二次函数y=ax2+bx+c配方法资料
二次函数课件

x=x1 或x=x2是二次不等式 的解集的端点值
第十三页,编辑于星期五:九点 三十五分。
3.二次函数在闭区间上的最值
在闭区间的端点或二次函 数的顶点处取得
y -1 0 1 x
y -1 0 1 x
y
-1 0 1
x
第十四页,编辑于星期五:九点 三十五分。
(1)抛物线与x轴的交点情况
二次函数y=ax2+bx+c 的图象和x轴交点
x1,x2 有且仅 有一个 在(k1 ,k2)
充要条件
第三十二页,编辑于星期五:九点 三十五分。
3.一元二次方程根的分布.
(1)方程ax2+bx+c=0(a≠0)两根:
一正一负 ac<0;
两正根
Δ>0
x1+x2=- b >0 x1·x2= c a>0;
a
两负根
Δ>0
b
x1+x2=-c a <0
x1·x2= a >0;
一零根 C=0
第三十三页,编辑于星期五:九点 三十五分。
设f ( x) ax2 + bx + c(a 0) 一元二次方程ax2 + bx + c 0(a 0) 的两根为x1, x2 ( x1 x2 )
( 1 ) 方 程 两 根 都 小 于 k (k 为 常 数 )
(5)正数的负分数指数幂:
m
an
1
m
an
1 n am
( a > 0 , m , n N 且 n > 1 )
(6) 0的正分数指数幂等于 0 ;
0的负分数指数幂 没有意义
第十页,编辑于星期五:九点 三十五分。
22.1.4二次函数Y=ax2+bx+C(1)

22.1.4 二次函数y=ax +bx+c 的图象和性质
回顾反思
y=a(x-h)2+k
顶点式
a>0 a<0
开口方向
顶点坐标 对称轴 增 减 性
向上 (h ,k) x=h
向下 (h ,k) x=h
倍 极值 速 x=h时,y最小=k x=h时,y最大=k 课 时 2+k可以看作是由抛物线y=ax2经过平移 抛物线 y=a(x-h) 学 练 得到的。 x:左加右减
8 x顶 2 2 2
4 2 8 82 y顶 0 4 2
顶点坐标为 2,0
倍 速 课 时 学 练
对称轴x 2
当x 2时,y最大值=0
2.将下列函数化为 y=a(x-h)2+k 的形式,并指出 其对称轴与顶点坐标:
探究
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长 l 的变化 而变化,当 l 是多少时,场地的面积S最大? 分析:先写出S与 l 的函数关系式,再求出使S最大的l值. s 矩形场地的周长是60m,一边长为l, 60 则另一边长为 l m ,场地的面积 2 200 S=l ( 30-l ) 100 即 S=-l 2 +30l O 5 10 15 20 25 30 ( 0 < l < 30 )
2
b 时, 2a
4ac b 2 4a
倍 速 课 时 学 练
练习
1.写出下列抛物线的开口方向、对称轴及顶点坐标.当x为何值时y的 值最小(大)?
( 1) y 3 x 2 x
2
2 y x 2x ( 2)
(3) y 2 x 8x 8
用几何画板探究二次函数y=ax2+bx+c的图象和性质

用几何画板探究二次函数c bx ax y ++=2的图象和性质资料编号:202211051045在探究二次函数()02≠++=a c bx ax y 的图象及其性质时,我们可以利用配方法把一般式化为顶点式进行探究,配方过程如下:c a b a b x a b x a c x a b x a c bx ax y +⎪⎪⎭⎫ ⎝⎛-++=+⎪⎭⎫ ⎝⎛+=++=222222244 a b ac a b x a 44222-+⎪⎭⎫ ⎝⎛-=∴二次函数()02≠++=a c bx ax y 的顶点式为a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛-=,其图象的对称轴为直线a b x 2=,顶点坐标为⎪⎪⎭⎫ ⎝⎛-a b ac a b 44,22.当a b x 2=时,函数取得最值,最值为a b ac y 442-=:当0>a 时,a b ac y 442min -=;当0<a 时,ab ac y 442max -=.虽然我们可以用学习顶点式的成果来研究一般式,但我们还不能对一般式有一个全面的了解和掌握,如b a ,的符号与对称轴的位置关系、抛物线与y 轴的交点与c 的关系以及抛物线与x 轴的相交情况等.下面,我们通过制作几何画板课件,设置c b a ,,三个参数,来探究一下二次函数()02≠++=a c bx ax y 的图象及其性质.几何画板课件制作1.打开几何画板,单击“绘图”,选择“定义坐标系”,单击“点工具”,在x 轴上任意作出一点A ,选中点A 和x 轴,依次单击“构造”、“垂线”,作出x 轴的垂线.单击“点工具”,在x 轴上方的垂线上任取一点B ,在x 轴下方的垂线上任取一点C .选中点B 、C ,依次单击“构造”、“线段”,作出线段BC .选中垂线BC 并隐藏.单击“点工具”,在线段BC 上任取一点,标签设为a .选中点a ,依次单击“度量”、“纵坐标”,量出点a 的纵坐标.选中点a 纵坐标的度量值,右单击,选择“度量值的标签”,在“标签”中输入a .如图1所示.单击确定.2.用同样的方法制作参数c b ,.依次单击“绘图”、“隐藏网格”,如图2所示.3.依次单击“绘图”、“绘制新函数”,在弹出的对话框中依次输入“a的值”、“*”、“x”、“∧”、“2”、“+”、“b的值”、“*”、“x”、“+”、“c的值”,如图3所示.单击确定,作出函数()c+=2的图象.如图4所示.f+bxaxx4.选中函数的图象,修改线型为“中等”.选中函数解析式,右单击,选中“函数的标签”,在“标签”中输入“y”,如图5所示.单击“确定”.5.单击“点工具”,在抛物线上任取一点P,选中点P和x轴,依次单击“构造”、“平行线”,交抛物线于另一点Q.双击点P,选中点Q,依次单击“变换”、“缩放”,设置“固定比”为“1/2”,如图6所示.单击“确定”,作出线段PQ的中点'Q.6.选中直线PQ、点P、点Q并隐藏,选中点'Q和x轴,依次单击“构造”、“垂线”,作出抛物线的对称轴.选中对称轴,修改线型为“细线/虚线”,颜色为红色.选中点'Q并隐藏.如图7所示.7.单击抛物线与y轴的交点处,得到点M.选中点M,依次单击“度量”、“纵坐标”,量出点M的纵坐标.如图8所示.8.选中点a,修改点的颜色为浅蓝色;选中点b,修改点的颜色为粉红色;选中点c,修改点的颜色为浅绿色.如图8所示.经此一步,完成作图.课件探索对于二次函数()02≠++=a c bx ax y ,课件设置了三个参数c b a ,,,通过拖动点c b a ,,,使这三个参数可以在一定范围内变化,以观察函数图象的变化与这三个参数之间的关系.探究参数a 对函数图象的影响(1)拖动点a 在线段AB 上移动,此时0>a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越小,函数图象的开口越_________;(2)拖动点a 在线段AC 上移动,此时0<a ,观察函数图象的变化,不难发现函数图象开口_________,且a 的值越大,函数图象的开口越_________.对于二次函数()02≠++=a c bx ax y ,当0>a 时,函数图象开口_________,当0<a 时,函数图象开口_________,并且a 越小,函数图象的开口越_________,a 越大,函数图象的开口越_________.探究参数b a ,对函数图象的影响在由二次函数的一般式化为顶点式的过程中,我们得到函数图象的对称轴为直线ab x 2-=,这说明抛物线的对称轴与b a ,有着直接的关系,同时参数b a ,的改变也必将影响抛物线的变化.我们来实际操作一下.(3)把点a 移动到线段AB 上,此时0>a ,拖动点b 在线段EF 上移动,可以发现:当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的左侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的右侧.(4)把点a 移动到线段AC 上,此时0<a ,拖动点b 在线段EF 上移动,可以发现: 当点b 在线段DE 上移动,即0>b 时,抛物线的对称轴在y 轴的右侧;当点b 在线段DF 上移动,即0<b 时,抛物线的对称轴在y 轴的左侧.对于二次函数()02≠++=a c bx ax y ,当0,0>>b a 或0,0<<b a 时,函数图象的对称轴在y 轴的_________侧;当0,0<>b a 或0,0><b a 时,函数图象的对称轴在y 轴的_________侧.特别地,当0=b 时,函数图象的对称轴是_________.由此,我们可以根据b a ,的符号确定抛物线对称轴与y 轴的相对位置关系,也可以根据抛物线的对称轴与y 轴的相对位置关系,确定b a ,的符号.实际上,当b a ,同号时,02<-=a b x ,抛物线的对称轴位于y 轴的左侧;当b a ,异号时,02>-=ab x 抛物线的对称轴位于y 轴的右侧.如此,我们探究参数b a ,对二次函数图象影响的过程,经历了由观察到推理,由感性认识到理性认识的过程.探究参数c 对函数图象的影响(5)拖动点c 在线段HI 上移动,观察函数图象的变化,不难发现,函数图象与y 轴的交点的纵坐标,等于_________的值.当0>c 时,函数图象与y 轴的_________轴相交;当0=c 时,函数图象经过_________;当0<c 时,函数图象与y 轴的_________轴相交.因此,参数c 的值,决定了函数图象与y 轴的相交情况.实际上,对于二次函数()02≠++=a c bx ax y ,当函数图象与y 轴相交时,令0=x ,则=y _________,所以函数图象与y 轴的交点为_________.二次函数c bx ax y ++=2的图象及性质二次函数c bx ax y ++=2的图象及性质的应用例1. 用配方法将二次函数6422++-=x x y 化为()k h x a y +-=2的形式,则k h a ++的值为【 】(A )5 (B )7 (C )1- (D )2-解析 ∵()()81261122642222+--=+-+--=++-=x x x x x y ∴8,1,2==-=k h a ∴7812=++-=++k h a ∴选择答案【 B 】.例2. 关于抛物线122+-=x x y ,下列说法错误的是【 】(A )开口向上(B )顶点在x 轴上(C )对称轴是直线1=x(D )当1>x 时,y 随x 的增大而减小解析 ()22112-=+-=x x x y .对于(A ),01>=a ,抛物线开口向上.故(A )正确;对于(B ),抛物线顶点坐标为()0,1,在x 轴上.故(B )正确;对于(C ),抛物线的对称轴为直线1=x .故(C )正确;对于(D ),当1>x 时,y 随x 的增大而增大.故(D )错误.∴选择答案【 D 】.例3. 若二次函数a x ax y ++=42的最大值是3,则=a _________。
二次函数y=ax^2+bx+c(a≠0)的图象与性质-2023年新九年级数学(人教版)(解析版)

二次函数y=ax 2+bx+c(a ≠0)的图象与性质【知识梳理】一、二次函数与之间的相互关系 1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式. 对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是.要点诠释:加以记忆和运用.2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 二、二次函数的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.2(0)y ax bx c a =++≠=−+≠2()(0)y a x h k a 2()y a x h k =−+2()y a x h k =−+2()y a x h k =−+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++−+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a −⎛⎫=++⎪⎝⎭2()y a x h k =−+2b h a =−244ac b k a−=2y ax bx c =++2b x a =−24,24b ac b aa ⎛⎫−− ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,三、二次函数的图象与性质 1.二次函数图象与性质向上 向下直线 直线 2y ax bx c =++2(0)y ax bx c a =++≠20()y ax bx c a =++≠2b x a=−b x =−2.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当值的情况.20()y ax bx c a =++≠2(0)y ax bx c a =++≠2bx a=−244ac b y a−=最值222y ax bx c =++最大值211y ax bx c =++最小值【考点剖析】题型一、二次函数的图象与性质例1.求抛物线的对称轴和顶点坐标. 【答案与解析】 解法1(配方法):.∴ 顶点坐标为,对称轴为直线. 解法2(公式法):∵ ,,,∴ 11122()2b x a=−=−=⨯−,. ∴ 顶点坐标为,对称轴为直线. 解法3(代入法):∵ ,,, ∴ . 将代入解析式中得,. ∴ 顶点坐标为,对称轴为直线. 【总结升华】所给二次函数关系是一般式,求此类抛物线的顶点有三种方法:(1)利用配方法将一般式化成顶点式;(2)用顶点公式直接代入求解;(3)利用公式先求顶点的横坐标,然后代入2(0)y ax bx c a =++≠2142y x x =−+−2221114(2)4(211)4222y x x x x x x =−+−=−−−=−−+−−211(1)422x =−−+−217(1)22x =−−−71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−2214(4)147214242ac b a ⎛⎫⨯−⨯−− ⎪−⎝⎭==−⎛⎫⨯− ⎪⎝⎭71,2⎛⎫−⎪⎝⎭1x =12a =−1b =4c =−111222bx a=−=−=⎛⎫⨯− ⎪⎝⎭1x =21711422y =−⨯+−=−71,2⎛⎫−⎪⎝⎭1x =24,24b ac b aa ⎛⎫−− ⎪⎝⎭解析式求出纵坐标.这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 【变式1】把一般式化为顶点式. (1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标. 【答案】(1)向下;x=2;D (2,2). (2)C (0,-6);A (1,0);B (3,0).例2.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【思路点拨】由y=ax 2+bx +c 的图象判断出a >0,b >0,于是得到一次函数y=ax +b 的图象经过一,二,四象限,即可得到结论. 【答案】A .【解析】解:∵y=ax 2+bx +c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax +b 的图象经过一,二,三象限.2286y x x =−+−故选A .【总结升华】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可 以判断a 、b 的取值范围.【变式1】 抛物线与y 轴交于(0,3)点: (1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小? 【答案与解析】(1)由抛物线与y 轴交于(0,3)可得m =3. ∴ 抛物线解析式为,如图所示.(2)由得,. ∴ 抛物线与x 轴的交点为(-1,0)、(3,0). ∵ , ∴ 抛物线的顶点坐标为(1,4).(3)由图象可知:当-1<x <3时,抛物线在x 轴上方. (4)由图象可知:当x ≥1时,y 的值随x 值的增大而减小.【总结升华】研究函数问题一般都应与图象结合起来,借助于图象的直观性求解更形象与简洁. (1)将点(0,3)代入解析式中便可求出m 的值,然后用描点法或五点作图法画抛物线; (2)令y =0可求抛物线与x 轴的交点,利用配方法或公式法可求抛物线顶点的坐标; (3)、(4)均可利用图象回答,注意形数结合的思想,2(1)y x m x m =−+−+2(1)y x m x m =−+−+223y x x =−++2230x x −++=11x =−23x =2223(1)4y x x x =−++=−−+【变式2】某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -5 【答案】D.提示:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上, 把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x 2+1 x=2时y=﹣11,故选:D .题型二、二次函数的最值例3.求二次函数的最小值. 【答案与解析】解法1(配方法):∵,∴ 当x =-3时,. 解法2(公式法):∵ ,b =3, ∴ 当时,.解法3(判别式法):∵ ,∴ .2(0)y ax bx c a =++≠211322y x x =++2221111(6)(639)2222y x x x x =++=++−+21(3)42x =+−4y =−最小102a =>12c =331222b x a =−=−=−⨯22114341922414242ac b y a ⨯⨯−−−====−⨯最小211322y x x =++26(12)0x x y ++−=∵ x 是实数,∴ △=62-4(1-2y)≥0,∴ y ≥-4. ∴ y 有最小值-4,此时,即x =-3.【总结升华】在求二次函数最值时,可以从配方法、公式法、判别式法三个角度考虑,根据个人熟练程度 灵活去选择.【变式1】用总长60m 的篱笆围成矩形场地.矩形面积S 随矩形一边长L 的变化而变化.当L 是多少时,矩形场地的面积S 最大? 【答案】(0<L <30).(m )时,场地的面积S 最大,为225m 2.【变式2】分别在下列范围内求函数的最大值或最小值. (1)0<x <2; (2)2≤x ≤3. 【答案与解析】∵ , ∴ 顶点坐标为(1,-4).(1)∵ x =1在0<x <2范围内,且a =1>0, ∴ 当x =1时y 有最小值,.∵ x =1是0<x <2范围的中点,在x =1两侧图象左右对称,端点处取不到,不存在最大值. (2)∵ x =1不在2≤x ≤3范围内(如图所示),又因为函数(2≤x ≤3)的图象是 抛物线的一部分,且当2≤x ≤3时,y 随x 的增大而增大,∴ 当x =3时,;当x =2时,.2690x x ++=(30)S L L =−2(30)L L =−−2(15)225L =−−+15L ∴=223y x x =−−2223(1)4y x x x =−−=−−4y =−最小值223y x x =−−223y x x =−−232330y =−⨯−=最大值222233y =−⨯−=−最小值【总结升华】先求出抛物线的顶点坐标,然后看顶点的横坐标是否在所规定的自变量的取 值范围内,根据不同情况求解,也可画出图象,借助于图象的直观性求解,如图所示,2≤x ≤3为图中实线 部分,易看出x =3时,;x =2时,.题型三、二次函数性质的综合应用例4.已知二次函数的图象过点P(2,1). (1)求证:; (2)求bc 的最大值. 【答案与解析】(1)∵ 的图象过点P(2,1), ∴ 1=4+2b+c+1,∴ c=-2b-4.(2). ∴ 当时,bc 有最大值.最大值为2.【总结升华】(1)将点P(2,1)代入函数关系式,建立b 、c 的关系即可. (2)利用(1)中b 与c 的关系,用b 表示bc ,利用函数性质求解. 【变式1】如图是二次函数y=ax 2+bx+c 的图象,下列结论: ①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c<0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1; ④使y≤3成立的x 的取值范围是x≥0. 其中正确的个数有( )223y x x =−−0y =最大值3y =−最小值2(0)y ax bx c a =++≠21y x bx c =+++24c b =−−21y x bx c =+++22(24)2(2(1)2bc b b b b b =−−=−+=−++1b =−A.1个B.2个C.3个D.4个【答案】B.提示:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.【变式2】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【思路点拨】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【答案】D.【解析】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,,∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a >;故④正确 ⑤∵a >0,∴b ﹣c >0,即b >c ;故⑤正确; 故选:D .【总结升华】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用. 【变式3】一条抛物线经过A (2,0)和B (6,0),最高点C 的纵坐标是1. (1)求这条抛物线的解析式,并用描点法画出抛物线;(2)设抛物线的对称轴与轴的交点为D ,抛物线与y 轴的交点为E ,请你在抛物线上另找一点P(除点A 、B 、C 、E 外),先求点C 、A 、E 、P 分别到点D 的距离,再求这些点分别到直线的距离; (3)观察(2)的计算结果,你发现这条抛物线上的点具有何种规律?请用文字写出这个规律. 【答案与解析】(1)由已知可得抛物线的对称轴是. ∴ 最高点C 的坐标为(4,1).则 解得∴ 所求抛物线的解析式为. 列表:描点、连线,如图所示:2y ax bx c =++x 2y =4x =420,3660,164 1.a b c b c a b c ++=⎧⎪++=⎨⎪++=⎩1,42,3.a b c ⎧=−⎪⎪=⎨⎪=−⎪⎩21234y x x =−+−(2)取点(-2,-8)为所要找的点P ,如图所示,运用勾股定理求得ED =5,PD =10, 观察图象知AD =2,CD =1,点E 、P 、A 、C 到直线y =2的距离分别是5、10、2、1. (3)抛物线上任一点到点D 的距离等于该点到直线y =2的距离.【总结升华】(1)描点画图时,应先确定抛物线的对称轴,然后以对称轴为参照,左右对称取点. (2)计算两点之间的距离应构造两直角边分别平行于两坐标轴的直角三角形,然后运用勾股定理求得.【过关检测】一、单选题1.(2021春·广东江门·九年级台山市新宁中学校考期中)将抛物线22()1y x =−+向左平移1个单位长度,向下平移2个单位得到抛物线的解析式为( ) A .2(1)3y x =−+ B .2=(3)1y x −− C .2(1)1y x =−− D .2(1)1y x =+−【答案】C【分析】根据抛物线平移的法则:左加右减,上加下减即可得到答案.【详解】解:将抛物线22()1y x =−+向左平移1个单位,再向下平移2个单位,得到抛物线的解析式为22211211()()y x x =−++−=−−,故选:C .【点睛】本题考查了二次函数图象的平移,根据函数图象的平移法则:左加右减,上加下减进行平移,是解题的关键.2.(2023·上海·九年级假期作业)如图,已知二次函数()2y a x m =+与一次函数y ax m =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .【答案】A【分析】利用二次函数和一次函数图象的性质“二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.”逐项判断即可. 【详解】解:A 、由抛物线可知0a >,0m >,由直线知0a >,0m >,∴A 正确; B 、由抛物线可知0a >,0m <,由直线知0a >,0m >,∴B 错误; C 、由抛物线可知a<0,0m >,由直线知a<0,0m <,∴C 错误; D 、由抛物线可知a<0,0m <,由直线知a<0,0m >,∴D 错误; 故选:A .【点睛】本题考查二次函数及一次函数的图象的性质.熟练掌握二次函数和一次函数的图象的性质是解答本题的关键.【答案】A【分析】根据抛物线开口向上,与y 轴交与y 轴负半轴,得到00a c ><,,根据抛物线对称轴为直线1x =,得到20b a =−<,由此即可判断A ;根据当1x =时,0y <,即可判断B ;根据当=1x −时,0y =,即可判断C 、D .【详解】解:∵抛物线开口向上,与y 轴交与y 轴负半轴, ∴00a c ><,,∵抛物线对称轴为直线1x =,∴12b a −=, ∴20b a =−<,∴0abc >,故A 结论正确,符合题意; ∵当1x =时,0y <,∴0a b c ++<,故B 结论错误,不符合题意; ∵当=1x −时,0y =, ∴0a b c −+=,∴02bb c −−+=,b a c =+∴32b c =,故C 、D 结论错误,不符合题意; 故选A .【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟知相关知识是解题的关键.【答案】D【分析】根据已知条件可得出20ax kx a −−=,再利用根与系数的关系,分情况讨论即可求出答案.【详解】解:抛物线()20y ax a a =−≠与直线y kx =交于()11,A x y ,()22,B x y 两点,2kx ax a =−∴, 20ax kx a −−=∴.12kx x a ∴+=,<0k a ∴.当>0a ,0<k 时,直线y ax k =+经过第一、三、四象限,当0<a ,>0k 时,直线y ax k =+经过第一、二、四象限, 综上所述,y ax k =+一定经过一、四象限. 故选:D .【点睛】本题考查了二次函数与系数的关系,解题的关键在于熟练掌握根与系数关系公式.5.(2023·浙江·九年级假期作业)已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =.有下列结论:①0abc <;②80a c +<;③若抛物线经过点(2,)t −,则关于x 的一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,其中正确结论的个数是( ) A .0 B .1C .2D .3【答案】D【分析】根据已知条件得出a<0,2b a =−0>,根据抛物线经过点(1,0)−,得出230c b a a a a =−=−−=−>,即可判断①,根据3c a =−代入②即可判断;根据对称性可得抛物线也经过点()4,t ,即可判断③【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过点(1,0)−,其对称轴为直线1x =. ∴a<0,12b x a =−=,0a b c −+=则2b a =−0>,∴230c b a a a a =−=−−=−> ∴<0abc ,故①正确;∵88350a c a a a +=−=<,故②正确, ∵抛物线经过点(2,)t −,∴根据抛物线的对称性,抛物线也经过点()4,t ,∴抛物线2y ax bx c =++与直线y t =的交点坐标为(2,)t −和()4,t , ∴一元二次方程20(0)ax bx c t a ++−=≠的两根分别为2−,4,故③正确.故选:D .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与系数之间的关系是解答的关键.6.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数,)0a ≠上的点,现有以下四个结论:①该抛物线的对称轴是直线2x =−;②点()0,3在抛物线上;③若122x x >>−,则12y y >;④若12y y =,则122x x +=−其中,正确结论的个数为( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据对称轴公式4222b ax a a =−=−=−可判断①;当0x =时,3y =,可判断②;根据抛物线的增减性,分两种情况计算可判断③;利用对称点的坐标得到1222+=−x x ,可以判断④.【详解】解:∵抛物线243y ax ax =++(a 是常数,)0a ≠, ∴4222b ax a a =−=−=−,故①正确; 当0x =时,3y =, ∴点()0,3在抛物线上,故②正确; 当0a >时,12y y >, 当0a <时,12y y <,故③错误;根据对称点的坐标得到1222+=−x x ,124x x +=−,故④错误. 故选B .【点睛】本题考查了抛物线的对称性,增减性,熟练掌握抛物线的性质是解题的关键.A .4个B .3个C .2个D .1个【答案】B【分析】抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<,,可以得到0a >,1022b a <−<,从而可以得到b 的正负情况,从而可以判断①;继而可得出b a −<,则0a b +>,即可判断②;由图象可知,当1x =−时,0y =,即0a b c −+=,所以有a c b +=,从而可得出0a c <<−,即可判断③;利用12512332⎛⎫−−=− ⎪⎝⎭,再根据1022b a <−<,所以252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,从而可得12y y <,即可判断④. 【详解】解 :∵抛物线2y ax bx c =++的图象开口向上, ∴0a >,∵抛物线2y ax bx c =++经过点(1,0)(,0)A B m −、,且12m <<, ∴1022b a <−<,∴0b <,故①正确; ∵1022b a <−<,0a >,∴b a −<∴0a b +>,故②正确;由图象可知,当1x =−时,0y =,即0a b c −+<, ∴a c b += ∵0a >,0b <, ∴0a c <<−,故③正确;∵12512332⎛⎫−−=− ⎪⎝⎭,又∵1022b a <−<,∴252332b b a a ⎛⎫⎛⎫−−−<−− ⎪ ⎪⎝⎭⎝⎭,∵抛物线2y ax bx c =++的图象开口向上,∴12y y <,故④错误. ∴正确的有①②③共3个, 故选:B .【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,熟练掌握根据二次函数图象性质是解题的关键.A .1个B .2个【答案】A【分析】根据抛物线的开口方向、对称轴、与y 轴的交点,即可判断a b c 、、的大小,从而即可判断①,根据对称轴和经过()10−,,得到45b a c a =−=−,,代入进行求解即可判断②④,根据当2x =时二次函数取得最大值,即可判断③.【详解】解:抛物线的开口向下,<0a ∴,抛物线的对称轴为直线22b x a =−=,>0b ∴,抛物线交y 轴正半轴,0c ∴>,<0abc ∴,故①错误,抛物线的对称轴为直线22b x a =−=,4b a ∴=−,图像过点()10−,,0a b c ∴−+=,5c a ∴=−,()42452470a cb a a a a ∴+−=−−⨯−=<,42a c b ∴+<,故②错误,当2x =时,函数由最大值42a b c ++, 242a b c am bm c ∴++≥++,∴()42a b m am b +≥+(m 为常数),故③错误,()()323425121020b c a a a a a −=⨯−−⨯−=−+=−>,320b c ∴−>,故④正确,综上所述,正确的个数为1, 故选:A .【点睛】本题主要考查了二次函数的图象与性质,熟练掌握二次函数的图象与性质,采用数形结合的思想解题,是解题的关键.9.(2023·安徽六安·校考二模)已知抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,则抛物线()22y b x ax =−−的图象可能是( )A .B .C .D .【答案】C【分析】求出求出交点A 、B 的坐标,根据已知图象确定,a 与A 点的横坐标的正负,进而推断新抛物线2(2)y b x ax =−−的图象的开口方向,对称轴位置,从而确定答案.【详解】解:由22ax bx c x c ++=+,得(2)0x ax b +−=,解得,0x =或2b x a −=,抛物线2y ax bx c =++和直线2y x c =+分别交于A 点和B 点,(0,)B c ∴,A 的横坐标为:2ba −,抛物线2y ax bx c =++的开口向上,交点A 在第三象限内,0a ∴>,20ba −<,抛物线2(2)y b x ax =−−中,0a −<,对称轴202bx a −=<,∴此抛物线的开口向下,对称轴在y 轴的左边,符合此条件的图象是C , 故选:C .【点睛】本题主要考查了二次函数的图象与系数的关系,一次函数的图象与性质,关键是由已知条件确定a 和A 点横坐标的取值.A . . . .【答案】A【分析】根据函数图像的开口大小与y 轴的交点位置以及对称轴的位置进行判断即可. 【详解】解:设21111y a x b x c =++,22222y a x b x c =++,由图像知,10a >,10b <,10c <,20a <,20b >,20c >,21c c >,∴120c c +>,∵函数1y 的图像开口大于函数2y 的图像开口,∴12a a <,∴120a a +<, ∵121222b ba a −>−>, ∴221101b a b a >>>−,∴21b b <−,∴120b b +<,∴()121202b b a a +−>+,∵()()()212121212y y y a a x b b x c c =+=+++++,∴函数12y y y =+的图像是抛物线,开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上, A .图像开口向下,对称轴在y 轴的右侧,与y 轴的交点在y 轴的正半轴上,故此选项符合题意; B .图像开口向上,故此选项不符合题意;C .图像对称轴在y 轴的左侧,故此选项不符合题意;D .图像开口向上,故此选项不符合题意. 故选:A .【点睛】本题考查二次函数的图像与性质,不等式的性质.熟练掌握二次函数的性质是解题的关键.注意:二次函数()20y ax bx c a =++≠的a越大,图像开口越小.二、填空题11.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =−++>,若点(,3)P m 在该函数的图象上,且0m ≠,则m 的值为________. 【答案】2【分析】将点(,3)P m 代入函数解析式求解即可.【详解】解:点(,3)P m 在223y ax ax =−++上,∴2323am am =−++,(2)0am m −−=,解得:2,0m m ==(舍去) 故答案为:2.【点睛】题目主要考查二次函数图象上的点的特点,理解题意正确求解是解题关键.12.(2022秋·甘肃平凉·九年级校考阶段练习)函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向_______平移_______个单位,再沿y 轴向_______平移_______个单位得到. 【答案】 右 3 下 1【分析】根据二次函数图象“上加下减,左加右减”的平移规律进行求解即可. 【详解】解:函数()=−−2y 2x 31的图象可由函数22y x =的图象沿x 轴向右平移3个单位,再沿y 轴向下平移1个单位得到,故答案为:右,3,下,1.【点睛】本题主要考查了二次函数图象的平移,熟知二次函数图象的平移规律是解题的关键.13.(2023·浙江·九年级假期作业)如果三点()111,P y ,()223,P y 和()334,Py 在抛物线26y x x c =−++的图象上,那1y ,2y ,3y 之间的大小关系是______ . 【答案】231y y y >>/132y y y <<【分析】先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可. 【详解】解:抛物线26y x x c =−++的开口向下,对称轴是直线632x =−=−,∴当3x >时,y 随x 的增大而减小,()111,P y 关于称轴是直线3x =的对称点是()15,y , 345<<,231y y y ∴>>.故答案为:231y y y >>.【点睛】本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.【答案】②③④【分析】由图,0a >,0c <,02ba −>,得0b <,推知0a bc −<;由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,化简得241b ac −=;将()2,0A −代入2y ax bx c =++得,420a b c −+=,由对称轴得22b ac a =+,解得14a =;将14a =代入241b ac −=得21c b =−. 【详解】解:由图,0a >,0c <,02b a −>,∴0b <∴0a b −>,0a bc −<,故①错误;(0,)C c ,由2OB OC =知(2,0)B c −,代入2y ax bx c =++,得20(2)(2)a c b c c =-+-+,2420ac bc c −+=,化简得,241b ac −=,故②正确; 将()2,0A −代入2y ax bx c =++得,420a b c −+=, 对称轴1(22)22b x c a =-=--,得22b ac a =+,代入上式得,42(22)0a c ac a +-+=,解得14a =,故③正确;将14a =代入241b ac −=得21c b =−,故④正确;综上分析可知,正确的是②③④. 故答案为:②③④.【点睛】本题考查二次函数图象性质,运用数形结合思想,理解图象与方程的联系是解题的关键.【答案】210 【分析】先求出()02C ,,()24D ,,如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,然后证明当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,利用勾股定理求出DE 的长即可得到答案.【详解】解:在21222y x x =−++中,当0x =时,2y =,∴()02C ,;∵抛物线解析式为()2211222422y x x x =−++=−−+,∴()24D ,;如图所示,作点C 关于x 轴的对称点E ,连接EP DE 、,则()02E −,,∴PE CP =,∴CP DP PE DP +=+,∴当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE ,∴CP DP +的最小值==故答案为:.【点睛】本题主要考查了二次函数与几何综合,正确作出辅助线确定当D 、P 、E 三点共线时P E D P +最小,即CP DP +最小,最小值为DE 是解题的关键.16.(2021春·广东广州·九年级广州市育才中学校考阶段练习)关于二次函数223y x ax =−−在22x −≤≤的取值范围内,函数y 的最小值(用含a 的式子表示),下列结论:①当2a <−时,函数y 的最小值14a +;②当2a >时,函数y 的最小值是14a −;③22a −≤≤时,函数y 的最小值是23a −−;④当22a −≤≤,函数y 的最小值23a −+.其中正确的有___(填序号即可). 【答案】①②③【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据22x −≤≤,即可得到相应的最值,从而可以解答本题.【详解】解:二次函数223y x ax =−−, ∴抛物线开口向上,对称轴为直线221ax a −=−=⨯,①当2a <−时,2x =−时,函数有最小值,函数y 的最小值是44314y a a =+−=+,故①正确; ②当2a >时,2x =时,函数有最小值,函数y 的最小值是44314y a a =−−=−,故②正确;③当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故③正确;④当22a −≤≤时,x a =时,函数有最小值,函数y 的最小值是222233y a a a =−−=−−;故④错误;故答案为:①②③.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,求出相应的最值.【答案】()2212y x =+−或()2212y x =−+−【分析】根据抛物线的图象与系数之间的关系得出1h =−,2k =−,2a =±,即可得出结果. 【详解】解:设这条抛物线的解析式为:()2y a x h k=−+,∵这条抛物线与抛物线()21122y x =−+−的顶点坐标相同,∴1h =−,2k =−,又∵这条抛物线与抛物线223y x =+形状相同,∴2=a ,即2a =±,∴这条抛物线的解析式为:()2212y x =+−或()2212y x =−+−,故答案为:()2212y x =+−或()2212y x =−+−.【点睛】本题考查二次函数的图象与系数的关系,熟记二次函数的性质是解题的关键.【答案】178(,)55和33(,)55− 【分析】先根据题意画出图形,先求出D 点坐标,当E 点在线段BC 上时:DEB ∠是△DCE 的外角,2DEB DCB ∠=∠,而DEB DCE CDE ∠=∠+∠,所以此时DCE CDE ∠=∠,有CE DE =,可求出BC 所在直线的解析式5y x =−+,设E 点(,5)−+a a 坐标,再根据两点距离公式,CE DE =,得到关于a 的方程,求解a 的值,即可求出E 点坐标;当E 点在线段CB 的延长线上时,根据题中条件,可以证明222BC BD DC +=,得到DBC ∠为直角三角形,延长EB 至E ',取BE BE '=,此时,2DE E DEE DCB ''∠=∠=∠,从而证明E '是要找的点,应为OC OB =,OCB 为等腰直角三角形, 点E 和E '关于B 点对称,可以根据E 点坐标求出E '点坐标.【详解】解:在265y x x =−+中,当0x =时,5y =,则有()05C ,,令0y =,则有2650x x −+=,解得:121,6x x ==, ∴()()1050A B ,,,,根据D 点坐标,有226253m =−⨯+=−所以D 点坐标()23−,设BC 所在直线解析式为y kx b =+,其过点()0,5C 、()5,0B有550b k b =⎧⎨+=⎩, 解得15k b =−⎧⎨=⎩∴BC 所在直线的解析式为:5y x =−+ 当E 点在线段BC 上时,设(,5)E a a −+ DEB DCE CDE ∠=∠+∠而2DEB DCB ∠=∠ ∴DCE CDE ∠=∠∴CE DE =因为:(,5)E a a −+,(0,5)C ,(2,3)D −=解得:175a =,855a −+=所以E 点的坐标为:178(,)55 当E 在CB 的延长线上时,在BDC 中,222(52)318BD =−+=,2225550BC =+=,222(53)268DC =++= ∴222BD BC DC +=∴BD BC ⊥如图延长EB 至E ',取BE BE '=,则有DEE '为等腰三角形,DE DE =', ∴DEE DE E ''∠=∠ 又∵2DEB DCB ∠=∠ ∴2DE E DCB '∠=∠ 则E '为符合题意的点, ∵5OC OB == ∴45OBC ∠=E '的横坐标:17335(5)55+−=,纵坐标为85−;综上E 点的坐标为:178(,)55或338(,)55−,故答案为:17855⎛⎫ ⎪⎝⎭,或33855⎛⎫− ⎪⎝⎭, 【点睛】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到E 点的位置,是求解此题的关键.三、解答题19.(2023·上海·九年级假期作业)已知二次函数2y ax bx c =++的图像经过点()()()10401M N P −−,、,、,12三点,求这个二次函数的解析式.【答案】2268y x x =−−【分析】根据题意设二次函数解析式为(1)(4)y a x x =+−,然后将()1P −,12代入求解即可.【详解】解:∵二次函数的图象经过点()()1040M N −,、,,∴设二次函数解析式为:(1)(4)y a x x =+−, 把()1P −,12代入,可得()1223a −=⨯⨯−,解得:2a =.∴这个二次函数的解析式为:2268y x x =−−. 【点睛】掌握待定系数法求二次函数解析式是解答本题的关键.20.(2023·上海·九年级假期作业)已知一个二次函数23y x bx =−++的图象经过点()14A ,. (1)求b 的值;(2)求抛物线关于x 轴对称的抛物线的解析式. 【答案】(1)2b =(2)2=23y x x −−【分析】(1)把()14A ,代入二次函数解析式即可求出b 的值;(2)根据轴对称的性质可得抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,然后可得答案.【详解】(1)解:∵二次函数的图象经过点()14A ,,∴把点()14A ,代入得2413b =−++,解得:2b =;(2)解:由(1)可知二次函数解析式为223y x x =−++,∵抛物线223y x x =−++关于x 轴对称的图象横坐标不变,纵坐标互为相反数,∴所得抛物线解析式为223y x x −=−++,即2=23y x x −−.【点睛】本题考查了待定系数法,二次函数的图象与几何变换,熟练掌握轴对称的性质是解题的关键.(1)若1a =−,画出该抛物线图象,并结合图象写出(2)(),Pm t 为抛物线上的一点,若P 【答案】(1)画图见解析,1x ≤− (2)2m =±【分析】(1)利用五点作图法画出图象,然后根据图象求解即可; (2)首先求出(),P m t '−−,然后将(),P m t 和(),P m t '−−代入()2240y ax ax a a =+−≠求解即可.【详解】(1)将1a =−代入()2240y ax ax a a =+−≠得,224y x x =−−+, ∴列表如下:∴如图所示,将以上5点在坐标系中描出,然后用平滑的曲线连接.∴由图象可得,当y 随x 的增大而增大时,1x ≤−; (2)∵(),P m t ,点P 关于原点的对称点为P ',∴(),P m t '−−,∵(),P m t 和(),P m t '−−都在抛物线上,∴222424am am a t am am a t ⎧+−=⎨−−=−⎩①②,∴+①②得,2280am a −=,∴解得2m =±.【点睛】本题主要考查了五点作图法,二次函数的性质,关于原点对称的点的坐标特点,熟知二次函数的相关知识是解题的关键.(1)求抛物线的表达式和顶点坐标;(2)在直线1x =上找一点P ,使PA PC +的和最小,并求出点P 的坐标;(3)将线段AC 沿x 轴向右平移a 个单位长度,若线段AC 与抛物线有唯一交点,请直接写出a 的取值范围.【答案】(1)抛物线的表达式为2142y x x =−++,抛物线的顶点坐标为91,2⎛⎫ ⎪⎝⎭(2)()1,3(3)26a ≤≤【分析】(1)根据对称轴得出1b =,再将点代入确定解析式,即可确定顶点坐标;(2)连接BC ,交直线1x =于点P ,点P 即为所求,连接AP ,利用两点之间线段最短得出PA PC +的和最小,由待定系数法确定直线BC 的表达式为4y x =−+,即可确定点P 的坐标;(3)根据题意得:点C 的运动轨迹为射线CD ,点A 的运动轨迹为射线AB ,若线段AC 与抛物线有唯一交点,则线段AC 在线段,m n 间平移(含线段,m n ),由抛物线的对称性得212CD =⨯=,()2216AB =⨯+=,即可求解.【详解】(1)解:∵抛物线的对称轴为直线1x =,∴1122b⎛−⎫ ⎝⨯⎪⎭=−,解得1b =. ∴212y x x c=−++. 把点()2,0A −代入,得()212202c −⨯−−+=,解得4c =.∴抛物线的表达式为2142y x x =−++.把1x =代入2142y x x =−++,得191422y =−++=, ∴抛物线的顶点坐标为91,2⎛⎫⎪⎝⎭.(2)如图1,连接BC ,交直线1x =于点P ,点P 即为所求.。
人教版初三数学教案 第1课时 二次函数y=ax2+bx+c的图象和性质

第二十二章 二次函数22.1.4 二次函数y=ax 2+bx+c 的图象和性质第1课时 二次函数y=ax 2+bx+c 的图象和性质学习目标:1.会用配方法或公式法将一般式y =ax 2+bx +c 化成顶点式y =a (x -h )2+k .2.会熟练求出二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴.重点:能够熟练地求出二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴. 难点:会用配方法或公式法将一般式y =ax 2+bx +c 化成顶点式y =a (x -h )2+k .自主学习一、知识链接1.说说函数y =a (x -h )2+k 图象的开口方向,顶点坐标,对称轴,最值和增减变化情况.2.将下列式子因式分解:(1)a 2+2ab +b 2=____________; (2)a 2-2ab +b 2=____________.课堂探究二、要点探究探究点1:将一般式y =ax 2+bx +c 化成顶点式y =a (x -h )2+k问题 怎样将216212y x x 化成y =a (x -h )2+k 的形式?填一填(1)x 2-12x +36=_____________; (2)x 2-12x =_____________ .想一想(1)请将216212y x x 化成y =a (x -h )2+k 的形式,并说一说配方的方法及步骤;(2)如何用配方法将一般式y =ax 2+bx +c (a ≠0)化成顶点式y =a (x -h )2+k ?练一练将下列二次函数的一般式用配方法化成顶点式y =a (x -h )2+k 的形式,并指出其顶点坐标. (1)y =x 2-2x +1; (2)y =2x 2-4x +6.探究点2:二次函数y =ax 2+bx +c 的图象和性质问题1 你能说出21632y x 的对称轴和顶点坐标吗?问题2 二次函数21632y x 可以看作是由212y x 怎样平移得到的?问题3 如何画二次函数216212y x x =-+的图象?问题4 结合二次函数216212y x x =-+的图象,说出其性质.要点归纳:二次函数y =ax 2+bx +c 的图象和性质一般地,二次函数y =ax 2+bx +c 可以通过配方化成y =a (x -h )2+k 的形式,即y =ax 2+bx +c =______________;因此,抛物线y =ax 2+bx +c 的顶点坐标是:______________; 对称轴是:直线______________;如果a >0,当x < _________时,y 随x 的增大而减小;当x > _________时,y 随x 的增大而增大.如果a <0,当x <________时,y 随x 的增大而增大;当x >_________时,y 随x 的增大而减小.例1 画出函数2241y x x =--+的图象,并说明这个函数具有哪些性质.练一练 已知二次函数y =x 2﹣6x +5.(1)将y =x 2﹣6x +5化成y =a (x -h )2+k 的形式; (2)求该二次函数的图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而减小.探究点3:二次函数字母系数与图象的关系问题1 一次函数y =kx +b 的图象如下图所示,请根据一次函数图象的性质填空.k10,b10;k20,b20;k30,b30.问题2 二次函数2y ax bx c的图象如下图所示,请根据二次函数的性质填空.a10,b10,c10;a20,b20,c20;a30,b30,c30;a40,b40,c40;例2 已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是()A.1B.2C.3D.4三、课堂小结二次函数y=ax2+bx+c(a≠0)的图象和性质顶点式配方法或公式法→224()24b ac by a xa a顶点坐标:24()24b ac ba a,对称轴:2bxa图象与a、b、c的关系a>0,开口向上,a<0,开口向下;b=0,对称轴为y轴;a、b同号,对称轴在y轴的左侧,a、b异号,对称轴在y轴的右侧;c=0,图象经过原点;c>0,与y轴交于正半轴,c<0,与y轴交于负半轴.当堂检测1. 已知二次函数y =ax 2+bx +c 的x 、y 的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x =52C.直线x =2 D .直线x =322.已知二次函数y =-x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( ) A .b ≥-1 B .b ≤-1 C .b ≥1 D .b ≤13.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论: (1) a 、b 同号;(2) 当x =-1和x =3时,函数值相等; (3) 4a +b =0;(4) 当y =-2时,x 的值只能取0; 其中正确的是 .4.已知抛物线y =2x 2-12x +13.(1)当x 为何值时,y 有最小值,最小值是多少? (2)当x 为何值时,y 随x 的增大而减小;(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式.5.已知二次函数y =x 2-4x -1. (1)将函数y =x 2-4x -1的解析式化为y =a (x +m )2+k 的形式,并指出该函数图象顶点B 的坐标;(2)在平面直角坐标系xOy 中,设抛物线y =x 2-4x -1与y 轴交点为C ,抛物线的对称轴与x轴交点为A ,求四边形OABC 的面积.x -1 0 1 2 3 y51-1-11。
人教版九年级数学上册《二次函数y=ax2 bx c的图像和性质》教学设计

《二次函数y=ax²+bx+c的图像和性质》教学设计教材依据人民教育出版社义务教育教科书《数学》(九年级上册)22.1.4二次函数y=ax²+bx+c的图像和性质.设计思路一、指导思想新课程标准指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
在教学设计时,我以布鲁纳认知发现学习理论的实质——主动的形成认知结构为指导思想,结合新课标“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.”的教育理念,设计了二次函数的图像和性质这节课。
二、设计理念本节课授课班级的学生已经获得的二次函数解析式中待定系数与图象的关系、二次函数图象的性质的基础上学习的,根据学生的认知特点和所学知识的特征,我在教学过程中重点运用我校的三段两重心教学模式:揭示目标,突破目标,检测目标。
使学生经历数学知识的形成与应用过程,以达到促进学生有效学习的目的。
这就需要我们在教学的过程中,利用教师的智慧,对教材和资源进行重新整合,并根据具体的学生的环境和接受能力,对课堂教学内容进行合理设计,将图象与数量结合到一起、将代数与几何结合到一起解决问题,提高学生在动手操作能力、分析问题能力的过程中,养成认真观察、主动思考的习惯,体会数形结合思想在解题中的优势。
从而提高课堂教学的效率。
三、教材分析本节属于《数学课程标准》(2011年)中“数与代数”领域的内容,课标中明确指出要求学生“会用配方法将数字系数的的二次函数的表达式化为y=a(x-h)²+k的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。
”设计本节课是学生在已经学习了二次函数的顶点式的基础上,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。
二次函数的图象与性质也是中考内容的重点考察之一。
四、学情分析二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。
二次函数知识点
中考数学二次函数知识点二次函数概念:1.二次函数的概念:一般地,形如2y a x b x c =++(a b c ,,是常数,0a ≠)那么y 叫做x 的二次函数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2y a x b x c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2,0a ≠. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点(0,0),对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点(0,0)为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点(0,0)为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 cbx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y+-=2的形式,其中abac k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y-=;④()kh x a y +-=2;⑤c bx ax y ++=2. 6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫⎝⎛+=++=,∴顶点是),(ab ac a b 4422--,对称轴是直线a bx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()kh x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线cbx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小,a 的值越大,开口越小,反之a 的值越小,开口越大。
人教版九年级数学上册二次函数y=ax2+bx+c的图象和性质(教师版)
1.函数y=ax2+bx+c图象和性质四、典例探究总结: 1. 二次函数y=ax 2+bx+c 图象的画法: (1)“化”:化成顶点式; (2)“定”:确定开口方向、对称轴、顶点坐标; (3)“画”:列表、描点、连线. 2. 利用配方法将二次函数y=ax 2+bx+c 化为顶点式后,可求出二次函数的顶点坐标和最值,顶点坐标是(﹣,),并在顶点处取到最值. 当a <0时,最大值是;当a >0时,最小值是. 3. 在二次函数y=ax 2+bx+c 中,(1) 当a>0时,在对称轴x=-2b a 的左侧,y 随着x 的增大而减小,在对称轴的右侧,y 随着x 的增大而增大;(2) 当a <0时,在对称轴 x=-2b a的左侧,y 随着x 的增大而增大,在对称轴的右侧,y 随着x 的增大而减小.练1(2015•峨眉山市一模)对二次函数y=3x 2﹣6x 的图象性质,下列说法不正确的是( )A .开口向上B .对称轴为x=1C .顶点坐标为(1,﹣3)D .最小值为3练2(2014•黄陂区模拟)二次函数y=2x 2﹣4x+5,当x=____时,y 有最小值为______;若y 随x 的增大而减小,则x 的范围为____________.2.已知二次函数y=ax²+bx+c的顶点、对称轴求参数或解析式【例2】(2013秋•青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2总结:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),根据顶点坐标结合已知条件列方程求参数的值即可.练3 (2015•虹口区一模)若抛物线y=2x2-mx-m的对称轴是直线x=2,则m=_________.练4(2015•奉贤区一模)若抛物线y=x2+mx-1的顶点横坐标为1,那么m的值为______________.一、选择题1.(2015•开县模拟)将抛物线+2x+1的顶点坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣2,﹣1)D.(2,﹣3)2.(2014秋•新疆期中)已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于()A.4 B.8 C.﹣4 D.163.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小4.(2013秋•绍兴期末)关于二次函数y=x2﹣4x+3,下列说法错误的是()A.当x<1时,y随x的增大而减小B.它的图象与x轴有交点C.当1<x<3时,y>0 D.顶点坐标为(2,﹣1)5.(2015•大庆模拟)若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y26.(2015•巴中模拟)若直线y=ax+b(a≠0)在第二、四象限都无图象,则抛物线y=ax2+bx+c()A.开口向上,对称轴是y轴B.开口向下,对称轴平行于y轴C.开口向上,对称轴平行于y轴D.开口向下,对称轴是y轴二、填空题7.(2011秋•平江区校级月考)抛物线化成顶点式是__________.8.(2015•长宁区一模)已知二次函数y=ax2﹣(a+1)x﹣2,当x>1时,y的值随x的值增大而增大,当x<1时,y的值随x的值增大而减小,则实数a的值为___________.9.(2015•黄冈中学自主招生)二次函数y=x2+2ax+a在﹣1≤x≤2上有最小值﹣4,则a的值为______.三、解答题10.(2014秋•上城区期末)已知二次函数y=-2x2+4x+6.(1)求函数图象的顶点坐标、对称轴和与坐标轴交点的坐标,并画出函数的大致图象.(2)自变量x在什么范围内,y随x的增大而增大?何时y随x的增大而减小?并求出函数的最大值或最小值.11.(2015•建邺区一模)已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.典例探究答案:【例1】【解析】根据五点画出二次函数y=﹣x2+4x+5的图象,根据图象即可回答(1)(2)(3)(4)(5)的问题.解:列表:x …0 1 2 3 4 …y … 5 8 9 8 5 …描点、连线可得如图所示抛物线.(1)由y=﹣x2+4x+5=﹣(x﹣2)2+9可知,对称轴为直线x=2,顶点坐标为(2,9),取到最大值,为9;故答案为:x=2,(2,9),大,9;(2)由图象可知:与x轴、y轴的交点坐标分别为(﹣1,0),(5,0)和(0,5);故答案为:(﹣1,0)(5,0)和(0,5);(3)当x<2时,y随x的增大而增大,当x>2时,y随x的增大而减小;故答案为:x<2,x>2.(4)当0≤x<3时,函数y的值为5≤x≤9.故答案为:5≤x≤9(5)当0<y<5时,自变量x的值为﹣1<x<0或4<x<5.故答案为:﹣1<x<0或4<x<5.点评:本题考查了二次函数的图象的作法以及二次函数的性质,正确理解函数图象的作法及函数的性质是关键.练1.【解析】首先根据二次项系数判断开口方向,然后把y=3x2﹣6x转化为y=3(x﹣1)2﹣3,进而得到对称轴、顶点坐标以及最值.解:∵二次函数y=3x2﹣6x二次项系数为a=3,∴开口向上,A选项正确;∵y=3x2﹣6x=3(x﹣1)2﹣3,∴对称轴为x=1,顶点坐标为(1,﹣3),B、C正确;∴当x=1时有最小值为﹣3,D选项错误;故选:D.点评:本题主要考查了二次函数的性质,解答本题的关键是熟练掌握二次函数图象的顶点坐标,对称轴以及开口方向等.练2.【解析】把此二次函数化为顶点式或直接用公式法求其最值即可.根据抛物线的增减性填空.解:∵二次函数y=2x 2﹣4x+5可化为y=2(x ﹣1)2+3,∴当x=1时,二次函数y=2x 2﹣4x+5的最小值是3,∵抛物线的对称轴是x=1,抛物线的开口方向向上,∴当x <1时,y 随x 的增大而减小.故答案是:1;3;x <1.点评:本题考查了二次函数的性质.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.【例2】【解析】抛物线的顶点在x 轴上,那么抛物线顶点坐标中的纵坐标为0,即=0;然后将已知的a 、b 的值代入上式中,即可求得c 的值.解:根据题意,得=0,将a=1,b=﹣2代入得=0,所以c=1. 故本题选B .点评:此题考查了顶点坐标的表示方法,解题的关键是理解题意.练3.【解析】根据二次函数的对称轴公式列方程求解即可.解:由题意得,解得m=8. 故答案为:8.点评:本题考查了二次函数的性质,熟记对称轴的求法是解题的关键.练4 【解析】根据抛物线的顶点公式求解即可. 解:由题意得,121m -=⨯,解得m=-2. 故答案为:-2.点评:本题考查了二次函数的性质,熟记顶点坐标公式是解题的关键.课后小测答案:一、选择题1.【解析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解:∵+2x+1=﹣(x2﹣4x)+1=﹣(x﹣2)2+3,∴顶点坐标是(2,3).故选A.点评:此题主要考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.2.【解析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.解:根据题意,得=0,解得c=16.故选:D.点评:本题考查求抛物线顶点纵坐标的公式,比较简单.3. 解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选:B.点评:本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.4.【解析】根据二次函数的性质解题.解:在函数y=x2﹣4x+3中a=1>0,∴此函数图象开口向上;又∵a=1,b=﹣4,c=3,∴﹣=2,=﹣1.∴顶点坐标是(2,﹣1),且对称轴是x=2,∴故D正确;∴令x2﹣4x+3=0,解得x1=1,x2=3,∴此函数图象和x轴有交点,求交点坐标是(1,0);(3,0).故B正确;当x<1时,即说明x的取值范围在对称轴的左边,∴y随x的增大而减小,故A正确;当1<x<3时,y的值在x轴下方,∴y<0,故C错误.故选:C.点评:考查二次函数图象开口方向、顶点坐标、对称轴与增减性.5.【解析】先求出二次函数y=x2﹣4x﹣m的图象的对称轴,然后判断出A(2,y1),B(﹣3,y2),C(﹣1,y3)在抛物线上的位置,再根据二次函数的增减性求解.解:∵二次函数y=x2﹣4x﹣m中a=1>0,∴开口向上,对称轴为x=﹣=2,∵A(2,y1)中x=2,∴y1最小,又∵B(﹣3,y2),C(﹣1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,故y2>y3.∴y2>y3>y1.故选:C.点评:本题考查了二次函数的性质.关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.6. 【解析】先由直线y=ax+b(a≠0)在第二、四象限,得出a>0,b=0,再判断抛物线的开口方向和对称轴.解:∵直线y=ax+b(a≠0)在第二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x=0,即y轴.故选A.点评:本题考查了一次函数和二次函数的图象与其系数的关系,先由一次函数的图象判断出a、b的正负,再根据二次函数的性质进行判断.二、填空题7.【解析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.解:由原抛物线方程,得y=(x2+2x)+,即y=(x2+2x+1)+﹣,∴y=(x+1)2+3;故答案是:y=(x+1)2+3.点评:本题考查了二次函数的解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.【解析】根据二次函数的增减性,结合条件可求得抛物线的对称轴方程,可得到关于a 的方程,可求得答案.解:∵y=ax2﹣(a+1)x﹣2,∴其对称轴方程为x=,又当x>1时,y的值随x的值增大而增大,当x<1时,y的值随x的值增大而减小,∴其对称轴为x=1,∴=1,解得a=1,故答案为:1.点评:本题主要考查抛物线的对称轴及增减性,掌握在对称轴两侧的增减性相反是解题的关键.9.【解析】分三种情况考虑:对称轴在x=﹣1的左边,对称轴在﹣1到2的之间,对称轴在x=2的右边,当对称轴在x=﹣1的左边和对称轴在x=2的右边时,可根据二次函数的增减性来判断函数取最小值时x的值,然后把此时的x的值与y=﹣4代入二次函数解析式即可求出a的值;当对称轴在﹣1到2的之间时,顶点为最低点,令顶点的纵坐标等于﹣4,列出关于a的方程,求出方程的解即可得到满足题意a的值.解:分三种情况:当﹣a<﹣1即a>1时,二次函数y=x2+2ax+a在﹣1≤x≤2上为增函数,所以当x=﹣1时,y有最小值为﹣4,把(﹣1,﹣4)代入y=x2+2ax+a中解得:a=5;当﹣a>2即a<﹣2时,二次函数y=x2+2ax+a在﹣1≤x≤2上为减函数,所以当x=2时,y有最小值为﹣4,把(2,﹣4)代入y=x2+2ax+a中解得:a=﹣>﹣2,舍去;当﹣1≤﹣a≤2即﹣2≤a≤1时,此时抛物线的顶点为最低点,所以顶点的纵坐标为=﹣4,解得:a=或a=>1,舍去.综上,a的值为5或.故答案为:5或点评:此题考查二次函数的增减性和二次函数最值的求法,是一道综合题.求二次函数最值时应注意顶点能否取到.三、解答题10. 分析:(1)根据函数解析式可求出顶点坐标、对称轴及与坐标轴的交点;根据二次函数的顶点、对称轴及与y轴的交点可画出图象;(2)根据确定的对称轴及顶点坐标确定其增减性即可.解:(1)∵y= -2x2+4x+6= -2(x2-2x+1-1)+6=-2(x-1)2+8,∴顶点坐标为(1,8),对称轴为x=1;令y= -2x2+4x+6=0,解得x=-1或x=3,∴抛物线与x轴的交点为(-1,0)和(3,0);令x=0,则y=6,∴抛物线与y轴的交点为(6,0),大致图象为:(2)∵开口向下且对称轴为x=1,∴当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小;函数值有最大值,为8.点评:本题考查了二次函数的性质,解题的关键是能够确定函数的对称轴及顶点坐标以及抛物线与坐标轴的交点坐标.11.【解析】(1)直接将y=0代入=0求出即可;(2)首先求出函数顶点坐标,设顶点在直线y1=kx+b上,代入函数解析式求出k,b的值即可.(1)解:当y=0时,===0,解得:m=﹣;(2)证明:函数y=x2+(2m+1)x+m2﹣1的顶点坐标为:(﹣,)设顶点在直线y1=kx+b上,则﹣k+b=,故﹣mk=﹣m,解得:k=1,b=,不论m取何值,该函数图象的顶点都在直线y1=x﹣上.点评:此题主要考查了二次函数的性质以及二次函数最值求法,得出k的值是解题关键.。
二次函数y=ax2+bx+c
1 2 1 即y x x 。 2 2
1.抛物线y=-x2+mx-n的顶点坐标是 (2,-3),求m,n的值。
2.不画图象,说明抛物线y=-x2+4x+5可 由抛物线y=-x2经过怎样的平移得到?
求下列二次函数图像的开口、顶点、对称轴
1 ①y=2x2-5x+3②y=- 2
x2+4x-9 ③y=(x-3)(x+2)
2 x 2 7 7
2
y最小值=-7 。 所以当x=2时,
解法二(公式法): 因为a=2>0,抛物线 y 2 x2 8x 1有最低点, 所以y有最小值,
4 2 1 8 b 8 4ac b 7 因为 - 2a 2 2 2, 4a 4 2
1 二次函数 y= —x2-6x +21图象的
画法:
2 (1)“化” :化成顶点式 ;
(2)“定”:确定开口方向、对称轴、顶 点坐标; (3)“画”:列表、描点、连线。
1 2 y x 6 x 21 2
你知道是怎样配 方的吗?
配 方
(1)―提”:提出二次项系数;
( 2 )“配”:括号内配成完全平方
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
顶点坐标
对称轴 位置 开口方向
由a,b和c的符号确定
由a,b和c的符号确定
向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大 . 2
向下
2
函数y=ax²+bx+c的顶点是
求二次函数y=ax² +bx+c的对称轴和顶点坐标.
二次函数配方法求最值
二次函数配方法求最值二次函数求最值的方法主要有两种,一种是利用二次函数的几何性质,另一种是通过配方法进行转化。
以下将详细介绍这两种方法的求最值过程。
一、利用二次函数的几何性质求最值对于一般的二次函数y=ax^2+bx+c,其中a、b、c为常数,它的图像是一个抛物线。
根据几何性质,当抛物线开口向上时,即a>0时,二次函数的最小值出现在抛物线的顶点上;当抛物线开口向下时,即a<0时,二次函数的最大值出现在抛物线的顶点上。
以y=x^2为例,这是一条开口向上的抛物线,最小值出现在顶点上。
其中,顶点的横坐标x=-b/2a,纵坐标y=(-b/2a)^2、所以最小值为y=0,即抛物线的最小值为0。
当二次函数不是这种简单形式时,我们可以通过变形将其转化为y=a(x-h)^2+k的形式,其中(h,k)表示顶点的坐标。
具体步骤如下:1.将二次函数用配方法转化为y=a(x-h)^2+k的形式,即将二次项用完全平方式配成平方。
2.利用配方法,将二次函数转化成一个完全平方的形式。
具体的配方法步骤如下:a.将二次项的系数a取出,并将其与常数项c除以2后的结果的平方作为一个新的常数d,即d=(b/2a)^2b. 将二次项系数a乘到括号里的平方项上,即a(x^2+bx/a)。
c.将常数项c减去新的常数d,即c-d。
d. 利用一元二次三项式平方公式,将前两项平方后相加,并加上常数项c-d,即得到一个完全平方,即(x^2+bx/a)^2+c-d。
3.将二次函数化简后,与y=a(x-h)^2+k进行对比,得到方程的参数。
a.将二次函数化简后的表达式与y=a(x-h)^2+k进行对比,即由d=(b/2a)^2和c-d表示的表达式与h和k进行对比,得到方程参数h和k的值。
b.根据得到的参数h和k,就可以得到最值的横坐标和纵坐标。
二、利用配方法进行转化求最值配方法是一种通过变量替换来变形求解的方法,主要用于解决二次函数的最值问题。