2011届高考数学第二轮知识点复习 基本初等函数Ⅱ(三角函数)
高中数学 第一章 基本初等函数(II)1.3 三角函数的图象与性质 1.3.2 余弦函数、正切函数的

1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。
高三数学第二轮专题复习系列(2)-- 函数

高三数学第二轮专题复习系列(2)-- 函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数. (4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。
以基本函数为背景的应用题和综合题是高考命题的新趋势。
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。
②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。
③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。
四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等;函数的三要素函数的表示法 函数的性质 反函数 函数的应用 初等函数基本初等函数: 指数函数 对数函数对数指数映射函数射⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。
02基本初等函数、函数的应用 课件——2025届高三数学二轮复习

7π
4
1
2
7π-4
>1.所以
8
− =
×
3π
- 2
1
=-1,y=2
3π
4
1
2
− =
×
3π
- 4
3π-4
<1;当
8
y=f(x)的图象与直线
−
1
3π+4
=− 8 <-1;当
2
7π
7π
x= 4 时,f 4
3π
x= 4
7π
1
=-sin 2 =1,y=2
1
1
y= x− 的交点个数为
2
2
×
3.故选 C.
4.(2024·新高考Ⅱ,6)设函数f(x)=a(x+1)2-1,g(x)=cos x+2ax(a为常数),当
2025新高考数学 二轮复习
基本初等函数、函数的应用
知识梳理·基础回归
掌握基本初等函数的图像
(1)一次函数;
(2)二次函数;
(3)反比例函数;
(4)指数函数;
(5)对数函数;
(6)三角函数.
知识梳理·基础回归
知识点2:函数图像作法
1、直接画
①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称
个单位得到的;
③函数 = () + ( > 0)的图像是把函数 = ()的图像沿轴向上平移
个单位得到的;
④函数 = () + ( > 0)的图像是把函数 = ()的图像沿轴向下平移
个单位得到的;
知识梳理·基础回归
(2)对称变换
关于x轴对称
①y=f(x)――――――――――→y= -f(x) .
基本初等函数Ⅱ(三角函数)

(1)任意角的概念、弧度制①了解任意角的概念。
②了解弧度制的概念,能进行弧度与角度的互化。
(2)三角函数①理解任意角三角函数(正弦、余弦、正切)的定义。
②能利用单位圆中的三角函数线推导出απαπ±±,2的正弦、余弦、正切的诱导公式,能画出x y x y x y tan cos sin ===,,的图像,了解三角函数的周期性。
③理解正弦函数、余弦函数在区间[02]π,的性质(如单调性、最大值和最小值以及与x 轴交点等),理解正切函数在区间(22ππ,-)的单调性。
④理解同角三角函数的基本关系式:x xxx x tan cos sin 1cos sin 22==+,. ⑤了解函数sin()y A x ωφ=+的物理意义;能画出sin()y A x ωφ=+的图像,了解参数A 、ω、ϕ对函数图象变化的影响。
⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
III.真题再现:(2015年全国新课标卷I 理、文科8) 函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为 (A)(),k (B)(),k(C)(),k(D)(),k【答案】D 【解析】试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.考点:三角函数图像与性质(2015年全国新课标卷II 理科、文17)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍. (Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 【答案】(Ⅰ)12;(Ⅱ)1.(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以2BD =ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠. 222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.考点:1、三角形面积公式;2、正弦定理和余弦定理.(2014年全国新课标卷I(河南、河北、山西)理科6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为解析:由已知1,sin ,cos OP PM x OM x ===,又()1122f x OP OM MP ⋅=,所以()1sin cos sin 22f x x x x ==,故选B.(2014年全国新课标卷I 文科2)若0tan >α,则( C )A .0sin >α B. 0cos >α C. 02sin >α D. 02cos >α 解析:由0cos sin tan >=ααα,得0cos sin 22sin >=ααα.(2014年全国新课标卷I 文科7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③解析:cos |2|cos 2y x x ==,最小正周期为ππ==22T ;由|cos |x y =图像可知其最小正周期为π;)62cos(π+=x y 的最小正周期为ππ==22T ;)42tan(π-=x y 最小正周期为2π=T ,选A 。
[高中数学必修4]第一章 基本初等函数(Ⅱ)
![[高中数学必修4]第一章 基本初等函数(Ⅱ)](https://img.taocdn.com/s3/m/4e7716b679563c1ec4da718c.png)
22
2
必修四
用公式α =l求圆心角时,应注意其结果是圆心角的弧度数.这个公式在物理学上计算角
r
速度时经常用到,因此要熟练掌握它及其变形后的另外两种形式:l=α ²r 和 r= l(α ≠0).
α
运用这两个变形公式时,如果已知的角以度为单位,则应先把它化成弧度后再计算.可以
看出,这些公式各有各的用处.
切线上,其位置不随 的变化而变化;从图中可以看出,当 的终边在 y 轴上时,角 的
正切不存在;我们规定三角函数线的正方向与 x 轴(或 y 轴)正方向相同.
3. 同角三角函数的基本关系式
(1)基本关系
平方关系: sin2 cos2 1. 商数关系: sin tan .
cos 公式变形: cos tan sin;sin cos .
2
减区间是
(
2k , 3
2k )(k
Z)
.
2
2
8
必修四
对于函数 f (x) ,如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f (x T ) f (x) ,那么函数 f (x) 就叫做周期函数.非零常数 T 叫做这个函数的周期.如果 周期函数 f (x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f (x) 的最小
三角函数(基本初等函数(Ⅱ))

自 查 自 纠: 1.(1)旋转 逆时针 顺时针 零角 (2)非负半轴
π ②α 2kπ+2<α<2kπ+π,k∈Z
| | |
3 ③α 2kπ+π<α<2kπ+2π,k∈Z 3 或 α 2 k π + π < α <2 k π + 2 π , k ∈ Z ④ 2
第四章
三角函数(基本初等函数(Ⅱ))
考纲链接
1.基本初等函数Ⅱ(三角函数) (1)任意角、弧度制 ①了解任意角的概念和弧度制的概念. ②能进行弧度与角度的互化. (2)三角函数 ①理解任意角三角函数(正弦、余弦、正切)的定义. π ②能利用单位圆中的三角函数线推导出 ±α, π±α 的正弦、余弦、 2 正切的诱导公式,能画出 y=sinx,y=cosx,y=tanx 的图象,了解三角 函数的周期性.
2.三角恒等变换 (1)两角和与差的三角函数公式 ①会用向量的数量积推导出两角差的余弦公式. ②会用两角差的余弦公式推导出两角差的正弦、正切公式. ③会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二 倍角的正弦、余弦、正切公式,了解它们的内在联系. (2)简单的三角恒等变换 能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、 半角公式,但不要求记忆). 3.解三角形 (1)正弦定理和余弦定理 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2)应用 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计 算有关的实际问题.
π ①α 是第一象限角可表示为α|2kπ<α<2kπ+2,k∈Z;
②α 是第二象限角可表示为 ③α 是第三象限角可表示为 ④α 是第四象限角可表示为
; ;
高中数学第一章基本初等函数(ii)1.3三角函数的图象与
(k∈Z)时,函数 y=Asin(ωx+φ)(A>0,ω>0)为增函数; 当 +2kπ≤ωx+φ≤ +2kπ(k∈Z),即 x∈
π ������ 2������π 3π ������ - + , - + 2������ ������ ������ 2������ ������
(k∈Z)时,函数 y=Asin(ωx+φ)(A>0,ω>0)为减函数.
一
二
(4)奇偶性:当 φ=0 时,为奇函数;当 φ≠0 时,为非奇非偶函数. (5)周期性:T= . (6)对称性:直线 x= 点 - +
������ ������ ������π ,0 ������ π ������ ������π − + (k∈Z)都是其对称轴; 2������ ������ ������ 2π ������
一
二
(2)观察 y=sin x,y=sin ������ ± 得到 y=sin(x+φ)的图象?
π 6
的图象,思考由 y=sin x 的图象如何
提示:函数y=sin(x+φ)(其中φ≠0)的图象,可以看作是把y=sin x图象 上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长 度而得到(可简记为“左加右减”), 即y=sin x的图象 y=sin(x+φ)的图象.
3π ������ 2������π − + (k∈Z)时,y 取得最小 2������ ������ ������
当- +2kπ≤ωx+φ ≤ +2kπ(k∈Z),即 x∈ π 2 3π 2
π 2
π ������ 2������π π ������ - + , - + 2������ ������ ������ 2������ ������
高考数学知识点总结 第二章函数概念与基本初等函数
第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。
专题二:函数与基本初等函数(知识点梳理)
f x f x,那么就称函数 f (x) 为奇函数.奇函数图象关于原点对称.
(3) 奇、偶函数的性质: ① 奇、偶函数的定义域一定关于原点对称. ② 如果 f (x) 为奇函数,且在原点有定义,则 f (0) 0. ③ 如果 f (x) 为偶函数,则 f (x) f (x) f ( x ). ④奇函数的图像关于原点对称,图像关于原点对称的函数是奇函数;偶函数
步骤:取值—作差—变形—定号—判断
格式:解:设 x1, x2 a,b 且 x1 x2 ,则: f x1 f x2 =…
2、奇偶性
(1)奇函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为偶函数.偶函数图象关于 y 轴对称.
高考数学必记知识点归纳总结 第三章 函数
一、函数的概念: 1、函数的定义:在某一个变化过程中有两个变量 x 和 y,设变量 x 的取值 范围为数集 D,如果对于 D 内的每一个 x 值,按照某个对应法则 f,y 都有 唯一确定的值与之对应,那么,把 x 叫做自变量,把 y 叫做 x 的函数.记为:
y f(x)
的图像关于 y 轴对称,图像关于 y 轴对称的函数是偶函数.
⑤奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的 区间上的单调性相反. ⑥在公共定义域内:两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和与积都是偶函数;一个奇函数与一个偶函数的积是奇函数.
注意:判断函数的奇偶性时,首先判断定义域是否关于原点对称,若定义域
⑴当 a 1时,
f (x) 0 loga f (x) loga g(x) g(x) 0
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011届高考数学第二轮知识点复习基本初等函数Ⅱ(三角函数)
基本初等函数Ⅱ(三角函数)
【专题测试】
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知则等于()
A.B.C.D.
2.将函数的图象按向量平移,平移后的图象如图所示,则平
移后的图象所对应函数的解析式是()
A.
B.
C.
D.
3.已知函数在区间上的最小值是,则的最小值等于()
A.B.C.2D.3
4.设,对于函数,下列结论正确的是()
A.有最大值而无最小值B.有最小值而无最大值
C.有最大值且有最小值D.既无最大值又无最小值
5.已知非零向量与满足且则为()
A.等边三角形B.直角三角形
C.等腰非等边三角形D.三边均不相等的三角形
6.下列函数中,图像的一部分如右图所示的是()
A.y=sin(x+ )B.y=sin(2x-)
C.y=cos(4x-) D.y=cos(2x-)
7. 单调增区间为()
A.B.
C.D.
8. (A>0,ω>0)在x=1处取最大值,则()
A.一定是奇函数B.一定是偶函数
C.一定是奇函数D.一定是偶函数
9.已知为奇函数,则的一个取值()
A.0 B.π C.D.
10.函数的图象如图,则的解析式和的值分别为()
A.,
B.,
C.,
D.,
11. 在三角形ABC中“cosA+sinA=cosB+sinB”是“C=90°”的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不充分也不必要条件
12. 使(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为()
A.B.C.πD.
二.填空题(本大题共4小题,每小题4分,共16分.请将正确答案写在对应题目后的横线上)
13.函数y=2sin(kx- )的周期为T,且T∈(1,3),则正整数k 的最大值是.
14. 函数y=Asin(ωx+θ)(其中A>0,ω>0,|θ|0, ),给出以下四个论断:
①它的图象关于直线x= 对称;②它的周期为π;
③它的图象关于点( ,0)对称;④在区间[- ,0]上是增函数.
以其中两个论断作为条件,余下论断作为结论,写出你认为正确的两个命题:
(1) ;(2) .
三、解答题(5×12′+14′=74′)
17. 化简:.
18. .已知函数f (x)= (a∈R),
(1)若x∈R,求f (x)的单调递增区间.
(2)若x∈时,f (x)的最大值为4,求a的值.
19.函数最小正周期为π,最大值为3,且
≠0),求f (x)的的解析式
20. 已知函数 f (x)=a+bsinx+ccosx(x∈R)的图象经过点A(0,1),B ,且b>0,又f (x)的最大值为2 -1.
(1)求函数f (x)的解析式;
(2)由函数y=f (x)的图象经过平移是否能得到一个奇函数y=g(x)的图象?若能,请写出平移过程;若不能,请说明理由.
21. 设a>0,求函数y=cos2x+a•sinx+2的最大值g(a),并求当g(a)=5时,a的值.
22. 已知函数的图象经过点且当时,取得最大值
(1)求函数的解析式
(2)是否存在向量,使得将函数的图象按向量平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个向量,若不存在,说明理由
专题测试参考答案
一、选择题:
1.B.[解析]:∵,,∴,,
∴.
2.C.[解析]:将函数的图象按向量平移,平移后的图象所对应的解析式为
高考数学高考数学知识点高考数学知识点2011。