(完整)常温单轴拉伸实验、压缩实验
单轴拉伸实验报告

单轴拉伸实验报告实验目的:探究材料的抗拉强度和延伸率。
实验原理:单轴拉伸实验是一种常用的材料力学性质测试方法,通过对材料进行拉伸加载,测量材料的力学性能参数,例如抗拉强度、屈服强度和延伸率等。
实验中,将试样夹持在拉伸机上,在一端施加拉力,另一端固定,然后逐渐增加拉力,直到试样断裂为止。
通过对断裂前后试样的尺寸变化,可以计算出材料的抗拉强度和延伸率等参数。
实验步骤:1. 准备试样:根据实验要求,制备符合要求的试样,一般为长方形或圆形试样。
2. 安装试样:将试样夹持在拉伸机上,确保试样的两端对称夹持,并尽可能避免试样束缚过紧或过松。
3. 施加负荷:启动拉伸机,逐渐施加拉伸力,注意在开始时先施加一个较小的力,然后逐渐增加,直到试样断裂。
4. 测量变形:在试样拉伸过程中,用合适的测量工具测量试样长度的变化,并记录下来。
5. 计算结果:根据测量结果,计算出试样的抗拉强度和延伸率等参数。
实验结果:将实验中测得的试样长度变化记录下来,并进行统计和计算。
根据试样的初始长度和断裂时的长度,可以计算出试样的延伸率。
根据试样最大承受的拉力和试样截面积,可以计算出试样的抗拉强度。
讨论和结论:根据实验结果,可以分析材料的力学性能,例如材料的延伸性、强度等。
通过比较不同材料的实验结果,可以评估材料的质量和适用性,为相关工程应用提供依据。
安全注意事项:1. 实验过程中应注意操作规程,确保实验过程的安全。
2. 实验时应注意加强照明,以避免因疏忽而引起的意外事故。
3. 对于可能具有挥发性、腐蚀性或有毒性的材料,应采取相应的安全防护措施,如佩戴防护手套、眼镜等。
实验设备和试剂:1. 拉伸机:用于施加拉力和测量力学参数。
2. 试样:用于实验的材料样品。
3. 尺规:用于测量试样长度的变化。
实验结果记录表:试样编号初始长度(mm)断裂时长度(mm)抗拉强度(MPa)延伸率(%)12345备注:每个试样的实验结果都应进行独立记录和计算,并统计出平均值和标准偏差等参数。
第八章 轴向拉伸与压缩

A F F
B
C
D
F
19
§8-4 材料在拉伸与压缩时的力学性能
一、拉伸试验与应力—应变图 实验条件: 常温、静载下(缓慢平稳的加载)试验 标准试件 标距尺寸:l=10d 或 l=5d
解:1、分段计算轴力 AB段 Fx 0
1 F2
FN1 F1 0
FN1 F1 10kN
BC段 Fx 0 FN2 F2 F1 0
F1
FN2 F1 F2 10kN
F4
25
FN(kN) 10 10
CD段 Fx 0 F4 FN3 0 FN3 F4 25kN 2、绘制轴力图
20
三种材料的共同特点: 断裂时均有较大的残余变形,均属塑 性材料
o
0.2%
27
§8-4 材料在拉伸与压缩时的力学性能
铸铁拉伸时的力学性能 对于脆性材料(铸铁),拉伸时的应 力应变曲线为微弯的曲线,没有屈服和 颈缩现象,试件突然拉断。断后伸长率 约为 0.5%。为典型的脆性材料。
b
o
b—强度极限,是衡量脆性材料(铸铁)
屈服:应力基本不变,而变形显著增长的现象
s —屈服极限或屈服应力,屈服段内最低应力值
F F 滑移线:材料屈服时试件表面出 现的线纹
23
§8-4 材料在拉伸与压缩时的力学性能
III、硬化阶段(恢复抵抗变形的 能力) 应变硬化:经过屈服滑移后, 材料重新呈现抵抗变形的能力 b —强度极限,硬化阶段内 e 最高应力值,也是材料所 能承受的最大应力
金属材料的拉伸与压缩试验.

试验一金属材料的拉伸与压缩试验1.1概述拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式:图1.11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L0=5.650S = π045S d 0——试验前试件计算部分的直径;S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
1.2拉伸实验一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。
低碳钢、铸铁的拉伸和压缩实验

实验一:低碳钢、铸铁的拉伸和压缩实验一、实验目的1.测定低碳钢的屈服强度、抗拉强度、延伸率和断面收缩率。
2.测定铸铁的抗拉强度。
3.测定铸铁压缩时的抗压强度。
4.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图。
5.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
二、实验内容1.铸铁拉伸实验;2.铸铁压缩实验;3.低碳钢拉伸实验。
三、实验原理、方法和手段常温、静载下的轴向拉伸实验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。
但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。
为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。
因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。
依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸实验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1-1所示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原l图1-1点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉伸曲线图的纵坐标(力P)除以试样原始横截面面积A,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线,它与拉伸图曲线相似,也同样表征了材料力学性能。
金属材料的拉伸与压缩试验

试验一 金属材料的拉伸与压缩试验1.1概 述拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-1987的要求,拉伸试件一般采用下面两种形式:图1.11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =π045S d 0——试验前试件计算部分的直径;S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
1.2拉伸实验一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
05材料力学-轴向拉伸与压缩

§5.2 拉、压杆的强度计算
保证构件不发生强度破坏并有一定安全余量的条件准则。
N ( x) max max( ) A( x)
依强度准则可进行三种强度计算: ① 校核强度:
其中:[]—许用应力, max—危险点的最大工作应力。
max
P
② 设计截面尺寸: Amin N max
1
引
言
构件是各种工程结构组成单元的统称。机械中的轴、杆
件,建筑物中的梁、柱等均称为构件。当工程结构传递运动或
承受载荷时,各个构件都要受到力的作用。为了保证机械或建 筑物的正常工作,构件应满足以下要求: 强度要求 所谓强度,是指构件抵抗破坏的能力。 刚度要求 所谓刚度,是指构件抵抗变形的能力。
稳定性要求 所谓稳定性,是指构件保持其原有平衡形态的
22
均匀材料、均匀变形,内力当然均匀分布。 2. 拉伸应力:
P
N(x)
N ( x) A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。 危险点:应力最大的点。
N ( x) max max( ) A( x)
23
能力。 构件的强度、刚度和稳定性问题与其所选用材料的力学性
质有关,而材料的力学性质必须通过实验来测定。
2
杆件在不同的外力作用下将产生不同形式的变形,主要有: 1.轴向拉伸和压缩 :其受力特点是:作用在杆件的力,大 小相等、方向相反,作用线与杆件的轴线重合,因此在这种外 力作用下,变形特点是:杆件的长度发生伸长或缩短。起吊重 物的钢索、桁架的杆件、液压油缸的活塞杆等的变形,都属于
单轴拉伸实验报告[5篇范文]
![单轴拉伸实验报告[5篇范文]](https://img.taocdn.com/s3/m/90104b5d24c52cc58bd63186bceb19e8b8f6ecf3.png)
单轴拉伸实验报告[5篇范文]第一篇:单轴拉伸实验报告单轴拉伸实验报告使用设备名称与型号同组人员实验时间一、实验目的1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。
2.测定材料的强度指标(屈服极限Sσ、强度极限bσ)和塑性指标(延伸率δ和面缩率ψ)。
二、实验设备与仪器1.电子万能材料试验机WDW-100A(见附录一)。
2.计算机、打印机。
3.游标卡尺。
三、实验原理单轴拉伸实验在电子万能材料试验机上进行。
在试验过程中,试验机上的载荷传感器和位移传感器分别将感受到的载荷与位移信号转变成电信号送入 EDC 控制器,信号经过放大和模数转换后送入计算机,并将处理过的数据同步地显示在屏幕上,形成载荷—位移曲线(即l P ∆-曲线),试验数据可以存储和打印。
在实验前,应进行载荷传感器和位移传感器的标定(校准)。
根据l P ∆-曲线和试样参数,计算材料的各项机械性能指标。
根据性能指标、l P ∆-曲线特征并结合断口形貌,分析、评价材料的机械性能。
试验机操作软件的使用可参见附录一。
四、实验操作步骤五、实验结果及分析计算 1、实验数据(可附实验曲线)低碳钢铸铁原始尺寸直径 mm标距 mm断后颈缩处直径断裂后标距屈服载荷 KN最大载荷 KN破坏形式示意图2、结果计算六、思考题1、分析比较低碳钢和铸铁在拉伸时的机械性能、变形、强度、破坏方式等。
2、本实验的力—位移曲线上的变形量与试件上的变形量是否相同?如果要利用力—位移曲线来近似确定试样的断后延伸率,应该怎样做?3、为什么要采用比例试样?同一材料的δ 10 和δ 5 有何关系?第二篇:高等教育金属拉伸实验报告金属拉伸实验报告【实验目得】1、测定低碳钢得屈服强度 R Eh、R eL及 R e、抗拉强度 R m、断后伸长率 A 与断面收缩率Z。
2、测定铸铁得抗拉强度R m 与断后伸长率A。
3、观察并分析两种材料在拉伸过程中得各种现象(包括屈服、强化、冷作硬化与颈缩等现象),并绘制拉伸图。
常温单轴拉伸实验

实验1 常温单轴拉伸实验马 杭 编写单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验。
由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。
多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。
一、实验目的1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。
2.测定材料的强度指标(屈服极限、强度极限)和塑性指标(延伸率和面缩率)。
二、实验设备1.电子万能材料试验机WDW -100A(见附录一)。
2.计算机、打印机。
3.游标卡尺。
图1-1 圆棒拉伸试样简图 三、试样材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。
本试验采用圆棒试样,如图1-1所示。
试样的工作部分(即均匀部分,其长度为)应保持均匀光滑以确保材料的单向应力状态。
均匀部分的有效工作长度称为标距,和分别为工作部分的直径和面积。
试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。
材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397-86)。
例如,由于颈缩局部及其影响区的塑性变形在断后延伸率中占很大比重,同种材料的延伸率不仅取决于材质,而且还取决于试样标距。
按国家标准S σb σδψC l 0l 0d 0A规定,材料延伸率的测试应优先采用两类比例试样:(1)长试样:(圆形截面试样),或(矩形截面试样) (2)短试样:(圆形截面试样),或(矩形截面试样) 用长试样和短试样测得的断后延伸率分别记做和,国家标准推荐使用短比例试样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 常温单轴拉伸实验马 杭 编写单轴拉伸实验是研究材料机械性能的最基本、应用最广泛的实验.由于试验方法简单而且易于得到较为可靠的试验数据,在工程上和实验室中都广泛利用单轴拉伸实验来测取材料的机械性能。
多数工程材料拉伸曲线的特性介于低碳钢和铸铁之间,但其强度和塑性指标的定义与测试方法基本相同,因此通过单轴拉伸实验分析比较两种材料的拉伸过程,测定其机械性能,在机械性能的试验研究中具有典型的意义,掌握其拉伸和破坏过程的特点有助于正确合理地认识和选用材料,了解静载条件下结构材料的许用应力的内涵。
一、实验目的1.通过单轴拉伸实验,观察分析典型的塑性材料(低碳钢)和脆性材料(铸铁)的拉伸过程,观察断口,比较其机械性能。
2.测定材料的强度指标(屈服极限S σ、强度极限b σ)和塑性指标(延伸率δ和面缩率ψ)。
二、实验设备1。
电子万能材料试验机WDW-100A(见附录一)。
2。
计算机、打印机。
3。
游标卡尺.图1—1 圆棒拉伸试样简图三、试样材料性能的测试是通过试样进行的,试样制备是试验的重要环节,国家标准GB6397-86对此有详细的规定。
本试验采用圆棒试样,如图1—1所示。
试样的工作部分(即均匀部分,其长度为C l )应保持均匀光滑以确保材料的单向应力状态。
均匀部分的有效工作长度0l 称为标距,0d 和0A 分别为工作部分的直径和面积。
试样的过渡部分应有适当的圆角以降低应力集中,两端的夹持部分用以传递载荷,其形状与尺寸应与试验机的钳口相匹配。
材料性能的测试结果与试样的形状、尺寸有关,为了比较不同材料的性能,特别是为了使得采用不同的实验设备、在不同的实验场所测试的试验数据具有可比性,试样的形状与尺寸应符合国家标准(GB6397—86).例如,由于颈缩局部及其影响区的塑性变形在断后延伸率中占很大比重,同种材料的延伸率不仅取决于材质,而且还取决于试样标距。
按国家标准规定,材料延伸率的测试应优先采用两类比例试样:(1)长试样:0010d l =(圆形截面试样),或003.11A l =(矩形截面试样)(2)短试样:005d l =(圆形截面试样),或0065.5A l =(矩形截面试样)用长试样和短试样测得的断后延伸率分别记做10δ和5δ,国家标准推荐使用短比例试样。
四、实验原理单轴拉伸实验在电子万能材料试验机上进行。
在试验过程中,试验机上的载荷传感器和位移传感器分别将感受到的载荷与位移信号转变成电信号送入EDC 控制器,信号经过放大和模数转换后送入计算机,并将处理过的数据同步地显示在屏幕上,形成载荷—位移曲线(即l P ∆-曲线),试验数据可以存储和打印.在实验前,应进行载荷传感器和位移传感器的标定(校准)。
根据l P ∆-曲线和试样参数,计算材料的各项机械性能指标。
根据性能指标、l P ∆-曲线特征并结合断口形貌,分析、评价材料的机械性能。
试验机操作软件的使用可参见附录一。
五、试验步骤1.原始尺寸测量:(1)确定标距0l 。
(2)测量直径0d :在标距中央及两条标距线附近各取一截面进行测量,每截面沿互相垂直方向各测一次取平均值,0d 采用三个截面中的平均值的最小值。
2.初始条件设定:如图1—2,(1)首先进行载荷与位移清零,用鼠标点击载荷与位移(绿色)显示区右上方的0.0按纽,使两者的显示值均为零.(2)点击左上方“曲线参数”,根据材料的强度与塑性,选择合适的显示量程。
图二右下方为载荷—位移曲线的显示区,其X 轴为横梁位移(mm ),Y 轴为载荷(kN )。
(3)点击左上方“试样信息”,输入试样参数.3.试样装夹:(1)选择“手动操作”,设定较快的横梁移动速度(20mm/min 或50mm/min ),点击“上升”或“下降”使横梁移动并观察.当横梁到达合适的位置时,点击“停止”使横梁停止移动。
(2)将试样的夹持端插入上楔形夹头并旋紧,点击“下降"使试样的另一端插入下楔形夹头,下降时注意对中以免产生碰撞,停机后旋紧下夹头。
注意,试样装夹之后不再进行载荷清零。
图1—2 拉伸试验的计算机界面4。
加载试验:(1)选择“手动操作”,设定试验速度,建议低碳钢试样设为5mm/min ,铸铁试样设为1—2mm/min 。
(2)点击“上升”开始拉伸试验,注意观察试样、曲线显示区的曲线以及载荷与位移显示值的变化。
(3)低碳钢试样将依次出现变形的四个阶段。
当载荷从最大值开始下降时可以看到试样的颈缩区,如果试样表面光滑、材料杂质含量少,可以清楚地看到表面45°方向的滑移线。
试样断裂后试验机自动停止加载。
5。
试验结束前的重要工作:(1)打印记录曲线,开启打印机电源后,依次点击右上角“分析"(弹出新界面)、“打印”。
点击右上角“保存”,可以将本次试验的信息以文本文件的形式保存起来,文件名的后缀为“.dat ”。
(2)取下试样,对拢已破坏的试样,测量有关数据,观察断口形貌。
六、试验结果整理1.强度指标计算:(1)屈服极限 0/A P S S =σ (MPa) (2)强度极限 0/A P b b =σ (MPa )屈服载荷S P 取屈服平台的下限值。
b P 取l P ∆-曲线上的最大载荷(参见图三)。
脆性材料不存在屈服阶段,所以只需计算b σ。
2。
塑性指标计算:(1)延伸率%10001⨯-=l l l δ (2)面缩率%100010⨯-=A A A ψ3.绘制l P ∆-曲线:将载荷-位移记录曲线绘制在坐标纸上,标注坐标的刻度,标明变形的各个阶段,标出曲线上的特殊点(例如下屈服点,等等)。
4.画出断口形貌草图,根据试验结果,对两种材料的性能进行分析比较,完成试验报告。
七、预习与思考1.认真预习实验指导书,明确实验目的和方法,明了试验中应当注意观察的现象.2.本试验的l P ∆-曲线上的变形量与试样上的变形量是否相同?如果要利用l P ∆-曲线来近似确定试样的断后延伸率,应怎样做?3.为什麽要采用比例试样?同一材料的10δ和5δ有何关系?八、两种典型材料的l P ∆-曲线低碳钢具有良好的塑性,从图1—3可以看出,低碳钢的l P ∆-曲线明显地分为四个阶段:(1)弹性阶段(OA ):试样的变形是弹性的,若在弹性阶段卸载,试样恢复原来的尺寸,几乎不存在残余变形。
材料在弹性范围内服从Hooke 定律,其载荷-伸长、应力—应变成正比。
(2)屈服阶段(AB):标志着宏观塑性变形的开始,材料暂时丧失抵抗继续变形的能力。
在屈服阶段,载荷(应力)往往出现锯齿状波动,载荷开始下降所对应的应力称为上屈服点,其数值受材料状态和试验条件多种因素的影响,而屈服阶段应力的最低值—下屈服点的数值则比较稳定,所以通常用下屈服点作为材料的屈服极限S σ.结构、零件的应力一旦超过屈服极限,就会因为变形过量而失效。
从屈服阶段开始,材料的变形包含弹性与塑性两部分。
(3)强化阶段(BC ):亦称均匀变形阶段,材料恢复了对继续变形的抵抗能力,载荷随着变形而持续上升。
如果在该阶段卸载,试验机和试样组成的系统的弹性变形随之消失,试样的塑性变形将永远保留下来,卸载路径与弹性阶段平行。
如果卸载后再次加载,加载路径近似与卸载路径重合,载荷到达原卸载点时将重新进入屈服并产生塑性变形,材料表现出强度上升、塑性下降的现象,称作形变强化(或冷作硬化、加工硬化).形变强化是金属材料的宝贵品质,是材料强化的重要手段。
(4)颈缩阶段(CD ):亦称局部变形阶段.这时,材料形变强化对载荷增加的贡献已经不能抵偿试样截面积减小对载荷的削弱作用,载荷下降,塑性变形在局部进行,承载面积迅速减小,直到断裂.断裂后试样的弹性变形消失,塑性变形则保留在断裂的试样上.图1—3 低碳钢与铸铁的l P ∆-曲线铸铁是典型的脆性材料,拉伸过程比较简单,不存在低碳钢那样的四个阶段,可以近似认为经弹性阶段直接过渡到断裂,断裂后的延伸率极小,因此这类材料若使用不当,容易发生事故.实验2 单轴压缩实验李享荣 编写一、实验目的1。
观察并比较低碳钢和铸铁在压缩时的变形和破坏现象. 2.测定低碳钢的屈服极限S σ和铸铁的强度极限b σ。
二、实验原理1.低碳钢:一般取圆柱形试件,尺寸为1<d h /<3,在屈服以前,其应力—应变关系基本上与拉伸时相同,随后横截面逐渐增大,试件最后压成饼形而不破裂(图2—1),故只能测出S F ,由sσ=0/A F S 于是得出材料受压时的屈服极限,而得不出受压时的强度极限.2。
铸铁:铸铁压缩一般也取圆柱形试件,其尺寸与低碳钢一样,试件受力直至破坏(图2-2),破坏断面与试样轴线约成35o— 45o,测出破坏时的载荷b F ,由b σ=0/A F b 得到铸铁的强度极限b σ。
图2—1 低碳钢压缩 图2-2 铸铁压缩ABDCOPl∆卸载线低碳钢l∆PO铸铁图2—3 低碳钢压缩l F ∆-图 图2—4 铸铁压缩的l F ∆-图三、实验设备1。
WE300型万能试验机(见附录二)。
2.游标卡尺。
四、实验方法及步骤1.校正测力盘零点(详见附录二油压式万能试验机说明),调整好记录仪。
2。
用游标卡尺量取试件的横截面直径. 3。
将试件放在压板的中心。
4。
缓慢均匀地加载荷,注意低碳钢压缩时的屈服载荷,并记下这一载荷s F ,过屈服后一直压到试样成扁平状.铸铁一直压到破坏为止,记下破坏时的载荷b F 。
五、预习题和思考题1。
本试验的目的是什么? 2.压缩试件为什么做成短柱形?3。
低碳钢和铸铁压缩试验时应记录哪些试验数据?。