (万元)与销售单价x (元)之间函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元? 22.(10分)如图,四边形OABC 是面积为4的正方形,函数()0 x x
k
y =的图象经过点B 。

(1)求k 的值;
(2)将正方形OABC 分别沿直线AB ,BC 翻折,得到正方形MABC',NA'BC 。

设MC'、NA'分别
与函数()0 x x
k
y =的图象交于点E ,F ,求线段EF 所在直线的解析式。

23.(10分)如图,AB 是⊙O 的直径,BC 是⊙O 的切线,连接AC 交⊙O 于点D ,E 为上一点,连
24.(12分)已知二次函数213
42
y x x =-
+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙
D 的位置关系,并说明理由. 25.(14分)如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,D
E ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°.
(1)求ED 、EC
的长;

2
)若BP =2,求CQ 的长;
(3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长.
数学试卷
参考答案
1-8 BDCCBBBB 9.≥2 10.2a(a-2) 11.15∏ 12.内含 13.m <2 14.2√3 15.(3,0) 16.1/n 17.2 18.x=0.5 19.100°20.20 0.5
21. 解:(1)z=(x-18)y=(x-18)(-2x+100

=-2x 2+136x-1800,
∴z 与x 之间的函数解析式为z=-2x 2+136x-1800;
(2)由z=350,得350=-2x 2+136x-1800, 解这个方程
得x
1=25,x 2=43
所以,销售单价定为25元或43元,
将z ═-2x 2+136x-1800配方,得z=-2(x-34)2+512,
答;当销售单价为34元时,每月能获得最大利润,最大利润是512万元; (3)结合(2)及函数z=-2x 2+136x-1800的图象(如图所示)可知, 当25≤x ≤43时z ≥350, 又由限价32元,得25≤x ≤32,
根据一次函数的性质,得y=-2x+100中y 随x 的增大而减小, ∵x 最大取32,
∴当x=32时,每月制造成本最低.最低成本是18×(-2×32+100)=648(万元),答:每月最低制造成本为648万元.
22.k=4 y=-x+5 23
数学试卷
24.
数学试卷25.
数学试卷
∴综上所述,BP=

25 6
..
5 3 25 6
5 3。

相关文档
最新文档