复变函数(2.1.2)--函数解析性的概念及其判定
复变函数02

en[ln z i(argz2kπ)]
z en inargz r nein
例 f (z) x2 axy by2 i(cx2 dxy y2 )
求a, b, c, d 使 f(z)在复平面内处处解析.
解 由于
u 2x ay , u ax 2by
x
y
v 2cx dy , v dx 2 y.
x
y
要 使 u v , u v x y y x
24
对数函数的性质 不难证明,复变数对数函数保持了实变
数对数函数的基本性质.
运算性质
Ln (z1z2 ) Ln z1 Ln z2
Ln
z1 z2
Ln
z1 Ln
z2
上面两个等式应理解为两端可能取的函
数值的全体是相同的,也就是说,对于
一端的任一值,另端必有一值和它相等. 25
对数函数的解析性 对数函数的主值lnz,包含两个部分 ln z = ln|z|+ i arg z ln|z|除原点外处处连续.
数连续且满足C-R方程,则f(z)可导.
11
函数解析的充要条件 根据函数在区域内解析的定义和函数可
导定理,可得判断函数在区域 D内解析 的一个充要条件.
定理 函数 f(z) = u(x, y) + iv(x, y)在区域 D内解析的充要条件是: u(x, y)与v(x, y) 在 D内可微,且满足C-R方程
(1) f (z) z (2) f (z) z Re(z)
(3) f (z) ez ex (cos y i sin y).
13
解 (1) f (z) z , 则u(x,y) = x, v(x,y) =-y
解析函数的概念

第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象.它在理论和实际中有着广泛的应用.本章在先学习复变函数概念的基础上,讨论解析函数.学习函数解析的的一个充要条件,以及如何用实部、虚部所具有的微分性质表达函数的解析.学习常用的初等复变函数.§2.1 解析函数的概念教学目的:1.理解并掌握复变函数可微和解析的定义,以及复变函数在一点和闭区域上解析的含义;能正确判断所给函数在一点或在一个区间上的可导性与解析性.2.能理解并掌握复变函数可微、解析与实、虚部两个二 元实函数的关系(C —R 条件);正确运用解析的充要条 件判断函数的解析性.3.熟练掌握几类初等单值解析函数,并了解几类典型的 初等多值解析函数.重难点:证明函数的可导性与解析性;掌握函数可导与解析的联系 与区别.教学方法:启发式讲授与指导练习相结合教学过程:§2.1.1 复变函数的导数解析函数是复变函数论的主要研究对象, 它是一类具有某种特性的可微函数.首先, 我们类似于实函数的导数引进复变函数的导数.【定义2.1】设)(z f w =在某0()U z 内有定义,记0z z z -=∆且对 00()z z z ∀+∆∈,)()(0z f z f w -=∆)()(00z f z z f -∆+=, 如果z w z ∆∆→∆0lim00)()(lim 0z z z f z f z z --=→(A =≠∞的常数)存在 (即对0ε∀>, 0δ∃>,..s t 当D z ∈且0z z δ-<时, 总有 ε<---A z z z f z f 00)()(), 则称)(z f 在0z 可导或可微(其中D 为)(z f 的定义域).A 称为)(z f 在0z 的导数, 记为)(0z f A '=或0|z z dw A dz ==,即 A =zw z f z ∆∆='→∆00lim )(00)()(lim 0z z z f z f z z --=→. 如果z w z ∆∆→∆0lim 00)()(lim 0z z z f z f z z --=→不存在, 则称)(z f 在0z 不可导或不可微.如果)(z f 在区域D 内每一点都可微, 则称)(z f 在D 内可微.注:10. 由于复变函数导数的定义与实函数导数的定义形式一致,容易验证, 实函数求导的基本公式大多可不加更改地移植到复变函数上来.20.由定义2.1易得, 若函数)(z f 在0z 可导, 则)(z f 在0z 连续(即连续是可导的必要条件) .例1 讨论z z f =)(在z 平面上的可导性.解 在复平面上任取一点z ,由于当0→∆z 时,zz z z f z z f ∆∆=∆-∆+)()(的 极限不存在, 所以 z z f =)(在点z 不可导.再由z 的任意性, z z f =)(在z 平面上处处不可导.(注意z zz z f z z f ∆∆=∆-∆+)()(的极限不存在图2 .1)例2 证明 函数2()f z z =在 0z =点可导,且导数等于0. 证明 由于 0000()()()(0)lim lim 0z z z f z f z f z f z z z →→--=--200lim lim 0z z zz z →→===,故函数2()f z z =在 0z =点可导,且导数等于0.例3 设()Re f z z =,证明 ()f z 在全平面处处不可导. 证明 因为对平面上任意一点0z ,000000()()Re Re Re()f z f z z z zz z z z z z z ---==---,考虑当z 沿直线0Im Im z z =趋于0z 时00000000Im Im Im Im ()()Re()lim lim 1z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- 考虑当z 沿直线0Re Re z z =趋于0z 时00000000Re Re Re Re ()()Re()lim lim 0z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- ;所以当0z z →时,极限000Re()limz z z z z z →--不存在, 即()f z 在0z 没有导数. 由0z 的任意性知函数()f z 在全平面处处不可导.例4 证明: 函数nz z f =)(在z 平面上处处可导, 且 1)(-='n n nz z (n 为正整数) .证明 在z 平面任取一点z , 因为()()()n nf z z f z z z z z z+∆-+∆-=∆∆121(1)2n n n n n nz z z z ----=+∆++∆ 所以 0lim →∆z 1)()(-=∆-∆+n nz z z f z z f , 即n z z f =)(在点z 可 导,且1)(-='n n nz z . 由点z 的任意性知, 结论成立.练习:试说明函数 224(),0()0,0xy x iy z f z x y z ⎧+≠⎪=+⎨⎪=⎩在原点不可导.提示: 22224200()(0)lim lim 01y y x ky x kyf z f xy k z x y k →→==-==-++ 则()f z 在原点的导数随k 而变化,故结论成立.§2.1.2 解析函数的概念与求导法则1.【定义2.2】如果)(z f 在点0z 的某邻域内处处可导, 则称)(z f 在点0z 解析;如果)(z f 在区域D 内可微(即)(z f 在D 内每一点都可导), 则称)(z f 在区域D 解析; 如果)(z f 在区域G 内解析, 而闭区域G D ⊂,则称)(z f 在闭区域D 上解析.如果)(z f 在0z 处 不解析,则称0z 为)(z f 的奇点.(如图2 .2)说明: 由定义2.2知,10.函数解析一定是与相关区域联系在一起的.即函数在一点解 析不是函数在该孤立点的性质. 函数在一点可导与在一点解析不等价;指函数在此点的某邻域内可导;20. 函数在一个区域D 内解析有时也称此函数为区域D 上的全纯函数或正则函数.函数在区域D 内解析等价于函数在区域D 内处处可导(即在区域D 内每一点都解析).函数在某闭区域上解析是指函数在包含此闭区域的更大的区域内解析.2.类似于实函数的求导法则, 关于解析函数我们有如下法则:1) 四则运算:如果)(z f , )(z g 都在区域D 内解析, 则他们的和、 差、乘积以及商(商的情形要求分母函数不为零)在区域D 内仍解析, 并且 [()()]()()f z g z f z g z '''±=± ;[()()]()()()f z g z f z g z f z g z'''⋅=+⋅;2()()()()()[](()0)()()f z f z g z f z g z g z g z g z ''⋅-⋅'=≠.另:(1)常数的导数为零.(2)()1n n z nz -'=(n 为正整数);(3)[()]()kf z kf z ''=(k 为常数).(4)多项式函数n n n a z a za z P +++=- 110)(在z 平面上解析, 且12110)1()(---++-+='n n n a za n z na z p (5)而有理函数m m n nb z b a z a z R ++++=00)(在z 平面上使分母不为零点处处都是解析的. 2) 复合函数求导法则:设()f z ξ=在z 平面上的区域D 内解析, ()w g ξ=在ξ平面上的区域G 内解析, 并且()f D G ⊂, 则复合 函数[()]w g f z =在区域D 内也解析, 并且{[()]}()()[()]()g f z g f z g f z f z ξ'''''=⋅=⋅.3) 反函数求导法则:设函数()w f z =在区域D 内为解析函数且 ()0f z '≠,又反函数1()()z f w w ϕ-==存在且连续,则 ()11()|()(())z w w f z f w ϕϕϕ='==''. 提问:1.设41()(1)4f z z i z =-+,则方程 ()0f z '=的全部解为 . 答案: 32244(1)0sin )33k k z i z i ππππ++-+=⇒==+(其中 0,1,2)k =2.若0z 是函数 ()f z 的奇点,则()f z 在点0z 不可导.( × )3.若0z 是函数 ()f z 的解析点,则()f z 在点0z 可导. ( √ )4.0()f z '存在,则()f z 在点0z 解析. ( × ) 例5 设212)23()(+-=z zz f , 由上述法则知, 2202()21(32)(32)f z z z z z ''=-+-+22021(32)(61)z z z =-+-.例6 求函数 5223()41z z f z z -+=+的解析性区域以及在该区域上的导数.解 设52()23,()41P z z z Q z z =-+=+,则P(z) , Q(z)在全平面上 解析,再由商的求导法则知()0Q z ≠时, ()()()P z f z Q z =在平面上解析,由()0Q z =得2i z =±;故函数)(z f 的解析区域是全平面除点2i z =±外的区域.且由商式求导公式得4222246104241()(41)z z z z f z z ++--'=+. §2.1.3 解析函数的一个充要条件(柯西—黎曼条件)与判别从形式上,复变函数的导数及其运算法则与实函数几乎没有什么差别,但实质上它们之间存在很大的的差异.下面,我们来研究复变函数的可微和解析与其实部、虚部两个二元实函数之间的关系.【定理2. 1】(可微的充要条件)设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在点D iy x z ∈+=可微(可导)的充要条 件是 :(1) ),(),,(y x v v x u 在点iy x z +=可微;(2) ),(),,(y x v v x u 在点iy x z +=满足x v y u y v x u ∂∂-=∂∂∂∂=∂∂, ( 柯西—黎曼条件也称为C R -方程 ).证明 必要性:若 )(z f 在点D iy x z ∈+=可微记ib a z f +=')(,v i u w ∆+∆=∆, y i x z ∆+∆=∆, 其中 (,)(,)u u x x y y u x y ∆=+∆+∆-,(,)(,)v v x x y y v x y ∆=+∆+∆-由导数的定义知()()()()()w f z z o z a ib x i y o z '∆=∆+∆=+∆+∆+∆()0()(0)a x b y i b x a y z z =∆-∆+∆+∆+∆∆→比较上式两边的实部、虚部得 ),(),(y x u y y x x u u -∆+∆+=∆y b x a ∆-∆=()o z +∆)(0z ∆→)),(),(y x v y y x x v v -∆+∆+=∆)()b x a y o z =∆+∆+∆(0z ∆→)再由实函数中二元实函数可微的定义知, ),(),,(y x v v x u 在点iy x z +=可微, 且xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,. 充分性: 记xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,, 且),(),,(y x v v x u 在点iy x z +=可微,所以 w u i v ∆=∆+∆[()][()]x y x y u x u y o z i v x v y o z ''''=∆+∆+∆+∆+∆+∆ ()()()]x x y y u i v x u i vy o z ''''=+∆++∆+∆ ()()()a b i x b i a y o z=+∆+-+∆+∆ ()()()a b i x i a b i y o z =+∆++∆+∆()()()a b i x i y o z =+∆+∆+∆ ()()f z z o z '=∆+∆. 所以 00()lim lim ()x x o z w a bi f z z z∆→∆→∆∆'=++=∆∆. 说明:10. 定理2.1中条件xv y u y v x u ∂∂-=∂∂∂∂=∂∂,称柯西—黎曼条件或柯西—黎曼方程或C R -方程.20. 由定理2.1的证明知,如果),(),()(y x iv y x u z f +=在 点iy x z +=可微, 则有导数公式 yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(. (由C R -方程还可以写出其它形式)30.特别注意:C R -方程是函数可导的必要而非充分条件.例如:函数 2222220(,)(,)00xy x y x y u x y v x y x y ⎧+≠⎪+==⎨⎪+=⎩令 ()(,)(,)f z u x y iv x y =+,则()f z 在点0z =处满足C R -方程即0,0u v u v x y y x∂∂∂∂===-=∂∂∂∂, 但是由于()f z 在点0z =处不连续,所以函数在0z =处不可导. 在实函数中,我们知道由二元实函数具有一阶连续的偏导数可以 推得二元函数可微, 由此可得【推论】※ (可微的充分条件) 设),(),()(y x iv y x u z f +=定义在 区域D 上,则)(z f 在点D iy x z ∈+=可微的充分条件是(1) ),(),,(y x v v x u 在点iy x z +=处具有一阶连续的偏导数;(2) ),(),,(y x v v x u 在点iy x z +=满足C —R 条件.将上述定理1及其推论运用到区域D 的每一点上,可得函数解析的充要条件.【定理2.2】 设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在D 内解析的充要条件是(1) ),(),,(y x v v x u 在D 内处处可微;(2) ),(),,(y x v v x u 在D 内满足C R -方程xv y u y v x u ∂∂-=∂∂∂∂=∂∂,. 【推论】设),(),()(y x iv y x u z f +=定义在区域D 上, 则)(z f 在D 内解析的充分条件是 (1) ),(),,(y x v v x u 在D 内具有一阶连续的偏导数; (2) ),(),,(y x v v x u 在D 内满足C —R 方程. 注: 定理2.2的充分性由推论立即可得, 但必要性的证明需要用到第三章中的解析函数的无穷可微性.例7 讨论下列函数的可导性与解析性.(1)()Re f z z =解: 设iy x z +=, 则有()Re f z z x ==,记 (,)u x y x =, 0),(=y x v . 因1,0u u x y∂∂==∂∂, 0,0=∂∂=∂∂y v x v , 显然它们不满足C —R 条件, 所以 由定理1知, ()Re f z z =在z 平面上处处不可导且处处不解析.(2)2)(zz f =.解: 设iy x z +=, 则有222)(y x zz f +==, 记 22),(y x y x u +=, 0),(=y x v . 因y y u x x u 2,2=∂∂=∂∂, 0,0=∂∂=∂∂yv x v , 显然它们都是连续的.要使C —R 条件满足, 只需0,0==y x 即可,所以 2)(zz f =仅在原点可导, 但在z 平面上处处不解析. (3)()(cos sin )x f z e y i y =+.解:设iy x z +=,),(),()(y x iv y x u z f +=,则有 cos ,sin x xu e y v e y ==因为 cos ,sin x x x y y x u e y v u v e y ''''===-=,且四个偏导数存在且连续,所以 ()f z 在z 平面上处处可导且处处解析且)()(z f z f =' ()(cos sin )()x z u v f z i e y i y e f z x x∂∂'=+=+==∂∂. 注: 满足此例题条件的解析函数称为复指数函数.说明:在讨论具体函数的可导性和解析性时, 可先找出实部和虚部实函数,再验证定理2.2或者推论的条件(1)和(2)得出可导性. 但在回答解析性时一定要慎重, 必须再考虑函数在可导点的邻域内的可导性后才能给出正确的回答.若C —R 方程不成立,则函数一定不可导.用推论有时更方便.提问:5.函数 22()f z x iy =+在点1z i =+处是(B )(A )不可导的. (B) 可导的. (C) 解析的. (D)既不可导也不解析. 解 由C-R 方程可推出在 x y =上()f z 可导,在复平面上处处不 解析.6.若)(z f 在曲线C 上每点不解析,则)(z f 在C 上不可导.( ⨯ )7.若)(z f 在曲线C 上每点可导,则)(z f 在C 上每一点解析.( ⨯ ) 练习:(1)讨论函数iy xz f -=2)(的可微性与解析性. 解 记2),(x y x u =, y y x v -=),(,因0,2=∂∂=∂∂y u x x u , 1,0-=∂∂=∂∂yv x v ,显然它们都是连续的.要使C —R 条件满足, 只需,12-=x 即21-=x , 所以 iy x z f -=2)(仅在直线21-=x 上可导, 但在z 平面上处处不解析.(2) 讨论函数 3232()3(3)f z x xy i y x y =+++的可导性与解析性. 解 记 32(,)3u x y x xy =+, 32(,)3v x y y x y =+, 因 2233,6u u x y xy x y ∂∂=+=∂∂, 226,33,v v xy y x x y∂∂==+∂∂,显然它们都是连续的. 要使C —R 条件满足, 只需0xy = 即()f z 仅在x 轴或y 轴上的点可导, 但在z 平面上处处不解析.例8 求函数 ()f z =Im Re z z z ⋅-在可导点处的导数. 解 ()f z =2Im Re z z z xy x iy ⋅-=-+,则(,)u x y xy x =-,2(,)v x y y =,1,,0,2,u u v v y x y x y x y∂∂∂∂=-===∂∂∂∂四个一阶偏导数连续, 由C —R 方程得01x y =⎧⎨=-⎩ 故函数 ()f z 仅在一点z i =-可导,且导数为()(1)|2z i f i y =-'-=-=-.例9若函数()f z u iv =+在区域D 内解析, 则函数()i f z 也在区域D 内解析.证明 因为()()i f z if z =-, 而()f z 在区域D 内解析, 所以()i f z 也在区域D 内也解析.例10 判断函数 ()f z =232x y i +在何处可导,何处解析,并求 (3),(32)f i f i ''++.解 2(,)u x y x =, 3(,)2v x y y =,22,0,0,6,u u v v x y x y x y∂∂∂∂====∂∂∂∂ 四个一阶偏导数连续,由C —R 方程得23x y =故 函数 ()f z 仅在曲线23x y =上可导,又点3z i =+在此曲线上,所以(3)f i '+存在且(3)f i '+=6,而32z i =+不在曲线上, 所以 (32)f i '+ 不存在.故函数 ()f z 仅在z i =-可导,且()(1)|2z i f i y =-'-=-=-. 例11判断函数 ()f z =322331(3)x xy i x y y -++-在复平面上 的解析性;若解析,试求()f z '.解 32(,)31u x y x xy =-+, 23(,)3v x y x y y =-,2233,6u u x y xy x y ∂∂=-=-∂∂,6v xy x∂=∂,2233v x y y ∂=-∂,四个一阶偏导数连续,由C —R 方程得xv y u y v x u ∂∂-=∂∂∂∂=∂∂,成立, 故函数 ()f z 在复平面上处处解析且()f z '=23z .例12 求实数,a b ,使()f z =2()x y i ax by -++在复平面上解析. 解()()2f x x y i ax by =-++在复平面上处处解析设(),2u x y x y =-,(),v x y ax by =+则2u x ∂=∂ 1u y ∂=-∂ v a x∂=∂ v b y ∂=∂满足C R -条件 u v x y∂∂⇒=∂∂⇒2b = u v y x ∂∂⇒=-∂∂⇒1a = 练习:设3232(,)()f x y my nyx i x xly =+++为解析函数,试确定n m l ,,的值.解:令32(,)u x y my nyx =+, 32(,)v x y x lxy =+,iv u y x f +=),(,则2x u nxy =, 323y u my nx =+, 223x v x ly =+, 2y v lxy =,这四个一阶偏导数存在且连续,因为解析函数()f z 满足C-R 方程,即:x y u v =,y x u v =-,亦即:lxy nxy 22=且323my nx +=22(3)x ly -+ 解得:m =1, 3-==l m .例13 函数)(z f 在区域D 内解析, 且满足下列条件之一,证明: )(z f 在区域D 内必为常数.(1) ()0f z '=.(2)Re ()f z =常数.(3))(z f 在区域D 内解析. (4) )(z f 在区域D 内为常数.(5)c bv au =+,其中a,b,c 为不 全为零的实常数.证明(1) 由()0u v v u f z i i x x y y∂∂∂∂'=+=-=∂∂∂∂ 知 0u v v u x x y y∂∂∂∂====∂∂∂∂, 故 u ,v 都是常数,从而 )(z f 在D 内必为常数.(2)因为 u =常数,故 0u u x y∂∂==∂∂,由C R -方程 v v x y∂∂=∂∂=0,从而 )(z f 在D 内必为常数. (3) 设),(),()(y x iv y x u z f +=, 则 ),(),()(y x iv y x u z f -=.由题设)(z f 和)(z f 都在区域D 内解析,由C —R 条件得x v y u y v x u ∂∂-=∂∂∂∂=∂∂,, xv y u y v x u ∂∂=∂∂∂∂-=∂∂,, 解得 0,0=∂∂=∂∂y u x u , 0,0=∂∂=∂∂yv x v 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在区域D 内为常数.(4) 设),(),()(y x iv y x u z f +=, 则222)(v u z f +=. 由题设)(z f 在区域D 内解析, 且)(z f 为常数, 记为A , 从而xv y u y v x u ∂∂-=∂∂∂∂=∂∂, (1) 222A v u =+ (2)由(2)式得 022=∂∂+∂∂xv v x u u (3) 022=∂∂+∂∂yv v y u u (4) 若0A =, 则0)(=z f , 结论显然成立;若0A ≠,联立(1)(3)(4)得 0,0=∂∂=∂∂y u x u ,0,0=∂∂=∂∂yv x v ; 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在 区域D 内为常数.(5)设a ≠0,则a bv c u -=,于是有 y y x x v a b u v a b u -=-=,. 由C-R 方程 .;x y y x v u v u -== 得0122=⎪⎪⎭⎫ ⎝⎛+⇒⎪⎭⎫ ⎝⎛-==-==y y y x x y v a b v a b a b u a b v a b u v ∴u,v 必为常数,即f(z)为常数.说明:在讨论满足一定条件的解析函数的性质时, 柯西黎曼条件常 常起着关键的作用.例14 ※ 如果)(z f 在上半平面内解析, 则)(z f 在下半平面内解析.证明 在下半平面内任取定一点z 0以及任一点z , 则 0z ,z 都属 于上半平面, 并且 ))()(()()(0000z z z f z f z z z f z f --=-- 因为)(z f 在上半平面内解析, 所以)()()(lim 0000z f z z z f z f z z '=--→,从而)())()((lim )()(lim 0000000z f z z z f z f z z z f z f z z z z '=--=--→→, 即)(z f 在点z 0可导. 再由z 0的任意性, )(z f 在下半平面内解析. 说明:在讨论函数的解析性时, 有时可直接利用导数的定义. 练习:1.函数在一点可导就是函数在一点解析这种说法对吗?答:不对,函数在一点解析是指函数在此点的某邻域内解析,因此只能说函数在一点解析函数在此点一定可导.2.函数在一条曲线上可导,则函数在此曲线上解析这种说法对吗?(不对,理由同上.)3.讨论下列函数的可导性 (1) z w =; (2)z w Re =或z Im .解 (1)设z x iy =+, w u iv =+,则 u =0v =. 由高数学知识知 u =, 0v =在平面上微, 所以, z w =在原点不可导.又当(,)(0,0)x y ≠时,u x ∂=∂,u y ∂=∂, 0v x ∂=∂, 0v y ∂=∂ 要使C R -条件满足, 只须0=,0=, 即0x =且0y =这与(,)(0,0)x y ≠矛盾, 故当(,)(0,0)x y ≠时u和v 不满足C R -条件, 所以z w = 当(,)(0,0)x y ≠时, 也不可导.综上所述, z w =在平面上处处不可导.(2) 设z x iy =+, w u iv =+,则 u x =,0v =. 由高数知识 u x =与0v =在平面上可微,但 10u v x y ∂∂=≠=∂∂, 0u v y x∂∂==-∂∂, 即C R -.条件不满足, 所以, z w Re =在平面上处处不可导.同理可得, Im w z =在平面上处处不可导.5.利用z w =的不解析性据理说明函数)0(1≠=z z w 在z 平面上不解析.解 (反证法) 显然)0(1≠=z z w 在0z =不解析(因它在0z =无意义) ; 假设)0(1≠=z z w 在某一点0z '≠解析, 由解析函数的四则运算性得, z w =在某一点0z '≠也解析, 这与z w =在平面上处处不解析矛盾.故 )0(1≠=z z w 在z 平面上处处不解析.6.讨论下列函数的可微性和解析性:(1)y ix xy z f 22)(+=; (2) 22)(iy x z f +=;(3) )3(3)(3223y y x i xy x z f -+-=.解 (1) 设()f z u iv =+, 则2u xy =, 2v x y =. 显然它们都在平面上具有一阶连续的偏导数 又2u y x ∂=∂, 2u xy y ∂=∂, 2v xy x∂=∂, 2v x y ∂=∂. 要使C R -条件满足, 只须22y x =,22xy xy =-, 即0x =且0y =所以, y ix xy z f 22)(+=仅在原点可导, 在平面上处处不解析.(2) 设()f z u iv =+, 则2u x =, 2v y =. 显然它们都在平面上具有一阶连续的偏导数又2u x x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 2v y y ∂=∂. 要使C R -条件满足, 只须22x y =, 即x y =.所以, 22)(iy x z f +=仅在直线0x y -=上解析, 在平面上处处不解析.(3) 设()f z u iv =+, 则323u x xy =-, 233v x y y =-. 显然它们都在平面上具有一阶连续的偏导数又2233u v x y x y ∂∂=-=∂∂,6u v xy y x ∂∂=-=-∂∂, 即u ,v 满足C R -条件.所以, )3(3)(3223y y x i xy x z f -+-=在平面上处处可导, 也处处解析.7.证明下列函数在平面上解析,并利用yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(分别求出其导数: (1))sin cos ()sin cos ()(y x y y ie y y y x e z f x x ++-=;(2) )3(3)(3223y y x i xy x z f -+-=.证明 (1) 设()f z u iv =+,则(cos sin )x u e x y y y =-, (cos sin )x v e y y x y =+. 显然它们都在平面上具有一阶连续的偏导数又(cos cos sin )x u v e y x y y y x y∂∂=+-=∂∂, (sin sin cos )x u v e x y y y y y x∂∂=-++=-∂∂, 即u ,v 满足C.R 条件. 所以, ()f z 在平面上解析, 且()u v f z i x x∂∂'=+∂∂ (cos cos sin )(sin sin cos )x x e y x y y y ie y x y y y =+-+++[cos sin cos sin (sin cos )]x e y i y x y y y i x y y y =++-++(cos sin )(cos sin )(cos sin )x x x e y i y e x y i y iye y i y =+++++(cos sin )(1)(1)x z e y i y x iy e z =+++=+(2) 同习题3(3)可证()f z 在平面上解析, 于是2222()3363()3u v f z i x y i xy x iy z x x∂∂'=+=-+=+=∂∂. 9.若函数)(z f 在区域D 内解析, 且满足下列条件之一, 证明)(z f 在区域D 内必为常数.(1)在D 内0)(='z f ; (2))(Re z f 或)(Im z f 在区域D 内为常数. 证明 (1) 设()f z u iv =+. 因)(z f 在区域D 内解析,且由解析函数的导数与实部、虚部实函数的关系:yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')( 得 0u x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 0v y ∂=∂. 所以 u 和v 都是实常数. 故 )(z f 在区域D 内必为常数.(2) 设()f z u iv =+, 由题设 u 为实常数, 而)(z f 在区域D 内解析,由C.R.条件知0v u x y ∂∂=-=∂∂, 0v u y x∂∂==∂∂v 也是实常数.所以 )(z f 在区域D 内必为常数.小结:1.函数在一点解析与函数在一点可导不是等价命题;函数在一个区域上解析与函数在一个区域上可导是等价命题.2.判断函数的解析性时最好将其转化为运用推论即对应实、虚部函数是否具有一阶连续偏导数,是否满足柯西-黎曼条件来判定.3.多项式复函数、整数次幂的幂函数、有理函数(分母不为零时)在整个复平面上解析.解析函数的四则运算解析(作商式运算时分母不为零).4.函数的导数公式只须记住:()u v f z i x x∂∂'=+∂∂及柯西-黎曼方程,则在求导数时可根据条件写出相应公式.易犯错误:函数在一点的解析性与在一个区域上的解析性概念混淆.判断函数解析性时方法不妥或错误运用概念.不能正确灵活地求函数的导数.。
复变函数课件:2_2解析函数

存在,则称 f ( z ) 在 z0 处可导或可微,并称这个极限为 f ( z ) 在 z0 的导数,记作 f ' ( z0 ), 即 f ( z0 )= lim
' z → z0 , z∈D
f ( z ) − f ( z0 ) z − z0
f ( z 0 + ∆z ) − f ( z 0 ) ' lim 或 f ( z0 )= ∆z →0, z0 +∆z∈D . ∆z
所以
f ( z + ∆z ) − f ( z ) f ( z ) = lim ∆z → 0 ∆z
'
1 2 n = lim (Cn z n −1 + Cn z n − 2 ∆z + ⋯ + Cn (∆z ) n −1 ) = nz n −1.
∆z → 0
例2 解
讨论 f ( z ) = Im z的可导性 .
f ( z + ∆z ) − f ( z ) Im( z + ∆z ) − Im z ∆f = = ∆z ∆z ∆z
Im z + Im ∆z − Im z Im ∆z = = ∆z ∆z
∆y Im( ∆x + i∆y ) , = = ∆ x + i∆ y ∆ x + i∆ y
当点沿平行于实轴的方 向( ∆y = 0)而使 ∆z → 0时,
第二节 解析函数
• 一、复函数的导数 • 二、解析函数的概念 • 三、复函数可导与解导的概念 定义2.2.1设复函数 w = f ( z ) 是定义在区域 D上单值 定义
函数, z0 ∈ D. 如果极限
z → z0 , z∈D
lim
f ( z ) − f ( z0 ) f ( z 0 + ∆z ) − f ( z 0 ) lim 或 ∆z →0, z0 +∆z∈D z − z0 ∆z
复变函数的概念

复变函数的概念复变函数的概念复变函数是指定义在复平面上的函数,它可以将一个复数映射到另一个复数。
与实变函数不同,复变函数具有更加丰富的性质和应用。
一、复数及其运算要理解复变函数的概念,首先需要了解复数及其运算。
一个复数可以表示为z=x+yi,其中x和y分别表示实部和虚部。
虚数单位i满足i²=-1。
在复数中,我们可以进行加、减、乘、除等基本运算。
其中加法和减法与实数类似,乘法和除法则需要注意公式的推导。
二、复平面及其坐标表示为了更方便地描述和分析复变函数,在平面直角坐标系中引入了一个新的坐标轴——虚轴,并将实轴称为实部轴,虚轴称为虚部轴。
这样就构成了一个二维平面——复平面。
在复平面中,每个点都可以表示为z=x+yi的形式。
这样我们就可以通过坐标来描述每个点,并将其映射到另一个点。
三、复变函数的定义与实变函数类似,对于给定的自变量z∈C(即z是一个复数),如果存在唯一确定的因变量w∈C(即w也是一个复数),则称w是z的函数值,记作f(z)。
四、复变函数的性质与实变函数不同,复变函数具有更加丰富的性质。
以下是一些常见的复变函数性质:1. 解析性:如果一个函数在某个区域内处处可导,则称该函数在该区域内解析。
2. 共形性:如果一个函数在某个区域内保持角度不变,则称该函数在该区域内共形。
3. 周期性:如果存在一个非零复数c,使得对于所有z∈C,有f(z+c)=f(z),则称f(z)为周期函数。
4. 解析延拓:如果一个解析函数可以通过某种方式扩展到整个复平面上,则称该解析函数具有解析延拓性质。
五、复变函数的应用由于复变函数具有丰富的性质和应用,因此在物理、工程、计算机科学等领域都有广泛的应用。
以下是一些常见的应用:1. 电路分析:利用复变函数可以方便地描述电路中电流和电压等物理量之间的关系。
2. 流体力学:利用共形映射可以将流体力学问题转化为更简单的几何问题。
3. 计算机图形学:利用复变函数可以方便地描述图形的旋转、缩放等变换。
复变函数解析的条件

复变函数解析的条件
复变函数解析的条件是指函数在某个区域内能够解析(即可导)。
在复平面上,复数可以表示为z=x+iy,其中x和y分别是实部和虚部。
复变函数是指将复数映射到其他复数的函数。
复变函数解析的条件包括以下几个方面:
1. 实部和虚部的偏导数存在且连续:如果一个复变函数在某个区域内的实部和虚部的一阶偏导数都存在且连续,那么该函数在这个区域内是解析的。
也就是说,函数对于复平面上的每个点都是可导的。
2. 柯西—黎曼方程:柯西—黎曼方程是解析函数的一个重要条件。
它要求函数的实部和虚部满足一定的关系。
设f(z)=u(x,y)+iv(x,y)是一个复变函数,如果f(z)在某个区域内解析,那么它的实部和虚部满足以下柯西—黎曼方程:
u/x = v/y
u/y = -v/x
这些方程表明了实部和虚部的偏导数之间的关系。
3. 单连通区域:如果一个区域是单连通的,那么在这个区域内的函数都是解析的。
单连通区域是指没有孔洞或环绕的区域,其中任意两点之间都可以通过一条连续的路径相连。
例如,一个圆形区域就是单连通的。
4. 几何性质:解析函数在某个区域内具有一些重要的几何性质,比如保持角度和保持面积。
总之,复变函数解析的条件包括实部和虚部的连续性、柯西—黎曼方程的满足、区域的单连通性以及几何性质的保持。
这些条件保证了函数在区域内的解析性质,使得我们可以进行复变函数的分析和计算。
复变函数总结

复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。
它在物理、工程、经济等领域具有广泛的应用。
复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。
在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。
一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。
复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。
复数的加法、减法、乘法和除法规则与实数的运算规则相似。
二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。
复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。
复函数在复平面上的图像通常是曲线、点或者区域。
三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。
2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。
3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。
4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。
5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。
四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。
2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。
3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。
4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。
5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。
复变函数第4讲
究竟是偶然的现象还是必然的规律? 究竟是偶然的现象还是必然的规律?
定理1 函数f 定理 函数 (z)=u(x, y)+iv(x, y)在点 z0 = x0 + i y0 在点 可导的充要条件是 u(x, y) 和 v(x, y)在 ( x0 , y0 ) 在 可微,且在该点满足 可微,且在该点满足Cauchy-Riemann方程 方程
思考题
实函数中 , f ( x ) = x 在 ( −∞ , +∞ )内可导 ; 复函数中 , f ( z ) = z 的可导性 ?
2 2
处可导, 结论: 结论: 函数 f ( z ) = z 仅在 z = 0 处可导, 处处连续 .
2
事实上
注意到
z
2
= z z,
∆f f ( z 0 + ∆ z ) − f ( z 0 ) ( z 0 + ∆ z )( z 0 + ∆ z ) − z 0 z 0 = = ∴ ∆z ∆z ∆z ( z 0 + ∆ z )( z 0 + ∆ z ) − z 0 z 0 ∆z = = z0 + z0 + ∆z . ∆z ∆z ∆f 当 z 0 = 0 时,lim = 0 , 即 f ' ( 0 ) = 0; ∆z → 0 ∆ z ∆f 当 z 0 ≠ 0 时, lim 不存在 . ∆z→ 0 ∆ z
(1) c ' = 0, 其中c为常复数; (2) ( z n ) ' = nz n−1 ;
(3) 若f (z)、g(z)都可导,则 都可导,
(i ) (ii ) ( f ± g )' = f '± g' ; ( f g )' = f ' g + f g' ;
复变函数第四讲
例如 f ( z ) z 在 z0 0 处可导,
2
反之不对.
但在 z0 0 处不解析.
§2 解析函数的充要条件 1. 主要定理 2. 应用举例
3. 小结与思考
27
一、主要定理
定理一
设函数 f ( z ) u( x , y ) iv ( x , y ) 定义在区域 D 内, 则 f ( z ) 在 D内一点 z x yi 可导的充要条 件是 : u( x , y ) 与 v ( x , y ) 在点 ( x , y ) 可微, 并且在该 点满足柯西-黎曼方程 u v u v , . x y y x
所以 lim f ( z0 z ) f ( z 0 ),
z 0
即f ( z )在 z0 连续.
[证毕]
3.求导法则: 由于复变函数中导数的定义与一元实变函 数中导数的定义在形式上完全一致, 并且复变函 数中的极限运算法则也和实变函数中一样, 因而 实变函数中的求导法则都可以不加更改地推广 到复变函数中来, 且证明方法也是相同的. 求导公式与法则: (1) (c ) 0, 其中c为复常数.
解 由本节例1.1和例1.3知:
2
f ( z ) z 在复平面内是解析的 ;
2
g( z ) x 2 yi 处处不解析;
下面讨论 h( z ) z 的解析性 ,
h( z0 z ) h( z0 ) z0 z z0 z z
2 2
2
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z h( z0 z ) h( z0 ) lim 0. (1) z0 0, z 0 z
复变函数的全纯性与解析性
复变函数的全纯性与解析性复变函数是数学中重要的一个分支,它研究在复数域上定义的函数。
全纯性与解析性是复变函数理论中的两个基本概念,它们具有重要的性质和应用。
本文将介绍复变函数的全纯性与解析性,以及它们之间的关系和应用。
一、全纯性的定义与性质在复变函数中,全纯性是一个基本概念。
一个函数在某个区域内全纯,意味着它在该区域内的导数存在且连续。
更具体地说,设$f(z)$是定义在区域$D$上的一个复函数,如果$f(z)$在$D$内对$z$可导,并且其导函数$f'(z)$在$D$内连续,那么称$f(z)$在$D$内全纯。
全纯函数具有一系列重要的性质。
首先,全纯函数的导数也是全纯函数。
这意味着全纯函数的导函数可以通过求导得到。
其次,两个全纯函数之和、之差和之积仍然是全纯函数。
此外,全纯函数的复合函数也是全纯函数。
这些性质使得全纯函数在实际应用中具有很大的灵活性和可操作性。
二、解析性的定义与性质解析性是复变函数理论中比全纯性更强的一个概念。
一个函数在某个区域内解析,意味着它在该区域内可以展开为幂级数。
更具体地说,设$f(z)$是定义在区域$D$上的一个复函数,如果对于$D$内的任意一点,存在一个圆内的幂级数,使得该幂级数在该点的收敛域包含该点,且在该圆内等于$f(z)$,那么称$f(z)$在$D$内解析。
解析函数具有一些重要的性质。
首先,解析函数在其展开圆内是无穷次可导的,并且导函数等于原函数的幂级数的导数。
其次,解析函数的高阶导数也是解析函数。
此外,两个解析函数之和、之差和之积也是解析函数。
这些性质使得解析函数在数学分析、物理学、工程学等领域中有广泛的应用。
三、全纯性与解析性的关系全纯性是解析性的一个充分条件,但不是必要条件。
也就是说,全纯函数一定是解析函数,但解析函数不一定是全纯函数。
这是因为全纯函数的导数连续,而解析函数只需要在展开圆内的幂级数收敛域内存在。
因此,全纯函数在展开圆外可能存在奇点,而解析函数则可以在展开圆外存在奇点。
复变函数的导数与解析性
(2) 若函数 w f (h) 在 区域G内解析, 而 h ( z ) 在 区域D内解析, 且 ( D) G , 则复合函数 w f [ ( z )] 在 区域D内解析, 且
此极限值称为 f ( z ) 在点 z0 处的导数。 记作 f ( z0 ) 或 w z z 0或
dw . dz z z0
即
f ( z0 ) lim
f ( z0 z ) f ( z0 ) w lim z 0 z z 0 z
如果函数f(z)在区域D内每一点都可导,则称f(z)在 D 内可导.
(3) [ f (z) f ( z ) g ( z ) f ( z ) g( z ) ] g( z) g 2 (z) ( g ( z ) 0) ;
(4) { f [ ( z)]} f (w) ( z) 其中 w ( z) ;
(5) f ( z ) 1 其 中 w f ( z ) 和 z ( w )是 (w)
第八模块
第三节
复变函数
复变函数的导数与解析性
一、复变函数的导数 二、复变函数的解析性
一、复变函数的导数
(一)复变函数的导数的概念
当变量 设函 w f ( z)在包含 z0 的某区域 D 内有定义, z 在点 数 z0 处取得增量时,相应地,函数 f ( z ) 取得增量
w f ( z0 z) f ( z0 ) w lim 如果极限 存在。 则称 f ( z ) 在点 z0 处可导。 z 0 z
例1 例2
2 求函数 f ( z) z 的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 判断下列函数何处可导,何处解析,并在可导或解析处分别求出其导数:
(1)n z z z f =)((n 为大于1的正整数);
(2)i 2)(2233y x y x z f +-=;
(3)2
2222i 2)(y x y x y x y x z f +-+++=。
解 (1)类似于一元实变函数,读者不难用反证法证明:一个可导(解析)函数)(z ϕ与不可导(不解析)函数)(z ψ的乘积)(z f 在0)(≠z ϕ处必不可导(不解析)。
所以,在0≠z 处,n z z z f =)(处处不可导(不解析)。
在0=z 处,由于
0lim 0lim 100==--→→n z n z z z z
z z ,因此,)(z f 仅在0=z 处可导,且0)0(='f ,但在复平面内无处解析。
(2)因为
33),(y x y x u -=, 222),(y x y x v =,
23x x u =∂∂, 23y y u -=∂∂, 24xy x
v =∂∂, y x y v 24=∂∂。
易见四个一阶偏导数处处连续。
为满足C-R 方程,必须
y x x 2243=, 2243xy y -=-,
解之得0==y x ,43==y x 。
所以,当且仅当0=z 和i 4
343+=z 时)(z f (可导,在复平面内处处不解析。
在两个可导点处的导数分别为
0)0(='f , i)1(1627i 4343+=⎪⎭
⎫ ⎝⎛+'f 。
(3)由于
z
z z z y x y x y x z f i 21i)21()i i(2)i ()(22+=+=+-+-=,所以除0=z 外)(z f 处处导,处处解析,并且
2
i 21)(z z f +=' (0i ≠)。
读者不妨再用充要条件将此题重做一遍,并比较两种方法的优劣。
例2 试研究函数
|
|)(xy z f =在0=z 处的可导性。
解 法一 用定义。
由于
y
x y x z f z f ∆∆∆∆∆∆i ||)0()0(+=-+,当y x z ∆∆∆i +=沿射线x k y ∆∆=趋于0时,
i
1||)0()0(lim 0k k z f z f z +±=-+→∆∆∆,它随k 的变化而变化,因此,)(z f 在0=z 处不可导。
法二 用充要条件。
因为
||),(xy y x u =, 0),(=y x v ,
)0,0(0)0,0()0,(lim
)0,0(0y x x v x u x u u ==-=→∆∆∆,)0,0(0)0,0(),0(lim )0,0(0x y y v y
u y u u -==-=→∆∆∆,所以在0=z 处满足C-R 方程。
但是,
22)
()(||])0,0()0,0([y x y x y u x u u y x ∆∆∆∆ρ∆∆∆+=+-,令22)()(y x ∆∆ρ+=沿射线x k y ∆∆=趋于0时,上述比值趋于一个与k 有关的值
2
1k
k
+,故知二元函数||)(xy y u =在点)0,0(处不可微,因此,)(z f 在0=z 处不可导。
例3 设函数),(i ),()(y x v y x u z f +=在区域D 内解析且满足下列条件之一,试证)(z f 在D 中内时常数。
(1))(z f 在D 内也解析;
(2)1e +=v u 。
证 (1)由)(z f 与)(z f 都在D 内解析,必满足C-R 方程得:
y v x u ∂∂=∂∂, y
u x v ∂∂-=∂∂,
y v x u ∂∂-=∂∂, y
u x v ∂∂-=∂∂-。
将上面两组等式分别相加,我们有
0=∂∂x
u , 0=∂∂y u 。
再利用导数公式及C-R 方程,得
0i i )(=∂∂-∂∂=∂∂+∂∂=
'y
u x u x v u z f x ,故知)(z f 在D 内时常数。
(2)利用C-R 方程及等式1e +=v u 可得
x v x u y v v ∂∂=∂∂=∂∂e , y
v y u x v v ∂∂-=∂∂-=∂∂e ,从而有
0)e 1(2=∂∂+y
v v ,故0=∂∂y v ,0=∂∂x
v 。
因此,v 与u 在D 内都是常数,说明)(z f 在D 内也是常数。
例4 试讨论函数
z
z z f Ln ||)(+=的连续性与可导性。
解 由于||z 在复平面上处处连续,而z Ln 在复平面上除原点与负实轴外处处连续,所以利用反证法不难证明)(z f 仅在原点与负实轴上不连续,其余各点处均连续。
关于可导性可类似地讨论。
因为)(z f 在原点与负实轴上不连续,所以也不可导(因为可导必连续)。
在复平面上其余各点处,||z 不可导,而z Ln 可导,用反证法不难证明)(z f 在这些点处也不可导。
所以)(z f 在复平面上处处不可导。
例5 设)(z f 在区域D 内解析,*D 为关于实轴与D 对称的区域,证明)()(z f z g =在*D 内解析。
证 法一 用定义。
设0z 为*D 内任意一点,则D z ∈0。
由已知条件,
⎪⎪⎭
⎫ ⎝⎛--=--=--→→→000000)()(lim )()(lim )()(lim 000z z z f z f z z z f z f z z z g z g z z z z z z )(0z f '=。
根据0z 的任意性知)(z g 在*D 内处处可导,因而在*D 内解析,且)()(z f z g '='。
法二 用充要条件。
由已知),(i ),()(y x v y x u z f +=在D 内解析,故),(y x u 与),(y x v 在D 内可微且满足关于x ,y 的C-R 方程。
任取*i D t s z ∈+=,则D t s z ∈-=i ,故x s =,y t -=。
记
)
,(),(),(t s u y x u t s U -==),(),(),(t s v y x v t s V --=-=,
易见),(t s U 与),(t s V 关于s ,t 可微,且
x
u s x x u s U ∂∂=∂∂=∂∂d d , y u t y y u t U ∂∂-=∂∂=∂∂d d ,x
v s x x v s V ∂∂-=∂∂=∂∂d d , y v t y y v t V ∂∂=∂∂-=∂∂d d 。
由此及u ,v 关于x ,y 的C-R 方程可得
t V s U ∂∂=∂∂, s
V t U ∂∂-=∂∂。
因此,),(i ),(),(i ),()z ()(t s V t s U y x v y x u f z g +=-==的实部U 与虚部V 关于s ,t 也满足C-R 方程,故)(z g 在*D 内解析。