微波电路与系统(03)

合集下载

微波技术

微波技术
22 10
4-8
5
1218
2
1827
1.25
80100
0.3
•C~K 为早期的微波通信频段,80’s 后较少 •W(3mm) 实际上是卫星通信的主流频段 广播电视、通信频率相对较低: KHz~ 3G 在实验中使用厘米波中的X波段, 其标称波长为3.2cm,中心频率为9375MHz。
国际上对各微波频段用途的规定
2.频率极高,穿透性强
由于微波既能穿透电离层 (低频电磁波不行) 也能穿透 尘埃、云、雾 (光波不行), 因此,微波就成了卫星通讯、 空间通讯和射电天文研究的 重要手段。 可以容易穿入介质内部: 如微波加热——食品发热
近代物理实验专题讲座 2003.8
3. 频带宽,信息性好
可用频带很宽 (数百兆甚至上千兆赫兹),是低频 无线电波无法比拟的。因此,微波在通讯领域内得 到了广泛的应用。 微波通讯系统的工作频带宽、信息容量大、机动 性好,特别适合于卫星通讯,宇航通讯和移动通讯 等,因而在现代通讯系统中占有相当重要的地位。
λ(m)
广播 电视 微波 红外可见光 紫外
无 线 电 波 光 波
波长处于光波和无线电波之间
近代物理实验专题讲座 2003.8
微波频段的划分: 分米波, 厘米波,毫米波和亚毫米波
常用波段代号
波段代号 频率范围 (GHz) 标称波长 (cm) L S C X 8-12 3 Ku K W
1-2 2-4
微 波 技

山东师范大学物理实验中心
一、微波基础知识
按照国际电工委员会(IEC)的定义,微波 (Microwaves)是:
“波长足够短,以致在发射和接收中能实际 应用波导和谐振腔技术的电磁波”
微波是指:波长为1m至0.1mm,频率在 300MHz-3000GHz之间的电磁波或无线电波。

电路中的微波电路与天线

电路中的微波电路与天线

电路中的微波电路与天线在现代通信领域中,电路中的微波电路与天线起着重要的作用。

微波电路指的是工作频率在300MHz至300GHz之间的电路,广泛应用于无线通信、雷达、卫星通信等众多领域。

而天线则是将电能转化为无线电波或者将无线电波转化为电能的设备。

本文将从应用和设计角度,探讨微波电路与天线在电路中的重要性以及其工作原理。

一、微波电路的应用1. 无线通信:微波电路在无线通信中发挥着至关重要的作用。

现代手机、无线局域网、卫星通信等设备都离不开微波电路。

例如,手机中的射频电路就是一种微波电路,它负责将手机发送和接收的信号转换为无线电波进行传输。

2. 雷达系统:雷达是一种利用微波电路技术工作的设备,它用于检测和追踪物体的位置和运动。

雷达系统中的微波电路主要用于发射和接收雷达信号,如低噪声放大器、混频器等。

3. 卫星通信:卫星通信是一种重要的远程通信方式,微波电路在其中起到了关键的作用。

卫星通信系统中的微波电路用于将地面信号转发到卫星,并将卫星接收到的信号转发到地面。

微波电路的稳定性和高效性对卫星通信的可靠性至关重要。

二、微波电路的设计原理微波电路的设计原理主要包括传输线理论、匹配理论和滤波器设计。

以下将分别介绍这些原理。

1. 传输线理论:微波电路中常常使用传输线作为信号传输的介质,传输线理论研究信号在传输线上的传播特性。

例如,常用的微波传输线类型包括同轴线、开口线和带状线等。

传输线理论可以帮助我们分析和设计微波电路的传输特性,如传输损耗、阻抗匹配和功率传输等。

2. 匹配理论:在微波电路设计中,匹配是一种常见的问题。

匹配理论研究如何使电路中的各部分之间的阻抗相匹配,以确保信号传输的最优性能。

匹配电路通常使用网络匹配、补偿线匹配或雄性线匹配等方式。

匹配理论的研究可以帮助我们选择合适的匹配方式,并了解匹配过程中的功率损耗和效率损失。

3. 滤波器设计:微波电路中的滤波器用于滤除或选择特定频率范围内的信号。

滤波器设计基于频率选择理论,通过使用特定的微波谐振结构来实现对不同频率信号的滤波。

微波电路及设计的基础知识

微波电路及设计的基础知识

微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。

此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。

实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。

由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。

作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。

另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。

在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。

以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。

2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。

微波集成电路〔MIC〕:采用管芯及陶瓷基片。

微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。

图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。

微波技术11-常用微波元件

微波技术11-常用微波元件

2a ln( ) 2 r
1
常用微波元件
•螺钉调配器
螺钉调配器调整较为方便。螺钉是低 功率微波装置中普遍采用的调谐和匹配元 件。
常用微波元件
实用时,为避免波导短路和击穿,通 常设计螺钉成容性,作可变电容用,螺钉 旋入波导的深度应小于3b/4,b为矩形波导 窄边的尺寸。
常用微波元件
扭波导
平接头
扼流接头
常用微波元件
(2) 拐角、弯曲和扭转元件 当需要改变电磁波的极化方向而不改变其传输方向时, 则要用到扭转元件。 对这些元件的要求是:引入的反射尽可能小、工作频 带宽、功率容量大。
E弯
H弯
常用微波元件 匹配元件
匹配元件的种类很多,这里只介绍膜片,销钉和螺钉匹 配器。
(1) 膜片
线性非互易元件
这类元件中包含磁化铁氧体等各向异性媒质, 具有非互易特性,其散射矩阵是不对称的。但仍 工作于线性区域,属于线性元件范围。常用的线 性非互易元件有隔离器、环行器等。
常用微波元件
非线性元件
这类元件中含有非线性物质,能对微波信号 进行非线性变换,从而引起频率的改变,并能通 过电磁控制以改变元件的特性参量。
高功率型
常用微波元件
大功率水冷匹配负载
常用微波元件
失配负载
实用中的失配负载都是做成标准失配负载, 具有某一固定的驻波比。失配负载常用于微波测 量中作标准终端负载。
失配负载的结构与匹配负载一样,只是波 导口径的尺寸b不同而已。 设b0为标准波导窄边尺寸,b为失配负载波 导的窄边尺寸,由于
Z Z0 Z Z0
常用微波元件
二端口元件可以等效为二端口网络,其散射 矩阵为
S11 S S 21

微波技术基础思考题

微波技术基础思考题

微波技术基础思考题1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m至0.1mm。

从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。

2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。

这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。

3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。

若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。

对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。

一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。

以上划分主要是从减少损耗和结构工艺等方面考虑。

传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。

横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。

微波天线复习题

微波天线复习题

微波技术基础思考题一、填空题1、对于低于微波频率的无线电波的分析,常用 ;对于微波用 来研究系统的内部结构。

2、传输线接不同负载阻抗时,沿传输线纵向看,有三种不同的工作状态: 。

传输线可分为长线和短线,传输线长度为3c m ,当信号频率为20G Hz 时,该传输线为长线。

3、无耗传输线的阻抗具有 两个重要性质。

4、几个重要的参数:(1) 波阻抗: ;介质的固有波阻抗为εμη=,对于真空或空气,Ω==7.367000εμη(2) 特性阻抗: ,(3) 输入阻抗(分布参数阻抗):传输线上任一点的阻抗Z i n (d)定义为该点的电压和电流之比,即Z i n (d)=)()(d I d U 。

,(4) 传播常数:是描述导行波沿导行系统传播过程中的衰减和相位变化的参数,一般为复数:βαγωωj C j G L j R +==++))((1111对于无耗线:0=α,11CL ωβ=对于低耗线:d c Z G Z Rααα+=+=201021,11C L ωβ=(5) 反射系数:传输线上某点处的反射系数定义为该点的反射波电压与该点的入射波电压之比,即:)()()(d V d V d v +-=Γ,其表达式为:deLdeZLZZ L Zd v γγ2200)(-Γ=-+-=Γ,其中:Lj eL Z L Z ZL ZL Φ⋅Γ=+-=Γ0所以对于无耗线:)2()(d L j eLd β-Φ⋅Γ=Γ; 与阻抗的关系:0)(0)()(Z d in Z Zd inZ d +-=Γ; Z i n (d)=Z 0)(1)(1d d Γ-Γ+(6) 驻波系数:传输线上相邻的波腹点和波节点的电压之比,LL VV Γ-Γ+==11minmax ρ。

与阻抗的关系:Z i n (d mi n )=ρ0Z; Z L =Z 0minmin1dtg j dtg j βρβρ--(7) 无耗线在行波状态的条件是:Z L =Z 0,此时反射系数为零,驻波系数为1;工作在驻波状态的条件是:Z L =0;Z L =∞;Z L =+jX L 或-jX L ;工作在行驻波状态的条件是:Z L =R L +jX L or Z L =R L -jX L 。

《微波技术与天线》习题答案

第一章1-1解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> , 此传输线为长线。

1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<< ,此传输线为短线。

1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ωf=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r Uz U e U e ββ''-'=+()()2201j z j z i r I z U e U e Z ββ''-'=- 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入33223420220218j j z U eej j j Vππλ-'==+=-+=-()3412020.11200z I j j j A λ'==--=- ()()()34,18cos 2j te z uz t R U z e t V ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ ()()()34,0.11cos 2j te z i z t R I z e t A ωλπω'=⎛⎫''⎡⎤==- ⎪⎣⎦⎝⎭ 1-6 解: ∵Z L=Z 0∴()()220j z i r U z U e U β''==()()()212321100j j z z Uz e U z e πβ''-''==()()()()611100,100cos 6jU z e V u z t t V ππω'=⎛⎫=+ ⎪⎝⎭1-7 解: 210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1inin Z z z ''=∞Γ=(b) ()()0100,0in in Z z Z z ''==ΩΓ=(c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3inin Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γmax 0min 75,33Z Z Z Z ρρ==Ω==Ω1-10 解: min2min124z z cm λ''=-=min1120.2,0.514L z ρππβρλ-'Γ===⨯=+ min1min120.2j z z L e β'-'Γ=-=Γ∴ 2420.20.2j jLeeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=-a) 00252063inZ jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23inZ jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013oj L L L Z Z j j e Z Z j -++Γ=Γ====++1-13 解: 表1-41-17 解: 1350.7j Le Γ=1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求 min1min100min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 0.643.25042.8522.810.643.2oojtg j j tg -==-Ω-⨯ 用圆图求 ()42.522.5LZ j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =-最短分支线长度为 l=0.174λ()0.516B =-1-19 解: 302.6 1.4,0.3,0.30.16100LL lZ j Y j λ=-===+由圆图求得 0.360.48in Z j =+ 1824in Z j =+Ω1.01 1.31in Y j =- ()0.020.026in Y j S =-1-20 解: 12LY j =+ 0.5jB j =()()()()0.150.6 1.460.150.60.960.20.320.380.2 1.311.54in in in in Y j Y jB j Y j Z j λλλλ=-+=-=+=-∴ 6577inZ j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5LZ '= 500/2.5200LZ '==Ω(纯电阻)变换段特性阻抗 0316Z '==Ω 1-22 解: 1/0.851.34308.66o o Larctg ϕ=-=-= 由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12Lz ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1inZ j '+= 得 1inZ j '=-向负载方向等效(沿等Γ图)0.25电长度得 1inin Z Z ''='则 ininY Z '''=由inin in Y Y j Z ''''''=+= 得 12in inY Z j j ''''=-=-由负载方向等效0.125电长度(沿等Γ图)得12LY j =+ 0.20.4L Z j =-1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

微波电路微组装技术


微波微组装技术的发展
3、微组装的技术作用及典型的产品-8
星载合成孔径成像雷达(SAR)
由数百套L波段T/R组件构
成的相控阵天线实现对地目标 的成像。
微波微组装技术的发展
3、微组装的技术作用及典型的产品-9
美国导弹驱逐舰载‚宙斯盾‛系统中的AN/SPY-1多
功能相控阵雷达
由数千套S波段T/R组件构成 的四面阵相控阵天线实现对多批 次目标的探测、跟踪及引导打击。
微波微组装技术的发展
2、微组装技术构成-1
厚膜基板
材料制备 前 道 微 组 装 后 道 基板制造
薄膜基板 低温共烧陶瓷基板 (LTCC ) 混合基板
软基板
芯片安装互连:粘片、引线键 合、倒装焊、清洗…等 封装:气密性封焊
微波微组装技术的发展
2、微组装技术构成-2
微组装技术
特种互连基板技术
多芯片组装技术
从二维平面组装向三维立体组装发展
目前雷达有源电扫阵面
新一代先进有源电扫阵面
微波微组装技术的发展
4、微组装的技术未来发展方向-6
从单通道组装向多通道集成组装发展
128 Element Tile Subarray
Active Panel Array (2010)
微波微组装技术的发展
4、微组装的技术未来发展方向-7
材料技术 微波元器件 微电子器件
基板技术
微组装工艺 微组装设计
微组装设备
微组装测试 微组装系统及管理
微波微组装技术的发展
1、微波电路系统微组装简介-4
与芯片工艺比较
• 层次不同:芯片低层微组装上层,前者是后者基础 • 关注点不同:微组装互连(无源)、芯片功能更多(有源) • 有共性:1)都有互连、阻抗匹配、抑制避免干扰、散热等功能要求; 2)分析建模方法软件工具类似,都是基于电磁波和微波理论 • 两者的功能界限:模糊、向上发展(芯片进攻,SOC,但复杂多功能 系统,还是微组装,而且对功能的需求也在向更复杂综合方向发展 • 近30年来,随着信息技术的飞速发展,电子装备应用频率越来越高, 微电子技术的发展一直遵循摩尔定律和按比例缩小原理,即每隔三年 芯片的集成度翻两翻(增加4倍),特征尺寸缩小三分之一。从而推 动微组装技术得到飞速发展。

实验七微波技术解读

实验七微波的传输特性和基本测量微波通常是指波长为 1mm 至 1m ,即频率范围为 300GH Z至 300MHz 的电磁波。

其下端与无线电通讯的短波段相连接,上端与远红外光相邻近。

根据波长差异还可以将微波分为米波,分米波,厘米波和毫米波。

不同范围的电磁波既有其相同的特性,又有各自不同的特点。

下面对微波的特点作简要介绍。

1.微波波长很短,比建筑物、飞机、船舶等地球上一般物体的几何尺寸小得多,微波的衍射效应可以忽略,故,微波与几何光学中光的传输很接近,具有直线传播性质,利用该特点可制成方向性极强的天线、雷达等。

2.微波频率很高,其电磁振荡周期为 10-9—10-12秒,与电子管中电子在电极间渡越所经历的时间可以相比拟。

因此,普通的电子管已不能用作微波振荡器、放大器和检波器,必须采用微波电子管(速调管、磁控管、行波管等)来代替。

其次,微波传输线、微波元器件和微波测量设备的线度与微波波长有相近的数量级,因此,分立的电阻器、电容器、电感器等全不同的微波元器件。

3.微波段在研究方法上不象低频无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场。

以波长、功率、驻波系数等作为基本测量参量。

4.许多原子、分子能级间跃迁辐射或吸收的电磁波的波长处在微波波段,利用这一特点研究原子、原子核和分子的结构,发展了微波波谱学、量子无线电物理等尖端学科,以及研究低嘈声的量子放大器和极为准确的原子、分子频率标准。

5.某些波段的微波能畅通无阻地穿过地球上空的电离层,因此微波为宇宙通讯、导航、定位以及射电天文学的研究和发展提供了广阔的前景。

由此可见,在微波波段,不论处理问题时所用的概念、方法,还是微波系统的原理结构,都与普通无线电不同。

微波实验是近代物理实验的重要实验之一。

微波技术的应用十分广泛,深入到国防军事(雷达、导弹、导航),国民经济(移动通讯、卫星通信、微波遥感、工业干燥、酒老化),科学研究(射电天文学、微波波谱学、量子电子学、微波气象学),医疗卫生(肿瘤微波热疗、微波手术刀),以及家庭生活(微波炉)等各个领域。

西电-射频微波教程课件


THANKS
感谢您的观看
设计实例
雷达系统的设计实例包括气象雷达、军事雷达、航空雷达 等。在设计过程中,需要考虑目标的探测精度、跟踪速度 、抗干扰能力等因素,同时还需要考虑设备的可靠性、可 维护性和成本等因素。
卫星通信系统设计实例
要点一
卫星通信系统概述
卫星通信是一种利用人造地球卫星作 为中继站实现地球站之间通信的方式 。它具有覆盖范围广、传输容量大、 可靠性高等优点,广泛应用于国际通 信、远程教育、电视广播等领域。
网络分析应用
在微波器件测试、电路 设计、天线测量等领域 有广泛应用,用于网络 性能评估、故障诊断和 优化设计。
信号分析
信号分析概述
信号分析是研究信号的时域和频域特性的方法,用于信号处理、 通信和雷达等领域。
信号分析原理
基于傅里叶变换、小波变换等数学工具,将信号从时域转换到频域, 分析信号的频率成分、调制方式和动态特性。
无线通信系统主要由发射机、接收机、天线和传输媒介等部分组成。发射机负责将信号转换为电磁波并发送出去,接 收机则负责接收电磁波并将其还原为信号。天线的作用是发射和接收电磁波,传输媒介则负责传输电磁波。
设计实例
无线通信系统的设计实例包括移动通信基站、无线局域网路由器、广播发射机等。在设计过程中,需要 考虑信号的覆盖范围、系统容量、传输速率、抗干扰能力等因素,同时还需要考虑设备的可靠性、可维 护性和成本等因素。
挑战
混频器的性能受到非线性效应、噪声 和失真等因素的影响,需要精心设计 和优化。
振荡器
种类
原理
振荡器可分为LC振荡器、 晶体振荡器和负阻振荡
器等。
振荡器通过正反馈和选频网 络,使电路产生自激振荡,
输出一定频率的信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档