关于模糊控制的英文翻译

合集下载

模糊控制

模糊控制

Aerospace Science and Technology15(2011)25–32Contents lists available at ScienceDirectAerospace Science and Technology/locate/aescteAdaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo systemWei Ji a,∗,Qi Li b,Bo Xu a,Dean Zhao a,Shixiong Fang ba The School of Electrical and Information Engineering,Jiangsu University,Zhenjiang,212013,Chinab Research Institute of Automation,Southeast University,Nanjing,210096,Chinaa r t i c l e i n f o ab s t r ac tArticle history:Received4August2009Received in revised form15May2010 Accepted21May2010Available online27May2010Keywords:LOS stabilizationGyro stabilized platformAdaptive fuzzy PID composite control Hysteresis-band switching The line of sight(LOS)stabilization control based on gyro stabilized platform is required to isolate the LOS from the disturbance and vibration of carrier and ensure pointing and tracking for target in electro-optical tracking system.A composite adaptive fuzzy proportional-integral-derivative(PID)control with hysteresis-band switching is developed to achieve real-time and high stabilization precision for this nonlinear uncertainty servo system.First of all,in the adaptive fuzzy controller,the pre-designed self-tuning factors are able to modify the parameters of fuzzy controller online,and a new learning algorithm of fuzzy rules modifier is proposed to adjust control efforts.Then,an improved PID controller is chosen to restrain motor saturation and eliminate the static error originated from the fuzzy controller,and fulfill non-error control.The hysteresis-band switching strategy is given to deal with jitter caused by single-point switching condition.The experimental results in four-axis servo turntable show that the proposed method can achieve nice control performance and is proved to be effective in bating carrier disturbances within the scope of definite noise and sensitivity to acceleration.Crown Copyright©2010Published by Elsevier Masson SAS.All rights reserved.1.IntroductionIn electro-optical imaging tracking systemfixed on the moving carrier(such as TV missile seeker,the airborne electro-optical de-tector,etc.),the carrier vibrations in the azimuth,pitch and roll direction induce the imaging sensor LOS to rock and cause the im-age blurred and affect pick-up for miss-distance of the target,and lead the tracking performance to fail.Therefore,the LOS stabilized technology is required to isolate the LOS from carrier disturbance in order to guarantee accurate pointing and tracking for the target at the inertial space.The LOS stabilization uses the rate gyro in-stalled on stabilized gimbal as the sensor for inertial space speed to compose the inertial platform.The control system manipulates the platform,which is driven directly by the DC motor,and holds imaging sensor LOS to be stabilized[3].The LOS stabilized system is the typical motion control.Some factors presented so far,such as the mechanical resonance,the gyro signal random drift and electrical parameter changing,etc., have indicated that it is a complex nonlinear uncertain electrome-chanical system whose mathematical model is nonlinear and dif-ficult to build[3,15].Concerning these difficulties and constraints, several methods for the LOS stabilized control have been proposed. In[16],modern synthesis tools such as linear quadratic regula-*Corresponding author.E-mail addresses:jwhxb@(W.Ji),liqi@(Q.Li),xubo@(B.Xu).tor(LQR)or linear quadratic Gaussian with loop transfer recovery (LQG/LTR)control for a wideband controller have also been used in the line of sight stabilization for mobile land vehicle.[2]presented a linear quadratic Gaussian(LQG)algorithm,based on a simple first-order linear stochastic differential equation,for estimating and compensating in real time a particular class of disturbances that can be modeled as a plus or minus unknown slowly changing ran-dom value such as is characterized by nonlinear Coulomb friction.Besides conventional control methods mentioned above,some advance control techniques,such as fuzzy logical control(FLC) [5],robust control[9],variable structure control(VSC)[14],were also applied in LOS inertia stabilization systems during recent years.[14]proposed the variable structure-augmented adaptive controller applied to a gyro-mirror line-of-sight stabilization plat-form.In[6],the H∞control methodology was used to design a high performance controller so as to control the rate of the line of sight.The mixed sensitivity optimization problem was posed and weighting functions were selected so that they not only en-capsulated all the design goals but also robust to the modeling uncertainties.In[13],an efficient full-matrix fuzzy logic controller was designed and implemented for a practical nonlinear gyro-mirror line-of-sight stabilization platform,which offered an excel-lent closed-loop response for the transient and tracking perfor-mances,with significant reduction in the coupling effect against cross-axis interactions.However,a majority of these algorithms were complex and difficult to be realized.The progress report [4]pointed out that the adaptive control technique is the fu-1270-9638/$–see front matter Crown Copyright©2010Published by Elsevier Masson SAS.All rights reserved. doi:10.1016/j.ast.2010.05.00626W.Ji et al./Aerospace Science and Technology 15(2011)25–32ture development direction of LOS inertia stabilization systems.In recent years,the fuzzy control technology has been developed successfully.It improves the system control performance,and has the good adaptability for the system with nonlinear mathematical model and uncertain factors [8].In this paper,a composite adaptive fuzzy PID (AFPID)control strategy is developed for a LOS stabilized and tracking turntable.By utilizing the fuzzy control,the closed loop system will have the quick dynamic response and small overshot.The self-tuning factors are designed to modify the parameters of fuzzy controller online.An adaptive learning algorithm of rules modifier is introduced to adjust control efforts and satisfy the system requirement under dif-ferent conditions.The composite control are designed to eliminate the static error that fuzzy controller inheres and fulfill non-error control,and to achieve requirement for real-time and high stabi-lization precision.The hysteresis-band switching is given to deal with jitter caused by single-point switching.The paper is organized in the following manner.In Section 2,the details of the gyro LOS stabilized platform are first described.Then,in Section 3,the main ideas that form the basis of the pro-posed composite adaptive fuzzy PID control strategy are discussed.Finally,Section 4presents real-time experimental results on the application of the proposed controller to a four-axis LOS stabilized and tracking turntable.2.Gyro inertia platform LOS stabilized compensation equation setup2.1.Two-axis gyro stabilized platform configurationA schematic diagram of two-axis gyro stabilized platform is shown in Fig.1.The stabilized platform is made up of the outer azimuth gimbal frame and the inner pitching gimbal frame.The azimuth gimbal frame is mounted in the carrier frame by axes OZ a ,and the pitching gimbal frame is mounted in the azimuth gim-bal frame by axes OX f .The charge coupled device (CCD)is fixed onto the inner pitching gimbal frame.In the axes OZ a and OX f ,the torque motors M f ,M a and the incremental opto-electronic en-coders S f ,S a are installed respectively.The speed gyros of G f ,G a are fixed onto the pitching gimbal frame respectively,and be used to measure the platform inertia speed of pitching and azimuth ori-entation.So the pitching-axes stabilized platform consists of G f ,M f ,S f ,pitching gimbal and pitching servo control loop,and the azimuth-axes stabilized platform consists of G a ,M a ,S a ,azimuth gimbal and azimuth servo control loop.Referring to Fig.1,the following coordinate frames can be de-fined.OX d Y d Z d :the carrier frame coordinate.OX a Y a Z a :the outer azimuth gimbal frame coordinate.OX f Y f Z f :the inner pitching gimbal frame coordinate.θa :azimuth angle of OX a Y a Z a to OX d Y d Z d .θf :pitching angle of OX f Y f Z f to OX a Y a Z a .The CCD is fixed onto the inner pitching gimbal frame.The LOS of the CCD points along with the coordinate axes OY f of OX f Y f Z f frame.pensation equation for the carrier disturbanceBased on friction force moment coupling,the carrier distur-bance vibration will induce the imaging sensor LOS to rock.In the following,we will carry out kinematics analysis for LOS stabilized principle and infer the compensation equation for the carrier dis-turbance.Fig.1.Schematic of two-axis gyro stabilizedplatform.Fig.2.The relationship between OX d Y d Z d and OX a Y a Z a.Fig.3.The relationship between OX a Y a Z a and OX f Y f Z f .Firstly,we consider the case that the carrier motions but the servo control loop lays-up.Assume ωxd ,ωyd ,ωzd are the three coordinate axes sub-speed for carrier frame of carrier disturbance speed ωd respectively.Then,the relationship between the car-rier frame coordinate OX d Y d Z d and the azimuth frame coordinate OX a Y a Z a is shown in Fig.2.Assuming ωxa ,ωya ,ωza are the three coordinate axes sub-speed for azimuth frame respectively,the coordinate transforma-tion is given byωxa =ωxd cos θa +ωyd sin θa ωya =−ωxd sin θa +ωyd cos θa ωza =ωzd(1)Similarly,the relationship between the azimuth frame coordinate OX a Y a Z a and the pitching frame coordinate OX f Y f Z f is shown in Fig.3.W.Ji et al./Aerospace Science and Technology15(2011)25–3227 Assumingωxf,ωyf,ωzf are the three coordinate axes sub-speed for pitching frame respectively,the coordinate transforma-tion is given byωxf=ωxaωyf=ωya cosθf+ωza sinθfωzf=−ωya sinθf+ωza cosθf(2) Substituting(1)into(2),we have⎧⎨⎩ωxf=ωxd cosθa+ωyd sinθaωyf=−ωxd sinθa cosθf+ωyd cosθa cosθf+ωzd sinθfωzf=ωxd sinθa sinθf−ωyd cosθa sinθf+ωzd cosθf(3) Secondly,we consider the case that the servo control loopworks as well as the carrier motions.Assuming˙θa and˙θf are com-pensated angle speeds in the azimuth servo loop and the pitching servo loop respectively,andω xf,ω yf,ω zf are the three coordinate axes sub-speed for pitching frame of them,then⎧⎪⎨⎪⎩ωxf=˙θfωyf=˙θa sinθfωzf=˙θa cosθf(4) Adding the three coordinate axes sub-speed in pitching framecaused by the carrier disturbance speedωd and servo loop com-pensated angles˙θa and˙θf,then we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ωx=ωxf+ωxf=ωxd cosθa+ωyd sinθa+˙θfωy=ωyf+ωyf=−ωxd sinθa cosθf+ωyd cosθa cosθf+ωzd sinθf+˙θa sinθfωz=ωzf+ωzf=ωxd sinθa sinθf−ωyd cosθa sinθf+ωzd cosθf+˙θa cosθf(5)whereωx,ωy,ωz are the three coordinate axes composed sub-speed for the pitching frame.If the direction of LOS is unchange-able,the following should be satisfiedωx=0ωz=0(6) Applying(5)to(6),we obtain⎧⎨⎩ωx=ωxd cosθa+ωyd sinθa+˙θf=0ωz=ωxd sinθa sinθf−ωyd cosθa sinθf+ωzd cosθf+˙θa cosθf=0(7) Therefore,the stabilized equation of the two-axis gyro inertiaplatform is˙θf=−(ωxd cosθa+ωyd sinθa)˙θa=−(ωxd sinθa tanθf−ωyd cosθa tanθf+ωzd)(8)Notice that(8)is the common expression of the compensationequation for the carrier disturbance in azimuth and pitching servo loop.When the installed position of gyro changes,the equation ex-pression varies too.In this system,two speed gyros G f,G a are all fixed onto the pitching gimbal frame.One is used to measure the platform inertia speedωzf and the other is used to measure theplatform inertia speedωxa.According to(1)and(3),one obtainsωxf=ωxa=ωxd cosθa+ωyd sinθaωzf=ωxd sinθa sinθf−ωyd cosθa sinθf+ωzd cosθf(9) Substituting(9)into(8),the compensation equation for the car-rier disturbance is˙θf=−ωxa˙θa=−ωzf/cosθf(10)Fig.4.Diagram of LOS stabilized servo control loop.The LOS stabilized principle is that gyros G f,G a measure the platform inertia speedsωzf,ωxa respectively,and servo loop sta-bilized controller drives the torque motors M f,M a rotated by˙θf,˙θa to counteract carrier disturbance speed.When(10)comes into existence,the LOS can be keep invariability.The diagram of LOS stabilized servo control loop is presented in Fig.4.3.Adaptive fuzzy PID control for LOS stabilized servo systemAs a typical servo control,the LOS stabilized system based on gyro stabilized platform has its particularity besides usual ques-tions in motion control system:(i)The elasticity distortion of drive shaft causes the mechanical resonance.The system shaft-ing stiffness coefficient is difficult to calculate,and is unable to compensate accurately.(ii)The mechanical friction,as a typical nonlinear factor,can hardly realize compensate with the precise model.(iii)The windup of actuator degrades the system perfor-mance.(iv)The gyro signal difficulties including disturbance noise, random drift and zero bias,etc.These factors have indicated the gyro stabilized platform to be an electro-mechanical system with nonlinearities and uncertainties.Moreover,the LOS stabilized con-trol settling time is usually very short.And the system usually works in atrocious conditions,which have many random distur-bance factors.So the performance with fast dynamic response and high stabilization precision,which has the adaptability and ro-bustness,is required.The experiment demonstrated that when the system operates under the linear region,the desired performance can be obtained only by the PID control.But under the conditions with nonlinear constraints and uncertainties,only using the con-ventional PID control is hardly to realize the high accuracy and movement stationarity.For example,during the transient state,the error is big,but the open-loop gain coefficient drops greatly due to the saturation characteristic of the amplifier and the electrical component.The serious distortion destructs the system stability. The platform produces vibration and is uneasy to be tuned.More-over,the low velocity stick-slip and direction changing as well as the gyro signal difficulties have the serious influences to the stabi-lization precision.In recent years,the fuzzy control[7]has been developed suc-cessfully.It improves the system control performance,which has fast dynamical response and the good adaptability for the parame-ter time-varying system with nonlinear mathematical model.How-ever,there are some shortcomings,which is helpless regarding to small scope error of the set-point value nearby.In essence,fuzzy control is a PD adjuster and cannot fulfill non-error control[10].Base on analysis mentioned above,in order to satisfy the re-quirement for real-time,high stabilization precision and applica-bility,the composite adaptive fuzzy PID control law is introduced to realize the non-error adjustment.Fig.5shows the structure of composite AFPID control for LOS stabilized servo system of gyro stabilized platform.When speed error is large,namely,in transient state,the adaptive fuzzy control is activated to close the set-point speed as soon as possible minimal time,which guarantees faster28W.Ji et al./Aerospace Science and Technology 15(2011)25–32Fig.5.Structure of composite adaptive fuzzy PID control for LOS stabilized servosystem.Fig.6.Block diagram of the proposed adaptive fuzzy controller.dynamic response of the system quickly.While the platform is rec-tified and speed error is small,that is to say,in steady state,the controller switches to the improved PID control,by which realizes fine adjustment for error using the integral action.In switching mode,a hysteresis-band switching,which is different with the single-point switching,has been proposed.Various aspects of the design considerations are discussed in the following sections.3.1.Adaptive fuzzy controllerThe conventional fuzzy control has been developed in last decades,but there still be some disadvantages.The fuzzy con-troller mainly includes the control tuning parameters,membership functions and control rule-bases.But the fixed control parame-ters,membership functions and the limited control rules,which are usually determined heuristically by the experiments of sev-eral experts,are not sufficient to produce the necessary control action to achieve the requirement under different operating con-ditions.Therefore,the adaptive method is introduced to improve the conventional fuzzy controller performance,and enhance the robustness for the outside disturbance and changing of operating conditions [1].Here,the fuzzy controller with the control rule and parameter adjustment on-line has the practicability in real-time process control.The block diagram of the proposed adaptive fuzzy controller is presented in Fig.6.Based on the conventional fuzzy controller,the output scaling factor of the fuzzy controller is tuned on-line through a gain updating factor.A new learning algorithm of fuzzy rules modifier based on the error and change of error is proposed to adjust control efforts.Various aspects of the design considera-tions are discussed in the following subsections.3.1.1.Fuzzy controllerThe control input variables for the proposed fuzzy controller are chosen as error (E )and change of error (EC ).The control output variable (U )is defined as the output for fuzzy controller.They are fuzzy linguistic variables representing the actual speed error (e ),change of actual speed error (ec )and the output control effort (u )respectively.The actual variable expression is given ase (k )=ωR (k )−ωL (k )(11)Fig.7.Membership function.Table 1Control rule-bases.EC /U /E NB NM NS Z PS PM PB NB NB NB NM NM NS NS Z NM NB NM NM NS NS Z PS NS NM NM NS NS Z PS PM Z NM NS NS Z PS PS PM PS NM NS Z PS PS PM PM PM NS Z PS PS PM PM PB PBZPSPSPMPMPBPBec (k )=e (k )−e (k −1)(12)u (k )=f e (k ),ec (k )(13)where ωR (k ),ωL (k )are the set-point desired value and the actual output value (at the k th sampling interval)respectively,f (·,·)de-notes the input–output relation function.Considering the unsymmetry situation of the variable in actual system,we assume that the basic discourse universe of e ,ec and u are [e min ,e max ],[ec min ,ec max ]and [u min ,u max ]respectively.The common normalized domain is defined as [−1,1].So the universe of discourse normalized formula is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩E =k e e −e max +e min 2 ,k e =2e max e min EC =k ec ec −ec max +ec min 2 ,k ec =2ec max ec min U = u −u max +u min 2k u ,k u =u max −u min 2(14)where k e ,k ec are input variable quantification factors,k u is output variable scaling factor.E ,EC and U all use the same fuzzy subsets {NB,NM,NS,Z,PS,PM,PB},which mean negative big,negative small,zero,positive small and positive big,respectively.We use symmetric triangles with equal base and 50%overlap with neigh-boring membership functions as shown in Fig.7.The control rule-bases based on the fuzzy rule,{IF A i and B i THEN C i },are presented in Table 1.According to the type of Mam-dani min–max compositional rule of inference [7],we obtainW.Ji et al./Aerospace Science and Technology 15(2011)25–3229Fig.8.The variation of gain updating factor δwith e and ec .⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩R =n i =1R i =n i =1(A i ×B i )×C i μR i =min μA i (E ),μB i (EC ),μC i (U )μC (U )=max E ,ECmin μA ×B (E ,EC ),μR (E ,EC ,U )(15)The defuzzification of the controller is accomplished by the method of center-of-gravityU =i μC i (U i )C ii μC i (U i )(16)where μC i (U i )is the firing weight of the i th control rule.Therefore the actual control effort is given asu (k )=k u (k )·U +u max +u min2(17)3.1.2.Self-tuning method for scaling factorThe fuzzy controller scaling factors play an important role to map the physical values.Although these factors are crucial to get excellent performance,there is no systematic method to determine the optimal values.Normally all the gains are tuned through a trial and error process.It is difficult to maintain great performance in both the transient and steady states because different control res-olutions are required for each region as stated above.To obtain the desired control resolution,we should adjust the output scaling fac-tor during the control process.According to parameter adjustment rules:(i)When E and EC is bigger,larger scaling factor is essential to strengthen the control effort to reduced settling time.(ii)When E and EC is smaller,namely,system is close to steady state,in or-der to guarantee the control precision,the scaling factor should be reduced,and the output control effort should be adjusted sub-tly [11,12,17].Here,we proposed a gain updating factor of output scaling factor,which is a function of error and change of error,δ(e ,ec )=1−γ·exp − α·e 2+β·ec 2,0 δ 1(18)where γis the integral constant,0<γ<1,α,βare weighting coefficients for each input variable respectively,α>0,β>0.Fig.8shows the variation of gain updating factor δwith e and ec .According to (18),the scaling factor of the output is as followsk u (k )=δ e (k ),ec (k )·k u (0)(19)where k u (0)is an initial value of the scaling factor.Now,we discuss separately the influence of the updating factor by α,βand γ.By (18),the partial derivatives of δwith respect to e and ec are given as⎧⎪⎨⎪⎩∂δ∂e =2γ·α·e ·exp − α·e 2+β·ec 2 ∂δ∂ec=2γ·β·ec ·exp − α·e 2+β·ec 2 (20)Remark 1(The influence of α,β–take αfor example).(i)In case of e →0:δ (e )|e →0≈2γ·α·e ·1−α·e 2 ·exp −β·ec 2≈2γ·α·e ·exp −β·ec 2(21)By (21),in this region,the absolute value of δ (e )also increasesalong with the rise of α,namely,the change of δis quicker than e ,thus the scaling factor is also very quick.On the contrary,αis small,the change of scaling factor is always small.(ii)In case of e →1:δ (e )|e →1≈2γ·α·exp −α·e 2 ·exp −β·ec 2≈2γ·α·exp −β·ec 2/exp (α)(22)Here,the bigger αis,the smaller the absolute value of δ (e )is,namely,the change of δis slower than e ,thus the scaling factor is also very smaller.On the contrary,αis small,the change of δis small in any case within the scope [−1,1].Remark 2(The influence of γ).Assume e =ec =0is the system steady state,then δ(e ,ec )=1−γ.(i)If γ=0,then δ(0,0)=1.The scaling factor maintains in-variable throughout in the whole process,therefore,the system degenerates into the invariable parameter state.(ii)If γ=1,then δ(0,0)=0.The scaling factor becomes 0,then the output control quantity is zero,the system stabilizes in the steady state.According to (20),we can see that the derivative of δ(e ,ec )also decreases along with the drop of γ,and the change of δis small,thus the variation of updating factor is slow.Discussion mentioned above gives various parameters influence for gain updating factor.With the self-adjustment of the gain up-dating factor,the scaling factor is self-adjusted accordingly,and the control effort can be regulated with e and ec .3.1.3.Learning algorithm for control rule-basesThe adjustment of the fuzzy control rule has the decisive effect for control performance of the nonlinear time-varying system.Re-garding to this system,the prior knowledge bases and operation experience lacks relatively with the restricted in the condition.In order to achieve the system adaptive control,an iterative learn-ing algorithm is introduced to adjust control rule online [18].The central part of the iterative learning algorithm for adaptive fuzzy control system is to change the control rule in the direction of the negative gradient of a performance index J ,which is defined as a function of e and ecJ =n k =1e 2(k )+ρ·ec 2(k )(23)where k is the sampling interval,ρ>0is the weight factor.The partial derivatives of J with respect to e and ec can be obtained as follows30W.Ji et al./Aerospace Science and Technology 15(2011)25–32∂J ∂e (k )=e (k )e 2(k )+ρ·ec 2(k )(24)∂J ∂ec (k )=ρ·ec (k )e 2(k )+ρ·ec 2(k )(25)The negative gradient for the optimal performance can be ex-pressed as−|∇J |=−e (k )e 2(k )+ρ·ec 2(k )−ρ·ec (k )e 2(k )+·ec 2(k )(26)Based on the optimal control [18],the adjust control signal isU (k )=η· −|∇J |·e (k )ec (k )(27)where ηis the learning rate,0<η<1.The modification algorithm for each fuzzy control rule is proposed as followsC i = U ·μC i (U i )i μC i (U i )(28)C i =C i + C i(29)where μC i (U i )is the firing weight of the i th control rule, C i is the modification value of the i th control rule.The control rule can be adjusted automatically through the adaptive iterative learning algorithm above based on system performance.3.2.Improved PID controlThe PID controller is still widely used in industrial systems de-spite significant developments in recent years in control theory and technology.The discrete approximation law of the PID con-troller can be described byu p (k )=k p e (k )+k ik j =0e (j )·T +k d e (k )−e (k −1)/T(30)where e (k )is error at k th sampling sequence.T is the samplingperiod.k p ,k i ,k d are the proportional,integral and derivative gains,respectively.However,by using conventional PID controller,the improve-ment of the performance of the system is limited.Due to accu-mulating of integral action for speed error,the motor saturation happens,and system overshoot and surge appears,which leads settling time to increase.In order to deal with these problems and utilize the integral action,a self-adjusting integral action with speed error is proposed.When speed error is bigger,the integral action must be weaken for avoiding overshoot.While speed error is smaller,the integral action should be strengthen to eliminate the static error.Then the integral action of PID output isu i (k )=k ik −1j =0e (j )+ψ e (k )·e (k )·T(31)where ψis self-adjusting coefficient of the integral action,whose relation with e (k )is as followsψe (k ) =⎧⎪⎨⎪⎩1|e (k )| BA −|e (k )|+BAB <|e (k )| A +B|e (k )|>A +B(32)where ψ∈(0,1),A ,B is the subsection interval.Hence the im-proved PID controllerisFig.9.Hysteresis-band switching.u p (k )=k p e (k )+k ik −1j =0e (j )+ψe (k )·e (k ) ·T+k de (k )−e (k −1)/T(33)where the initial values of the PID parameters are obtained from refined Ziegler–Nichols (Z–N)method.Comparing (30)with (33),we can see that the integral action of the improved PID controller can be self-adjusted on-line according to speed error,which meets the system requirement for it.So its control performance is prior to the conventional PID control.3.3.Hysteresis-band switching strategyThe adaptive fuzzy PID composite control can obtain nice per-formance.But the single-point switching mode,which usually chooses weight value e m as switching point,causes easily output wobble due to irrelevant switching point.For example,when e m is small,the fast response can be fulfilled.But e m is small exces-sively,there is wobble frequently because of controller switching between two control law.So a hysteresis-band switching,as shown in Fig.9,is brought forward to deal with jitter caused by single-point switching.The speed errors e m 1,e m 2are chosen to be the switch point weight values of different control law,and e m 2>e m 1>0.Then,the switching rules can be described as follows(i)When e e m 2and ec >0or e −e m 2and ec <0,the AFC isactivated.(ii)When 0 e e m 1and ec <0or −e m 1 e <0and ec >0,thecontroller switches to improved PID control.By this way,we can avoid jitter caused by single-point switch-ing because there must through one switching band when control law changes.The values of e m 1,e m 2can be selected in actual ap-plication.4.System setup and experimental results 4.1.System setupThe experimental mechanism is a four-axis turntable (shown in Fig.10),which is comprised of a two-axis vibrate turntable and a two-axis payload stabilized platform.The vibrate turntable used to simulate movement of carrier,is a two degree-of-freedom (DOF)instability gimbal.While,the payload platform is a two DOF stabilized gimbal,on which the charge coupled device (CCD)and fiber optic gyro (FOG)are mounted assembly.Each axis is driven directly by the DC motor without middle driven mechanism.Tak-ing the servo system of the pitch stabilized shafting for example,a torque motor,type J110LYX01,is chosen as actuator.The motor。

专业英语考试词汇翻译

专业英语考试词汇翻译

可以确保90%以上正确,个别差错敬请谅解1. Feedback ; 反馈2. Error ;误差3. Open-Loop;开环4. Automatic Control System;自动控制系统5. Sensor;传感器6. Actuator;执行器7. Valve;阀8. Control Strategy;控制策略9. Positive feedback;正反馈10. Set point;设定值11. Inertia;惯性12. Centrifugal;离心的13. steam engine;蒸汽机14. mathematical model ;数学模型15. Routh Stability Criteria ;劳斯稳定性判据16. linear system ;线性系统17. amplifier ;放大器18. response ;响应19. artificial;模拟的,人造的20. industrial robot;工业机器人21. Maximum principle;最大值原理22. Dynamic;动态的23. Neural network control;神经网络控制24. Fuzzy control;模糊控制25. Predictive control;预测控制26. Programmable Logic Controller;可编程序逻辑控制器(PLC)27. Distributed Control System;分布式控制系统28. Fieldbus ControlSystem;现场总线控制系统29. Supervisory ControlSoftware;监控软件30. Configuration Software;组态软件31. object;目标32. V ariable Structurecontrol ;可变结构控制33. Sliding-mode control;滑模控制34. Proportional ;比例35 Integral;积分36. Derivative;微分37. offset;补偿38. Avoid overshoot;避免超调39. performance;性能40. logic;逻辑41. function;功能42. Triangle function;三角函数43. Trapezoid function;梯形函数44. robots;机器人45. Instruction ;指令46. Relay;继电器47. Processor;处理器48. Wiring;布线49. mechanisms;机械装置50. nut;螺母51. bolt;螺栓52. concept ;概念,观念53. weld ;焊接54. spray ;喷雾器55. communicate;通讯,传递56. orbit;轨道57. install ;安装58. metal ;金属59. plastics;塑料60. rubber;橡胶61. electronics;电子62. packaging;封装63. complexity;复杂64. millimeter;毫米65. asynchronous;异步的66. accurate;精确67. debug;调试68. slot;槽口69. armature;电枢70. iron core;铁芯71. eddy;涡流72. flux;磁通量73. conductor;导体74. commutator;换向器75. brush;电刷76. stator;定子77. rotor;转子78. bearing;轴承79. aluminium铝80. slip ring;滑环81. copper;铜82. torque;转矩83. opposite;相反84. wound;绕组,缠绕85. squirrel cage rotor;鼠笼转子86. insulate;隔离87. embedded;嵌入式88. cylindrical;圆柱体89. salient;凸出的90. magnetic field;磁场91.efficiency;效率92. permanent magnet;永磁铁93. gear;齿轮94. twisted ;缠绕95. characteristic ;特性96. proportional to ;与。

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写

工业控制常用英语单词及缩写工业控制常用英语单词及缩写转帖]工业控制常用英语单词及缩写集散控制系统————Distributed Distributed Distributed Control Control Control System System (DCS ) 现场总线控制系统————Fieldbus Fieldbus Fieldbus Control Control Control System System (FCS ) 监控及数据采集系统————Supervisory Supervisory Supervisory Control Control Control And And And Data Data Data Acqusition Acqusition (SCADA ) 可编程序控制器————Programmable Programmable Programmable Logic Logic Logic Controller Controller (PLC ) 可编程计算机控制器————Programmable Programmable Programmable Computer Computer Computer Controller Controller (PCC ) 工厂自动化————Factory Factory Factory Automation Automation (FA )过程自动化————Process Process Process Automation Automation (PA )办公自动化————Office Office Office Automation Automation (OA )管理信息系统————Management Management Management Information Information Information System System (MIS ) 楼宇自动化系统————Building Building Building Automation Automation Automation System System 人机界面————Human Human Human Machine Machine Machine Interface Interface (HMI )工控机————Industrial Industrial Industrial Personal Personal Personal Computer Computer (IPC )单片机————Single Single Single Chip Chip Chip Microprocessor Microprocessor 计算机数控(CNC )远程测控终端————Remote Remote Remote Terminal Terminal Terminal Unit Unit (RTU )上位机————Supervisory Supervisory Supervisory Computer Computer 图形用户界面(GUI )人工智能————Artificial Artificial Artificial Intelligent Intelligent (AI )智能终端————Intelligent Intelligent Intelligent Terminal Terminal 模糊控制————Fuzzy Fuzzy Fuzzy Control Control 组态————Configuration Configuration 仿真————Simulation Simulation 冗余————Redundant Redundant 客户/服务器————Client/Server Client/Server 网络————Network Network 设备网————DeviceNET DeviceNET 基金会现场总线————foundation foundation foundation fieldbus fieldbus (FF )现场总线————Fieldbus Fieldbus 以太网————Ethernet Ethernet 变频器————Inverter Inverter 脉宽调制————Pulse Pulse Pulse Width Width Width Modulation Modulation (PWM )伺服驱动器————Servo Servo Servo Driver Driver 软起动器————Soft Soft Soft Starter Starter 步进————Step-by-Step Step-by-Step 控制阀————Control Control Control Valver Valver 流量计————Flowmeter Flowmeter 仪表————Instrument Instrument 记录仪—— Recorder 传感器————Sensor Sensor 智能传感器————Smart Smart Smart Sensor Sensor 智能变送器————Smart Smart Smart Transducer Transducer 虚拟仪器虚拟仪器 ————Virtual Virtual Virtual Instrument Instrument 主站/从站————Master Master Master Station/Slave Station/Slave Station/Slave station station 操作员站/工程师站/管理员站————Operator Operator Operator Station/Engineer Station/Engineer Station/Engineer Station/Manager Station/Manager Station/Manager Station Station 。

基于模糊控制的移动机器人的外文翻译

基于模糊控制的移动机器人的外文翻译

1998 年的IEEE 国际会议上机器人及自动化Leuven ,比利时1998年5 月一种实用的办法-- 带拖车移动机器人的反馈控制F. Lamiraux and J.P. Laumond拉斯,法国国家科学研究中心法国图卢兹{florent ,jpl}@laas.fr摘要本文提出了一种有效的方法来控制带拖车移动机器人。

轨迹跟踪和路径跟踪这两个问题已经得到解决。

接下来的问题是解决迭代轨迹跟踪。

并且把扰动考虑到路径跟踪内。

移动机器人Hilare 的实验结果说明了我们方法的有效性。

1 引言过去的8 年,人们对非完整系统的运动控制做了大量的工作。

布洛基[2]提出了关于这种系统的一项具有挑战性的任务,配置的稳定性,证明它不能由一个简单的连续状态反馈。

作为替代办法随时间变化的反馈[10,4,11,13,14,15,18]或间断反馈[3]也随之被提出。

从[5]移动机器人的运动控制的一项调查可以看到。

另一方面,非完整系统的轨迹跟踪不符合布洛基的条件,从而使其这一个任务更为轻松。

许多著作也已经给出了移动机器人的特殊情况的这一问题[6,7,8,12,16]。

所有这些控制律都是工作在相同的假设下:系统的演变是完全已知和没有扰动使得系统偏离其轨迹。

很少有文章在处理移动机器人的控制时考虑到扰动的运动学方程。

但是[1]提出了一种有关稳定汽车的配置,有效的矢量控制扰动领域,并且建立在迭代轨迹跟踪的基础上。

存在的障碍使得达到规定路径的任务变得更加困难,因此在执行任务的任何动作之前都需要有一个路径规划。

在本文中,我们在迭代轨迹跟踪的基础上提出了一个健全的方案,使得带拖车的机器人按照规定路径行走。

该轨迹计算由规划的议案所描述[17],从而避免已经提交了输入的障碍物。

在下面,我们将不会给出任何有关规划的发展,我们提及这个参考的细节。

而且,我们认为,在某一特定轨迹的执行屈服于扰动。

我们选择的这些扰动模型是非常简单,非常一般。

它存在一些共同点⑴。

自动控制专业英语

自动控制专业英语
电路theorycircuit模拟电子技术analogelectronicstechnology数字电子技术digitalelectronicstechnology电力电子技术powerelectronicstechnology电磁场electromagneticfield电工测量electricmeasurement电机学theoryelectricmotors自动控制理论automaticcontroltheory现代控制理论moderncontroltheory微机原理principlemicrocomputer计算机控制技术computercontroltechniques自动调节装置automaticregulators过程控制系统processcontrolsystem电气自动控制electricalautomaticcontrol电力拖动基础fundamentalelectricdrive交流调速系统acmotorspeedregulatingsystem电力拖动自动控制系统automaticcontrolsystemelectricdrive单片机应用applicationsinglechipcomputer可编程序控制器系统programmablelogicalcontrollersystem供电技术powersupplyingtechnology计算机仿真computersimulation楼宇自动化buildingautomation线性系统linearsystem自适应控制adaptivecontrolsystem系统辨识systemidentification模糊控制与神经元网络fuzzycontrolneuralnetwork电气cadelectricalcad计算机多媒体与网络技术multimedianetworktechniqueunit3翻译标准是评价译文质量的尺度综合起来有以下四点

文献翻译-单容水箱液位模糊控制系统设计

文献翻译-单容水箱液位模糊控制系统设计

英文翻译系别自动化系专业自动化班级学生姓名学号指导教师Single tank water level fuzzy control system designIn industrial process control, the amount usually charged with the following four kinds, namely, level, pressure, flow and temperature. Where in the liquid is not only common in industrial process parameters, and for direct observation, easy to measure. Level control is a common industrial process control, impact on production can not be ignored. For level control system, although the conventional PID control parameters fixed, it is difficult to ensure the control parameters of the system to adapt to changes and changes in working conditions, it is difficult to get the desired effect; fuzzy control parameters have not sensitive and robust and strong features . Single-tank liquid level control system with linearity, hysteresis, coupling characteristics, this paper for the study of the level system, the application of fuzzy control theory to control research.Single tank water system structureTank level control system consists of a single tank water system ontology and AD / DA data acquisition card and other components, allows the computer to set the level value by controlling the regulator, at the entrance of a regulator valve to control and maintain the water level does not change; valve at the outlet of the receiver D-A converter output signal directly controlled tank. Valves on the inlet and discharge control rely on typical self-balancing system.Fuzzy ControlFuzzy logic control referred to fuzzy control, based on fuzzy set theory, fuzzy linguistic variables and fuzzy logic of a computer-based digital control technology. In 1965, the United States LAZadeh founded the fuzzy set theory; 1973 he gives definitions and theorems related to fuzzy logic control. In 1974, the British EHMamdani first statement in accordance with the composition of fuzzy control fuzzy controller, and apply it to the control of boilers and steam engines, get the lab's success. This pioneering work marked the birth of fuzzy control theory.Birth control is fuzzy and the development of social science and technology and the need inseparable. With the rapid development of science and technology in all areas of the automatic control system to control the precision required response speed, system stability and the ability to adapt to increasingly high, the studied systems are increasingly complex. However, due to a number of reasons, such as the charged object or process nonlinear, time-varying, multi-parameter strong coupling between the larger random noise, the intricate mechanism of the process, a variety of uncertainties and imperfect means of in situ measurements, difficult to establish the mathematical model of controlled object. While conventional adaptive control techniques can solve some problems, but the scope is limited. Good manual control for complex effects that are difficult to establish the mathematical model of the controlled object, using the traditional control methods, including methods of modern control theory based control is often better than a practical experience of operating personnel carried out. Because one of the important features of the human brain is the ability to identify and fuzzy things, judgment, fuzzy means can often seem imprecise achieve precise purpose.Contains five main parts, namely: the definition of variables , fuzzy , knowledge , logic and anti- blur . Define a variable that is the situation and determine the procedures to be observed considering control actions, such as the general control problem , the input variables and output error E output error rate of change EC, and fuzzy control variables as inputs U will control the next state . Wherein E, EC, U collectively referred to as fuzzy variables . Fuzzy input value to an appropriate ratio value domain conversion , using colloquial process variables to describe the physical quantity measured , to find the value of the membership degree according to the relative value of the appropriate language , the colloquial variable called fuzzy subset . Including database and rule base knowledge of two parts, one related to the definition of fuzzy database provides data processing ; while the rule base is controlled by agroup of language rules describe the control objectives and strategies. Imitating fuzzy logic judgment under the concept of human beings, the use of fuzzy logic and fuzzy inference inference method to obtain fuzzy control signals. This part is the essence of the fuzzy controller . Defuzzification : Convert fuzzy inference value obtained for the explicit control signals as input value system.Fuzzy controller designFuzzy controller input and error rate of change of the error, the error e = r-y, the rate of change of error ec = de / dt, where, r and y are respectively the level setpoint and measured value. The exact value of the error and error rate of change in the amount of blur blur becomes E and EC, the further you can get E and EC fuzzy language collections. E and EC by the vague language subsets and fuzzy relationship matrix, decision-making based on fuzzy inference rules synthesis, controlled amount of U, the U de vague, converted to the exact amount u, the D-A converter control valve actuators generate action.Fuzzy controller, the input signal quantization error e is 8 level (NB, NM, NS, NO, O, PS, PM, PB); the rate of change of error ec and the output variable u is 7 quantization level (NB , NM, NS, O, PS, PM, PB); error e, and the error rate of change of the output variable u ec domain of [-6,6]. The error e, error change rate ec and output variables membership functions chosen triangular membership functions. Fuzzy control rules are based on fuzzy reasoning, in the design of fuzzy control rules, you should consider the completeness of the control rules, cross and consistency, should ensure that for any given input has a corresponding control rules work. If the error is negative big change, but also for the negative rate of change of the error is large, it is necessary to adjust the control amount being small, in order to ensure the expected systematic development. On the basis of summing up experiences and basic professional knowledge, get control rules (see Table 1), designed a total of 49 (7 × 7) of the Rules.ece NB NM NS O PS PM PB NB PS PS PS PS PM PB PB NM NS PS PS PS PM PM PB NS NM NS O O PS PM PM O NB NM NS O PS PM PM PS NB NM NS O O PS PM PM NB NB NM NS NS PS PS PB NB NB NM NS NS NS NSCommonly used methods of reasoning fuzzy control system CRI reasoning table method, CRI reasoning analytical method, Mamdani inference method and the consequent direct function method. This selection is a direct Mamdani inference method, first find the fuzzy relation R, then the amount calculated according to the input control and clarity. This selection of 49 (7 × 7) of control rules, the fuzzy rule table of conditional statements can be described, for example, if e = NB and ec = NB then u = PS. Corresponding fuzzy relationship: R1 = A1 × B1 × C1, where, A1 is a fuzzy set of E, B1 is a fuzzy set of EC, C1 is a fuzzy set of U; fuzzy matrix R can be integrated according to R.Fuzzy control, simplify the complexity of system design, especially for nonlinear, time-varying lag model does not fully control systems; does not depend on accurate mathematical model of the controlled object; take advantage of the system control law to describe the relationship between variables; no value but with fuzzy variables to describe the language type system, the fuzzy controller does not have to establish a complete mathematical model of the controlled object; fuzzy controller is an easy to control and master the ideal nonlinear controller has better robustness, flexibility, robustness and better fault tolerance.单容水箱液位模糊控制系统设计在工业过程控制中,被控量通常有以下4种,即液位、压力、流量和温度。

控制类毕业设计中英文翻译资料--模煳逻辑

控制类毕业设计中英文翻译资料--模煳逻辑

模糊逻辑-分析和控制复杂系统的新途径--托马斯索沃尔欢迎进入模糊逻辑的精彩世界,你可以用新科学有力地实现一些东西。

在你的技术与管理技能的领域中,增加了基于模糊逻辑分析和控制的能力,你就可以实现除此之外的其他人与物无法做到的事情。

以下就是模糊逻辑的基础知识:随着系统复杂性的增加,对系统精确的阐述变得越来越难,最终变得无法阐述。

于是,终于到达了一个只有靠人类发明的模糊逻辑才能解决的复杂程度。

模糊逻辑用于系统的分析和控制设计,因为它可以缩短工程发展的时间;有时,在一些高度复杂的系统中,这是唯一可以解决问题的方法。

虽然,我们经常认为控制是和控制一个物理系统有关系的,但是,扎德博士最初设计这个概念的时候本意并非如此。

实际上,模糊逻辑适用于生物,经济,市场营销和其他大而复杂的系统。

模糊这个词最早出现在扎德博士于1962年在一个工程学权威刊物上发表论文中。

1963年,扎德博士成为加州大学伯克利分校电气工程学院院长。

那就意味着达到了电气工程领域的顶尖。

扎德博士认为模糊控制是那时的热点,不是以后的热点,更不应该受到轻视。

目前已经有了成千上万基于模糊逻辑的产品,从聚焦照相机到可以根据衣服脏度自我控制洗涤方式的洗衣机等。

如果你在美国,你会很容易找到基于模糊的系统。

想一想,当通用汽车告诉大众,她生产的汽车其反刹车是根据模糊逻辑而造成的时候,那会对其销售造成多么大的影响。

以下的章节包括:1)介绍处于商业等各个领域的人们他们如果从模糊逻辑演变而来的利益中得到好处,以及帮助大家理解模糊逻辑是怎么工作的。

2)提供模糊逻辑是怎么工作的一种指导,只有人们知道了这一点,才能运用它用于做一些对自己有利的事情。

这本书就是一个指导,因此尽管你不是电气领域的专家,你也可以运用模糊逻辑。

需要指出的是有一些针对模糊逻辑的相反观点和批评。

一个人应该学会观察反面的各个观点,从而得出自己的观点。

我个人认为,身为被表扬以及因写关于模糊逻辑论文而受到赞赏的作者,他会认为,在这个领域中的这种批评有点过激。

自动控制原理专业英语词汇

自动控制原理专业英语词汇

自动原理控制专业英语词汇线性反馈系统的稳定性辅助多项式:Auxiliary polynomial相对稳定性:Relative stabilityRouth-Hurwitz判据:Routh-Hurwitz criterion稳定性:Stability稳定系统:Stable system根轨迹法出射角:Angle of departure渐近线:Asymptote渐近中心:Asymptote centroid分离点:Breakaway point轨迹:Locus根轨迹的条数:Number of separate loci参数设计:Parameter design根轨迹:Root locus根轨迹法:Root locus method实轴上的根轨迹段:Root locus segments on the real axis根灵敏度:Root sensitivity频率响应方法带宽:BandwidthBode 图:Bode plot截止频率:Break frequency转折频率:Corner frequency分贝(db):Decibel (DB)Fourier变换:Fourier transform频率响应:Frequency response对数幅值:Logarithmic magnitude对数坐标图:Logarithmic plot频率响应的最大值:Maximum value of the frequency最小相位:Minimum phase固有频率:Natural frequency非最小相位:Nonminimum phase极坐标图:Polar plot谐振频率:Resonant frequency频率特性函数:Transfer function in the frequency domain频域稳定性Cauchy定理:Cauchy thorem闭环频率响应:Closed-loop frequency response保角映射:Conformal mapping围线映射:Conrour map增益裕度:Gain marginNichols图:Nichols chartNyquist 稳定性判据:Nyquist stability criterion相角裕度:Phase margin幅角原理:Principle of the argument时延:Time delay反馈控制系统设计串联校正网络:Cascade compensation network校正:Compensation数字控制系统幅值量化误差:Amplitude quantization error数字计算机校正网络:Digital computer compensator数字控制系统:Digital control system采样数据:Sampled data数据采样系统:Sampled-data system式样周期:Sampling period数据采样系统的稳定性:Stability of a sampled-data system z平面:z-planez变换:z-transforma. c .balance indicator,交流平衡指示器a. c. bridge,交流电桥a. c. current calibrator,交流电流校准器a. c. current distortion,交流电流失真a. c. induced polarization instrument,交流激电仪a. c. potentiometer,交流电位差计a. c. resistance box,交流电阻箱a. c. standard resistor,交流标准电阻器a. c. voltage distortion,交流电压校准器a. c. voltage distortion,交流电压失真Abbe comparator,阿贝比长仪aberration,象差ability of anti prereduced component,抗先还原物质能力ablative thickness transducer [sensor],烧蚀厚度传感器abrasion testing machine,磨损试验机absolute calibration,绝对法校准absolute coil,独立线圈absolute error,绝对误差(absolute)error of measurement,测量的(绝对)误差absolute gravimeter,绝对重力仪absolute gravity survey,绝对重力测量absolute humidity,绝对湿度absolute method,绝对法absolute moisture of the soil,土壤(绝对)湿度absolute pressure,绝对压力absolute(pressure transducer,绝对压力表absolute pressure transducer[sensor],绝对压力传感器absolute read-out,单独读出absolute resolution,绝对分辨率absolute salinity,绝对盐度absolute stability,绝对稳定性absolute stability of a linear system,线性系统的绝对稳定性absolute static pressure of the fluid,流体绝对静压absolute temperature scale,绝对温标absorbance,吸光度absorbed current image,吸收电流象absorptance,吸收比absorptiometer,吸收光度计absorption cell,吸收池absorption coefficient,吸收系数absorption correction,吸收修正absorption edges,吸收边absorption factor,吸收系数absorption hygrometer,吸收温度表absorption spectrum,吸收光谱absorption X-ray spectrometry,吸收X射线谱法absorptivity,吸收率absorptivity of an absorbing,吸引材料的吸收率abstract system,抽象系统abundance sensityivity,丰度灵敏度AC-ACLVDT displacement transducer,交流差动变压器式位移传感器accelerated test,加速试验accelerating voltage,加速电压acceleration,加速度acceleration error coefficient,加速度误差系数acceleration of gravity,重力加速度acceleration simulator,加速度仿真器acceleration transducer[sensor],加速度传感器accelerometer,加速度计acceptance of the mass filter,滤质器的接收容限acceptance test,验[交]收检验access,存取 access time,存取时间accessibility,可及性accessories of testing machine,试验机附件accessory(for a measuring instrument),(测量仪表的)附件accessory hardware,附属硬件accessory of limited interchangeability,有限互换附件accumulated error,积累误差accumulated time difference,累积时差accumulative raingauge,累积雨量器accumulator,累加器accuracy,精[准]确度accuracy class,精[准]确度等级accuracy limit factor(of a protective current transformer), (保护用电流互感器的)精确度极限因数accuracy of measurement,测量精[准]确度accuracy of the wavelength,波长精确度accuracy rating,精确度限acetylene(pressure)gauge,乙炔压力表acetylene regulator,乙炔减压器acoustic amplitude logger,声波幅度测井仪acoustic beacon,水声信标acoustic current meter,声学海流计acoustic element,声学元件acoustic emission,声发射acoustic emission amplitude,声发射振幅acoustic emission analysis system,声发射分析系统acoustic emission detection system,声发射检测系统acoustic emission detector,声发射检测仪acoustic emission energy,声发射能量acoustic emission event,声发射事件acoustic emission preamplifier,声发射前置放大器acoustic emission pulser,声发射脉冲发生器acoustic emission rate,声发射率acoustic emission signal processor[conditioner],声发射信号处理器acoustic emission rate,声发射信号acoustic emission source location and analysis system,声发射源定位及分析系统acoustic emission source location system,声发射源定位系统acoustic emission source,声发射源acoustic emission spectrum,声发射频谱acoustic emission technique,声发射技术acoustic emission transducer[sensor],声发射换能器acoustic fatigue,声疲劳acoustic impedance,声阻抗acoustic logging instrument,声波测井仪acoustic malfunction,声失效acoustic matching layer,声匹配层acoustic(quantity)transducer[sensor],声(学量)传感器acoustic ratio,声比acoustic releaser,声释放器acoustic resistance,声阻acoustic thermometer,声学温度计;声波温度表acoustic tide gauge,回声验潮仪acoustic transponder,声应答器acoustical frequency electric,声频大地电场仪acoustical hologram,声全息图acoustical holography,声全息acoustical holography by electron-beam scanning,电子束扫描声全息acoustical holography by laser scanning,激光束扫描声全息acoustical holography by mechanical scanning,机械扫查声全息acoustical imaging by Bragg diffraction,布拉格衍射声成像acoustical impedance method,声阻法acoustical lens,声透镜acoustically transparent pressure vessel,透声压力容器acquisition time,取数据时间actinometer,光能计;直接日射强度表;日射表(active)energy meter,(有功)电度表active gauge length,有效基长active gauge width,有效基宽active metal indicated electrode,活性金属指示电极active remote sensing,主动遥感active transducer[sensor],有源传感器activity,活度 activity coefficient,活度系数actual material calibration,实物校准actual time of observation,实际观测时间actual transformation ratio of voltage transformer,电压互感器的实际变化actral transformation ratio of current transformer,电流互感器的实际变化actual value,实际值actual voltage ratio,实际电压比actuator,执行机构;驱动器actuator bellows,执行机构波纹管actuator load,执行机构负载actuator power unit,执行机构动力部件actuator sensor interface(ASI),执行器传感器接口actuator shaft,执行机构输出轴actuator spring,执行机构弹簧actuator stem,执行机构输出杆actuator stem force,执行机构刚度actuator travel characteristic,执行机构行程特性adaptation layer,适应层adaptive control,(自)适应控制adaptive control system,适应控制系统adaptive controller,适应控制器adaptive prediction,适应预报adaptive telemetering system,适应遥测系统adder,加法器addition method,叠加法additional correction,补充修正additivity of mass spectra,质谱的可迭加性address,地址 adiabatic calorimeter,绝热式热量计adjust buffer total ion strength,总离子强度调节缓冲剂adjustable cistern barometer,动槽水银气压表adjustable relative humidity range,相对湿度可调范围adjustable temperature range,温度可调范围adjusted retention time,调整保留时间adjusted retention volume,调整保留体积adjuster,调整机构;调节器adjustment,调整adjustment bellows,调节波纹管adjustment device,调整装置adjusting pin,校正针adsorbent,吸附剂adsorption chromatography,吸附色谱法aerial camera,航空照相机aerial remote sensing,航空遥感aerial surveying camera,航摄仪aerodynamic balance,空气动力学天平aerodynamic noise,气体动力噪声aerograph,高空气象计aerogravity survey,航空重力测量aerometeorograph,高空气象计aerosol,县浮微料;气溶胶aging of column,柱老化agitator,搅拌器agricultural analyzer,农用分析仪air-borne gravimeter,航空重力仪air capacitor,空气电容器air consumption,耗气量air damper,空气阻尼器air-deployable buoy,空投式极地浮标air-drop automatic station,空投自动气象站air duct,风道air gun,空气枪air inlet,进风口air lock,气锁阀air-lock device,锁气装置air outlet,回风口air pressrue balance,空气压力天平air pressure test,空气压力试验air sleeve,风(向)袋air temperature,气温air-tight instrument,气密式仪器仪表air to close,气关air to open,气开airborne electromagnetic system;AEM system,航空电磁系统airborne flux-gate magnetometer,航空磁通门磁力仪airborne gamma radiometer,航空伽玛辐射仪airborne gamma spectrometer,航空伽玛能谱仪airborne infrared spectroradiometer,机载红外光谱辐射计airborne optical pumping magnetometer,航空光泵磁力仪airborne proton magnetometer,航空甚低频电磁系统airborne XBT,机载投弃式深温计airgun controller,气控制器airmeter,气流表alarm summery panel,报警汇总画面alarm unit,报警单元albedograph,反射计alcohol thermometer,酒精温度表algorithm,算法 algorithmic language,算法语言alidade,照准仪alignment instrument,准线仪alkali flame ionization detector(AFID),碱焰离子化检测器alkaline error,碱误差alkalinity of seawater,海水碱度all-sky camera,全天空照相机all-weather wind vane and anemometer,全天候风向风速计allocation problem,配置问题;分配问题allowable load impedance,允许的负载阻抗allowable pressure differential,允许压差allowable unbalance,许用不平衡量alpha spectrometer,α粒子能谱仪alternating[exchange]load,交变负荷alternating-current linear variable differential transformer(AC-ACLVDT), 交流极谱仪alternating temperature humidity test chamber,交变湿热试验箱altimeter,高度计altitude angle,高度角altitude meter,测高仪ambient humidity range,环境湿度范围ambient pressure,环境压力ambient pressure error,环境压力误差ambient temperature,环境ambient temperature range,环境温度范围ambient vibration,环境振动ambiguity error,模糊误差ammeter,电流表ammonia(pressure)gauge,氨压力表amount of precipitation,雨量amount of unbalance,不平衡量amount of unbalance indicatior,不平衡量指示器ampere-hour meter,安时计amplitude,幅值amplitude detector module,振幅检测组件amplitude error,振幅误差amplitude modulation(AM),幅度调制;调幅amplitude-phase error,幅相误差amplitude ratio-phase difference instrument,振幅比—相位差仪amplitude response,幅值响应analog computer,模拟计算机analog control,模拟控制analog data,模拟数据analog deep-level seismograhp,模拟深层地震仪analog input,模拟输入analog magnetic tape record type strong-motion instrument,模拟磁带记录强震仪analog model,模拟模型analog output,模拟输出analog seismograph tape recorder,模拟磁带地震记录仪analog simulation,模拟仿真analog stereopotter,模拟型立体测图仪analog superconduction magnetometer,模拟式超导磁力仪analog system,模拟系统analog telemetering system,模拟遥测系统analog-to-digital conversion accuracy,模-数转换精确度analog-to-digital conversion rate,模-数转换速度analog transducer[sensor],模拟传感器analogue computer,模拟计算单元analogue date,模拟数据analogue measuring instrument,模拟式测量仪器仪表analogue representation of a physical quantity,物理量的模拟表示analogue signal,模拟试验analogue-digital converter;A/D converter,模-数转换器;A/D转换器analogue-to-digital conversion,模/数转[变]换analysis of simulation experiment,仿真实验分析analytical balance,分析天平analytical electron microscope,分析型电子显微镜analytical gap,分析间隙analytical instrument,分析仪器analytical line,分析线analytical plotter,解析测图仪analyzer tube,分析管anechoic chamber,消声室;电波暗室anechoic tank,消声水池anemograph,风速计anemometer,风速表anemometer meast,测风杆anemometer tower,测风塔aneroid barograph,空盒气压计aneroid barometer,空盒气压表;空盒气压计aneroidograph,空盒气压计angle,角度angle beam technique,斜角法angle beam testing,斜角法angle form,角型angle of attach,冲角angle of field of view,视场角angle of incidence,入射角angle of refraction,折射角angle of spread,指向角;半扩散角angle of view of telescope,望远镜视场角angle of X-ray projiction,X射线辐射圆锥角angle probe,斜探头angle resolved electron spectroscopy(ARES),角分辨电子谱法angle strain,角应变angle transducer[sensor],角度传感器anglg-attack transducer[sensor],迎角传感器angle valve,角形阀angular acceleration,角加速度angular acceleration transducer[sensor],角加速度传感器angular displacement,角加速度传感器angular displacement,角位移angular displacement grationg,角位移光栅angular encoder,角编码器angular sensitivity,角灵敏度angular velocity transducer[sensor],角速度传感器annular coil clearance,环形线圈间隙annular space,环形间隙annunciator,信号源anode,阳极answering,应答anti-cavitation valve,防空化阀anti-contamination device,防污染装置anti-coupling bi-frequency induced polarization instrument,抗耦双频激电仪anti-magnetized varistor,消磁电压敏电阻器antiresonance,反共振antiresonance frequency,反共振频率anti-stockes line,反斯托克线aperiodic dampong,非周期阻尼;过阻尼aperiodic vibration,非周期振动aperture,光阑aperture of pressure difference,压差光阑aperture photographic method,针孔摄影法aperture stop,孔径光栏aperture time,空隙时间apparatus for measuring d.c.magnetic characteristic with ballistic galvanometer, 冲击法直流磁特性测量装置apparent temperature,表观温度appearance potentical,出现电位appearance potential spectrometer,出现电热谱仪appearance potential spectrometer(APS),出现电热谱法application layer(AL),应用层application layer protocol specification,应用层协议规范application layer service definition,应用室服务定义application software,应用软件approval,批准approximate absolute temperature scale,近似绝对温标aqueous vapour,水汽arc suppressing varstor,消弧电压敏电阻器arctic buoy,极地浮标area effect,面积影响area location,区域定位area of cross section of the main air flow,主送风方向横截面积argon-ion gun,氩离子枪annular chamber,环室argon ionization detector,氩离子化检测器arithmetic logic unit(ALU),算术逻辑运算单元arithmetic mean,算术平均值arithmetic weighted mean,算术加权平均值arithmetical mean deviation of the(foughness)profile,(粗糙度)轮廓的算术平均偏差arm error,不等臂误差armature,动铁芯array,阵,阵列array configuration,阵排列arrester varistor,防雷用电压敏电阻器articulated robot,关节型机器人artificial defect,人工缺陷artificial environment,人工环境artificial field method instrument,人工电场法仪器artificial intelligence,人工智能artificial seawater,人工海水ash fusion point determination meter,异步通信接口适配器asynchronous input,异步输入asynchronous transmission,异步传输atmidometer,蒸发仪,蒸发表atmometer,蒸发仪;蒸发表atmoradiograph,天电强度计atmosphere,气氛atmospheric counter radiation,天气向下辐射atmospheric electricity,大气电atmospheric opacity,大气不透明度atmospheric pressure,气压atmospheric pressure altimeter,气压高度计atmospheric pressure ionization(API),大气压电离atmospherics,天电;远程雷电atom force microscope,原子力显微镜atomic absorption spectrometry,原子吸收光谱法atomic fluorescence spectrophotometer,原子荧光光度计atomic fluorescence spectrometry,原子荧光光谱法atomic mass unit,原子质量单位atomic number correction,原子序数修正atomin spectrum,原子光谱atomic-absorption spectrophotometer,原子吸收分光光度计atomization,原子化atomizer,原子化器attenuation,衰减attenuation coefficient,衰减系数attenuation length,衰减长度attenuator,衰减器attitude,姿态attitude transducer[sensor],姿态传感器audio monitor,监听器audio-frequency spectrometer,声频频谱仪audit,审核Auger electron energy spectrometer(AEES),俄歇电子能谱仪Auger electron image,俄歇电子象Auger electron spectrometer,俄歇电子能谱仪Auger electron spectroscopy(AES),俄歇电子能谱法aurora,极光auto-compensation logging instrument,电子自动测井仪auto-compound current transformer,自耦式混合绕组电流互感器auto-polarization compensator,自动极化补偿器autocorrelation function,自相关函数automatic a.c.,d.c.B-H curve tracer,交、直流磁特性自动记录装置automatic balancing machine,自动平衡机automatic control,自动控制automatic control souce of vacuum,真空自动控制电源automatic control system,自动控制系统automatic data processing,自动数据处理automatic exposure device,自动曝光装置automatic feeder for brine,盐水溶液自动补给器automatic focus and stigmator,自动调焦和消象散装置automatic level,自动安平水准仪automatic levelling compensator,视轴安平补偿器automatic/manual station;A/M station,自动/手动操作器automatic programming,自动程度设计automatic radio wind wane and anemometer,无线电自动风向风速仪automatic railway weigh bridge,电子轨道衡automatic scanning,自动扫查automatic spring pipette,自动弹簧式吸液管automatic testing machine,自动试验机automatic titrator,自动滴定仪automatic tracking,自动跟踪automatic vertical index,竖直度盘指标补偿器automatic weather station,自动气象站automation,自动化automaton,自动机auxiliary attachment,辅件auxiliary controller bus(ACB),辅助控制器总线auxiliary crate controller,辅助机箱控制器auxiliary devices,辅助装置auxiliary equipment(of potentiometer),(电位差计的)辅助设备auxiliary gas,辅助气体auxiliary output signal,辅助输出信号auxiliary storage,辅助存储器auxiliary terminal,辅助端auxiliary type gravimeter,助动型重力仪availability,可用性available time,可用时间average,平均值average availability,平均可用度average nominal characteristic,平均名义特性average sound level,平均声级average value of contarmination,污染的平均值average wind speed,平均风速axial clearance,轴向间隙axial current flow method,轴向通电法axial load,轴向载荷axial sensitivity,轴向灵敏度axial vibration,轴向振动axis of rotation,摆轴;旋转轴axix of strain gauge,应变计[片]轴线B-scope,B型显示back flushing,反吹background,后台,背景,本底background current,基流background mass spectrum,本底质谱background noise,背景噪声background processing,后台处理background program,后台程度Backman thermometer,贝克曼温度计backscattered electron image,背散射电子象backward channel,反向信道baffle wall,隔板balance,天平balance for measuring amount of precipitation,水量秤balance output,对称输出balance quality of rotor,转子平衡精度balance wieght,平衡块balanced plug,平衡型阀芯balancing,平衡balancing machine sensitivity,平衡机灵敏度balancing machine,平衡机balancing speed,平衡转速ball pneumatic dead wieght tester,浮球压力计ball screw assembly,滚珠丝杠副ball valve,球阀ballistic galvanometer,冲击栓流计band,频带bandwidth,带宽band width of video amplifier,视频放大器频宽bar primary bushing type current transformer,棒形电流互感器barograph,气压计barometer cistern,气压表水银槽barometer,气压表barometric correction,气压表器差修正barometrograph,空盒气压计barothermograph,气压温度计barrel distortion,桶形畸变;负畸变base,基底base line,基线base peak,基峰base unit(of measurement),基本(测量)单位baseband LAM,基带局域网baseline drift,基线漂移baseline noise,基线噪声baseline potential,空白电位baseline value,空白值basic NMR frequency,基本核磁共振频率basic standard,基础标准batch control,批量控制batch control station,批量控制站batch inlet,分批进样batch of strain gauge,应变计[片]批batch processing,成批处理batch processing simulation,批处理仿真Baud,波特beam,横梁;声速beam deflector,电子束偏转器beam path distance,声程beam ratio,声束比beam spot diameter,束斑直径beam-deflection ultrasonic flowmeter,声速偏转式超声流量计beam-loading thermobalance,水平式热天平bearing,轴承;刀承bearing axis,轴承中心线bdaring support,支承架beat frequency oscillator,拍频振荡器beat method(of measurement),差拍(测量)法Beaufort scale,蒲福风级Beckman differential thermometer,贝克曼温度计bed,机座Beer' law,比尔定律bell manometer,钟罩压力计bell prover,钟罩校准器bellows,波纹管bellows(pressure)gauge,波纹管压力表bellows seal bonnet,波纹管密封型上阀盖bench mark,水准点bending strength,弯曲强度bending vibration,弯曲振动bent stem earth thermometer,曲管地温表Besson nephoscope,贝森测云器betatron,电子回旋加速器;电子感应加速器bezel ring,盖环bias voltage,偏压bi-directional vane,双向风向标;双风信标bilateral current stabilizer,双向稳流器bimetallic element,双金属元件bimetallic instrument,双金属式仪表bimetallic temperature transducer[sensor],双金属温度传感器bimetallic thermometer,双金属温度计binary coded decimal(BCD),二-十进制编码binary control,二进制控制binary digital,二进制数字binary elastic scattering event,双弹性散射过程binary elastic scattering peak,双弹性散射峰binary element,二进制元binary signal,二进制信号biomedical analyzer,生物医学分析仪biochemical oxygen demand (BOD)microbial transducer[sensor],微生物BOD传感器 biochemical oxygen demand meter for seawater,海水生化需氧量测定仪biochemical quantity transducer[sensor],生化量传感器biological quantity transducer[sensor],生物量传感器biosensor,生物传感器bird receiving system,吊舱接收系统bit,比特;位bit error rate,误码率bit serial,位串行bit-serial higgway,位串行信息公路bivane,双向风向标;双风信标black box,未知框black light filter,透过紫外线的滤光片black light lamp,紫外线照射装置blackbody,黑体blackbody chamber,黑体腔blackbody furnace,黑体炉bland test,空白试验balzed grating,闪耀光栅block,块体;字块;字组;均温块block check,块检验block diagram,方块(框)图block length,字块长度block transfer,块传递blood calcium ion transducer[sensor],血钙传感器blood carbon dioxide transducer[sensor],血液二氧化碳传感器blood chloried ion transducer[sensor],血氯传感器blood electrolyte transducer[sensor],血液电解质传感器blood flow transducer[sensor],血流传感器blood gas transducer[sensor],血气传感器blood-group immune transducer[sensor],免疫血型传感器blood oxygen transducer[sensor],血氧传感器blood PH transducer[sensor],血液PH传感器blood potassium ion transducer[sensor],血钾传感器blood-pressure transducer[sensor],血压传感器blood sodium ion transducer[sensor],血钠传感器blood-volume transducer[sensor],血容量传感器blower device,鼓风装置bluff body,阻流体Bode diagram,博德图body temperature transducer,体温传感器bolometer,辐射热计;热副射仪bomb head tray,弹头托盘honded strain gauge,粘贴式应变计bonnet,上阀盖boomerang grab,自返式取样器boomerang gravity corer,自返式深海取样管booster,增强器bore(of liquid-in-glass thermometer),(玻璃温度计的)内孔borehole acoustic television logger,超声电视测井仪borehole compensated sonic logger,补偿声波测井仪borehole gravimeter,井中重力仪borehloe gravimetry,井中重力测量borehole thermometer,井温仪bottorm echo,底面反射波bottom flange,下阀盖bottom-loading thermobalance,下皿式热天平bottom surface,底面Bouguer's law,伯格定律Bourdon pressure sensor,弹簧管压力检测元件Bourdon tube,弹簧管;波登管Bourdon tube(pressure)gauge,弹簧管压力表box gauge,箱式验潮仪BP-scope,BP 型显示Bragg's equation,布拉格方程braking time,制动时间braking torque(of an integrating instrument),(积分式仪表的)制动力矩branch,分支branch cable,支线电缆breakdown voltage rating,绝缘强度breakpoint,断点breather,换气装置bremsstrahlung,韧致辐射bridge,桥接器bridge's balance range,电桥平衡范围bright field electron image,明场电子象bridge for measuring temperature,测温电桥bridge resistance,桥路电阻brightness,亮度Brinell hardness number,布氏硬度值Brinell hardnell penetrator,布氏硬度压头Brienll hardenss tester,布氏硬度计broadband LAN,定带局域网broad-band random vibration,宽带随机振动broad band spectrum,宽波段broadcast,广播BT-calibrationg installation,深温计[BT]检定装置bubble,水准泡bubble-tube,吹气管bucket thermometer,表层温度表buffer,缓冲器buffer solution,缓冲溶液buffer storage,缓冲存储器built-in galvanometer,内装式检流计built-in-weigthts,挂码bulb,温包;感温泡bulb(of filled system themometer),(压力式温度计的)温包bulb(of liquid-in-glass thermometer),(玻璃温度计的)感温泡bulb length(of liquid-in-glass thermometer),(玻璃温度计的)感温泡长度bulk type semiconductor strain gauge,体型半导体应变计bulk zinc oxide varistor,体型氧化锌电压敏电阻器bump,连续冲击bump test,连续冲击试验;颠簸试验bump testing machine,连续冲击台buoy,浮标buoy array,浮标阵buoy float,浮标体buoy motion package,浮标运动监测装置buoy station,浮标站buoyancy correction,浮力修正buoyancy level measuring device,浮力液位测量装置burden(of a instrument transformer),(仪用互感器的)负载burning method,燃烧法burst acoustic emission signal,突发传输bus,总线bus line,总线bus master,总线主设备bus mother board,总线母板bus network,总线网bus slave,总线从设备bus topology,总线拓扑bus type current transformer,母线式电流互感器bushing type current transformer,套管式流互感器busy,忙busy state,忙碌状态butterfly valve,蝶阀 by-pass,旁路by-pass injector,旁通进样器by-pass manifold,旁路接头by-pass valve,旁通阀Byram anemometer,拜拉姆风速表byte,字节byte frame,字节帧byte serial,字节串行byte-serial highway,字节串行住信处公路集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And Data Acqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface(HMI)工控机——Industrial Personal Computer(IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit(RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation(PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪—— Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——Master Station/Slave station操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station集散控制系统——Distributed Control System(DCS)现场总线控制系统——Fieldbus Control System(FCS)监控及数据采集系统——Supervisory Control And Data Acqusition(SCADA)可编程序控制器——Programmable Logic Controller(PLC)可编程计算机控制器——Programmable Computer Controller(PCC)工厂自动化——Factory Automation(FA)过程自动化——Process Automation(PA)办公自动化——Office Automation(OA)管理信息系统——Management Information System(MIS)楼宇自动化系统——Building Automation System人机界面——Human Machine Interface(HMI)工控机——Industrial Personal Computer(IPC)单片机——Single Chip Microprocessor计算机数控(CNC)远程测控终端——Remote Terminal Unit(RTU)上位机——Supervisory Computer图形用户界面(GUI)人工智能——Artificial Intelligent(AI)智能终端——Intelligent Terminal模糊控制——Fuzzy Control组态——Configuration仿真——Simulation冗余——Redundant客户/服务器——Client/Server网络——Network设备网——DeviceNET基金会现场总线——foundation fieldbus(FF)现场总线——Fieldbus以太网——Ethernet变频器——Inverter脉宽调制——Pulse Width Modulation(PWM)伺服驱动器——Servo Driver软起动器——Soft Starter步进——Step-by-Step控制阀——Control Valver流量计——Flowmeter仪表——Instrument记录仪—— Recorder传感器——Sensor智能传感器——Smart Sensor智能变送器——Smart Transducer虚拟仪器——Virtual Instrument主站/从站——Master Station/Slave station操作员站/工程师站/管理员站——Operator Station/Engineer Station/Manager Station battery light kit 电池式灯具lamp lens 灯玻璃landing weight 卸货重量letter of indemnity | | trust receipt 赔偿保证书(信托收据range indicator 距离指示器short shipment | | goods short shipped | | goods shut out | | shut-outs 退关SMT Inductors 表面贴电感器STM-N:Synchronous Transport Module level-N 同步传送模块(electric) resistor 电阻器(With) Best Regard 谨致问候3D coordinate measurement 三次元量床A high degree of light-fastness 高质量不褪色A.C. balance indicator 交流平衡指示器A.C. bridge 交流电桥A.C. current calibrator 交流电流校正器a.c. generator 交流发动机A.C.current distortion 交流电流失真A.C.powered lamp 交流供电的灯A/C adaptor 电源适配器A/D;analog to digital 模拟/数字转换aberration 光行差/橡差abnormal low-voltage arc 反差低压电弧abnormal voltage 反常电压/异常电压Abradant material 研磨材料Abrasion test 磨损试验abrasion test 耐磨损性试验abrasive action 磨损作用abrasive blast equipment 喷砂设备Abrasive blast system 喷砂清理系统ABS American Bureau of Standard 美国标准局Absolute Colorimetric 绝对色度absolute value 绝对值absolute velocity 绝对速度absolute wave meter 绝对波长表absorption tube 吸收管/吸收试验管absorption wave meter 吸收式波长计absorption wavemeter 吸收式波长计absorption wavetrap 吸收陷波器absorptive 吸收的absorptive power 吸收本领absorptivity 吸收率ac induced polarization instrument 交流激电仪ac potentiometer 交流电位差仪AC/alternating current 交流/交流电academician,association,协会ACC Automatic Centering Control 自动控制中心accelerated life test 快速寿命测试accent lighting 重点照明Acceptability Criteria 验收Acceptable life 有效使用寿命Acceptance criteria 验收标准acceptance specification 验收规范Acceptance test specification 验收测试规范worldlightingtrade Skype即时通讯工具Access panel 罩板accommodate 调节accommodation 调适accreditation 认可accreditation of testing laboratory 测试实验室的认可accumulator 储线器/补偿器accuracy 精确度/准确度accuracy control 精确控制accuracy grade 精度等级accuracy life 精确度寿命accuracy rating 精确度限acid rinsing shop-stamping warehouse 酸洗工段房-冲压库Acid-proof paint 耐酸涂料/耐酸油漆Acid-proof paint 耐酸涂料/耐酸油漆acoustic reflection shell 声反射罩ACPI:Advanced Configuration and Power Interface 高级电源配置电源接口acquisition price 收购价Across frequency 交叉频率/分频频率Acrylic fitting 压克力配件acrylic plastic glazing 丙烯酸有机玻璃ACST access time 存取时间acting area(spot) lighting 舞台前台(聚光)照明activated electrode 激活电极activated phosphor 激活荧光粉Active 主动的,有源的,有效的,运行的Active Area 可读取范围active market 买卖活跃的市场active power 有效功率active probe 有效探头active scanning time 有效扫描时间active voltage 有效电压actual life 有效寿命actual transformation ratio of a current (voltage) transformer 电流互感器的实际电流(电压)比actual transformation ratio of a current (voltage) transformer 流互感器的实际电流(电压)比adaptable automobile mode/style 适用车型KENFOR Global Lighting Sourcing Centreadaptable voltage 适用电压adaptable/suitable tube''s current 适用灯管电流adaptation 顺应adapting luminance (视觉)亮适用性adaptive control system 适应控制系统adaptive controller 适应控制器adaptive prediction 适应预报adaptive temperature 适应温度Adaptor/adapters 适配器/转换器ADC/analog to digital ... Voltage 压敏电阻器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012届电气工程与自动化专业毕业设计(外文翻译) 1 基于稳定性和电压精度协调控制的新型模糊励磁调节器

Hengxu Zhang , Chunyi wang , Ning zhang Jian Zuo , Dawei Fan , Student Members ,IEEE

摘 要:在保持比例积分微分(PID)励磁调节器优良电压调节特性的基础上,部分采取线性最优控制理论设计附加励磁调节通道,并通过一模糊控制器动态协调电压调节通道和附加调节通道的作用权重,设计了一种新型模糊励磁调节器。分析了电力系统各种典型运行状态及其对励磁调节的要求,总结了不同状态下电压和稳定的协调控制策略,以期对电压调节和增强阻尼进行动态协调。数值仿真结果表明,该新型励磁调节器在稳态时具有同PID一样高的电压调节精度,动态过程中则能明显提高系统阻尼特性,具有满意的控制效果,并对系统工况变化具有一定适应性。

关键词:电力系统;励磁调节器;模糊控制;协调控制 于伟华:电力系统中新型智能协调控制器的研究

2 本文将比例积分微分(PID)控制理论、线性最优控制理论与模糊控制理论相结合设计了一种新型模糊励磁调节器FLEC(Fuzzy Logic Excitation Control):电压调节通道和附加调节通道的初始整定仍基于常规数学方法,而由一模糊控制器根据系统工况动态调整电压调节通道与附加调节通道的作用权重,以在保持良好稳态电压调节精度情况下,增加系统阻尼特性,提高动态稳定水平,并对工况变化具有一定的鲁棒性。 1 新型励磁控制器结构设计

1.1控制变量选择 励磁控制系统通常可用图1表示,其中为机端电压与参考值的偏差,附加信号可能包括转速偏差、转速偏差的变化率以及有功功率偏差等。

图1 励磁系统示意图 在励磁控制系统设计中,电压调节通道和附加励磁调节通道的处理方式是决定调节性能的关键因素。PID调节器具有优良的电压调节性能和较高的稳态电压调节精度,但无法为系统动态过程提供足够阻尼。常规电力系统稳定器(PSS)在设计中把电压调节通道确认为主调节通道,并考虑了电压调节通道对动态稳定性的不利影响,结果既保证了电压调节的要求,又在一定范围内提高了动态稳定水平;但在参数整定方面的困难、较差的鲁棒性和多机协调方面的不足限制了其发挥最佳效果。线性最优励磁控制器LOEC(Linear Optimal Excitation Controller)在设计中没有确定电压调节通道的主导地位,只以权系数方式予以考虑,其结果虽然能满足动态稳定性的要求,但并不能很好地满足电压调节的要求。 通过改进电压调节通道和附加励磁调节通道的作用方式提高励磁调节器的性能是本文的研究重点。鉴于PID控制方式的优异性能,电压调节通道仍采用以电压偏差为反馈量的PID调节方式;附加信号采用和,增益采用LOEC整定;并由一模糊控制器根据系统状态动态协调电压调节通道和附加调节通道的作用权重。为了反映当前系统状态,模糊控制器的输入变量选为、和,输出变量为电压调节通道的权系数和附加励磁调节通道的权系数。 1.2电压调节通道设计 如前所述,励磁调节器最主要、最基本的任务维持发电机电压水平,此功能是通过电压调节通道实现。为最大限度抑制电压波动,提高电压调节精度,该新型励磁调节器2012届电气工程与自动化专业毕业设计(外文翻译) 3 的电压调节通道仍以PID方式设计,即

式中为比例放大倍数;为积分系数;为微分系数。 1.3附加励磁调节通道设计 附加励磁调节通道的作用是为系统提供阻尼,改善系统的动态稳定性。设计中以、为输入变量,使系数由线性最优控制理论确定。 线性最优控制是比较成熟的现代控制技术,把它用于发电机励磁控制时,是将系统中可测量的状态量和非状态量适当地组合起来,根据变量偏差最小和控制代价最小(或适当)的原则,求得控制变量的一种控制方式。 通过适当变换和简化,可得到单击-无穷大母线系统在某状态点线性化后的三阶方程组:

式中X为状态向量;A为系统矩阵;B为控制矩阵;U为控制量;为定子闭路励磁绕组时间常数;为定子开路励磁绕组时间常数。 对于凸极机

对于隐极机 于伟华:电力系统中新型智能协调控制器的研究

4 无论对于凸极机或隐极机有

式中分别为q轴电势与暂态电势;为无穷大母线电压;为发电机内电势与极端电压的相角差;分别为d轴、q轴同步电抗之和;为d轴暂态电抗之和。 发电机模型的线性化详细推导过程见文献[6]。在设计中规定二次型性能指标为

式中,为3×3阶对角矩阵。 由最优控制理论可知最优反馈增益矩阵为

此处P是下述黎卡梯方程的解。 解方程(5)求出矩阵P,便可求得最优反馈向量为 由此得到最优控制量 其中为附加调节通道的系数。 1.4新型模糊励磁调节器整体结构 电压调节通道输入量为,附加调节通道输入量为和,模糊控制模块输入量为和,输出量为两通道的权系数。新型模糊励磁控制器结构如图2所示。 2012届电气工程与自动化专业毕业设计(外文翻译)

5 图2 新型模糊励磁控制器结构示意图 2 模糊控制器设计

2.1 协调控制规则 在运行中,当电压偏差较大时,控制器的主要任务是尽快消除误差,此时应给予电压调节通道较大的作用权重。模糊调节模块的功能是根据系统运行工况,自动调整调节通道权系数K1、K2,从而协调电压调节通道和附加控制通道在整个励磁控制中的作用。 在文献[7-10]基础上,进一步分析、总结两控制通道间的协调控制规则如下: a. 在稳态时,各状态量都在允许范围内,此时主要任务是维持电压水平和提高电压调节精度,因此电压调节通道应正常工作,附加控制作用应减小或取消; b. 在小干扰时,一般各变量偏差不会太大,此时主要任务是增大系统阻尼,尽快平息振荡,因此应增大附加控制的作用; c. 在大干扰后的短时间内,由于电压波动很大,处于系统安全性考虑,此时控制重点应是使发电机机端电压尽快恢复到要求范围之内,为使附加控制输出不过多地影响发电机的电压调节,此时电压调节通道应充分发挥作用,应限制附加控制输出; d. 在大干扰后的动态过程中,电压恢复到安全要求范围之内后,此时控制重点应是为系统提供足够的阻尼,使功率及频率振荡尽快平息,此时应充分发挥附加控制的作用。 2.2模糊控制规则设计 模糊控制规则是设计模糊控制器的关键,一般包括3部分内容:选择描述输入、输出变量的词集,定义各模糊变量的模糊子集和建立模糊控制器的控制规则。 2.2.1输入、输出变量词集 一般选择“大、中、小”3个词汇描述模糊控制器的输入、输出变量的量化信息;附以正、负2个方向并考虑变量的零状态,共有7个词汇,即 {负大,负中,负小,零,正小,正中,正大} 用英文字母表示为 {NB,NM,NS,O,PS,PM,PB} 于伟华:电力系统中新型智能协调控制器的研究 6 在此,的词集选择都如上所述。K1、K2为2个控制通道的动态作用权重,无负值要求: {零,正小小,正小,正小中,正中,正中大,正大} 用英文字母表示为 {O,PSS,PS,PSM,PM,PMB,PB} 描述输入、输出变量的词汇都具有模糊特性,可用模糊集合表示。因此,模糊概念的确定问题就直接转化为求取模糊集合隶属函数的问题。 2.2.2输入、输出变量论域 把模糊控制器的输入、输出变量变化的实际范围称为这些变量的基本论域。显然,基本论域内的量为精确量。由于变量变化区间往往不能精确确定,因而有时需要把实际变化区间映射到一合适的闭区间上,以方便计算和控制。 根据规程规定,正常运行时一般电压允许偏差为±10%,频率允许偏差为±1%。在此取发电机端电压偏差论域为[-0.15,0.15],如果>0.15或<-0.15,分别按0.15和-0.15处理;取有功功率偏差的论域为[-0.30,0.30],如果>0.30或<-0.30,分别按0.30和-0.30处理;取发电机转子电气角速度偏差论域为[-0.015,0.015],如果>0.015或<-0.015,分别按0.015和-0.015处理。以上各变量均为标幺值。取模糊控制模块的输出变量,即电压调节通道的权系数K1和附加励磁调节通道权系数K2的论域均为[0.0,1.5]。 为确保模糊集能较好地覆盖论域,避免出现失控现象,按照模糊集论域中所含元素个数为模糊语言词集总数的2倍以上的原则,在此取变量的模糊子集的论域均为 [-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7] 输出变量K1、K2模糊子集的论域均取为 {0,1,2,3,4,5,6,7,8,9,10,11,12,13} 2.2.3各模糊变量的模糊子集 定义一个模糊子集,实际上就是要确定模糊子集隶属函数曲线的形状。将确定的隶属函数曲线离散化,得到有限个点上的隶属度便构成了一个相应的模糊变量的模糊子集。 由于模糊子集直接由隶属函数曲线确定,因此隶属函数曲线的形状不同会导致不同的控制特性。 本模糊控制器的设计中,采用的是三角形和梯形隶属函数曲线,并且曲线距离原点越近(误差越小)曲线越陡(分辨率越高),距离原点越远(误差越大)曲线越缓(分辨率越低)。由于变量所取得词集和模糊子集论域完全相同,在确定模糊2012届电气工程与自动化专业毕业设计(外文翻译) 7 子集时,其隶属函数曲线也相同,如图3所示;K1、K2的隶属函数曲线如图4所示(图中横坐标M为模糊变量值,L为隶属度)。 2.2.4模糊控制规则 基于上述协调控制规则和输入、输出变量的模糊化处理过程,制定了模糊控制规则集。限于篇幅,仅列出较有代表性的少数规则。

图3输入变量的隶属函数曲线 图4输出变量的隶属函数曲线 规则1类 稳态时附加控制退出。 IF=0 AND=0 AND =0 THEN K1=PM,K2=0 规则2类 大干扰或故障后的短时间内减小附加控制作用以保证电压调节特性。 IF =PB AND =PB AND =PS THEN K1=PB,K2=PM IF =PB AND =PM AND =PS THEN K1=PB,K2=PSS 规则3类 小干扰时增大附加控制作用 IF =PS AND =PS AND =PS THEN K1=PM,K2=PMB IF =0 AND =PM AND =PM THEN K1=PSS,K2=PMB 由于本文中模糊控制器只需考虑各输入量偏离给定值的程度,因此只需考虑各变量偏差的绝对值,这就把模糊控制规则由7×7×7=343条语句简化为4×4×4=64条语句,减轻了控制过程的运算量。 3 数字仿真

仿真采用的系统如图5所示,发电机经升压变压器、双回线向无穷大系统送电,忽略线路电阻。其中为定子绕组开路时励磁绕组暂态时间常数(=5.0),为发电机d轴暂态电抗(=0.13),为变压器电抗(=0.1),x1、x2分别为2条线路的电抗(x1=x2=0.4),以上均为标幺值。在发电机上分别装设PID、LOEC以FLEC控

相关文档
最新文档