中英文翻译资料

合集下载

机器人结构论文中英文对照资料外文翻译文献

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献FEM Optimization for Robot StructureAbstractIn optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved.1)IntroductionIndustrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot.A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time.APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.Fig. 1 shows the main framework of a parallel robot with three bars. When the length of three bars are changed, conjunct end of three bars can follow a given track, where robot hand is installed. Core of top beam is triangle, owing to three bars used in the design, which is showed in Fig.2. Use of three bars makes top beam nonsymmetrical along the plane that is defined by two columns. According to a qualitative analysis from Fig.1, Stiffness values along z-axis are different at three joint locations on the top beam and stiffness at the location between bar 1 and top beam is lowest, which is confirmed by computing results of finite element, too. According to design goal, stiffness difference at three joint locations must he within a given tolerance. In consistent of stiffness will have influence on the motion accuracy of the manipulator under high load, so it is necessary to find the accurate location of top beam along x-axis.To the questions presented above, the general solution is to change the location of the top beam many times, compare the results and eventually find a proper position, The model will be modified according to the last calculating result each time. It is difficult to avoid mistakes if the iterative process is controlled manually and the iterative time is too long. The outer wall and inner rib shapes of the top beam will be changed after the model is modified. To find the appropriate location of top beam, the model needs to be modified repetitiously.Fig. 1 Solution of Original DesignThis paper gives an optimization solution to the position optimization question of the top beam by APDL language of ANSYS program. After the analysis model first founded, the optimization control program can be formed by means of modeling instruction in the log file. The later iterative optimization process can be finished by the optimization control program and do not need manual control. The time spent in modifying the model can be decreased to the ignorable extent. The efficiency of the optimization process is greatly improved.2)Construction of model for analysisThe structure shown in Fig. 1 consists of three parts: two columns, one beam and three driving bars. The columns and beam are joined by the bolts on the first horizontal rib located on top of the columns as shown in Fig.1. Because the driving bars are substituted by equivalentforces on the joint positions, their structure is ignored in the model.The core of the top beam is three joints and a hole with special purpose, which can not be changed. The other parts of the beam may be changed if needed. For the convenience of modeling, the core of the beam is formed into one component. In the process of optimization, only the core position of beam along x axis is changed, that is to say, shape of beam core is not changed. It should be noticed that, in the rest of beam, only shape is changed but the topology is not changed and which can automatically be performed by the control program.Fig.1, six bolts join the beam and two columns. The joint surface can not bear the pull stress in the non-bolt joint positions, in which it is better to set contact elements. When the model includes contact elements, nonlinear iterative calculation will be needed in the process of solution and the computing time will quickly increase. The trial computing result not including contact element shows that the outside of beam bears pulling stress and the inner of beam bears the press stress. Considering the primary analysis object is the joint position stiffness between the top beam and the three driving bars, contact elements may not used, hut constructs the geometry model of joint surface as Fig.2 showing. The upper surface and the undersurface share one key point in bolt-joint positions and the upper surface and the under surface separately possess own key points in no bolt positions. When meshed, one node will be created at shared key point, where columns and beam are joined, and two nodes will be created at non shared key point, where column and beam are separated. On right surface of left column and left surface of right column, according to trial computing result, the structure bears press stress. Therefore, the columns and beam will share all key points, not but at bolts. This can not only omit contact element but also show the characteristic of bolt joining. The joining between the bottoms of the columns and the base are treated as full constraint. Because the main aim of analysis is the stiffness of the top beam, it can be assumed that the joint positions hear the same as load between beam and the three driving bars. The structure is the thin wall cast and simulated by shell element . The thickness of the outside wall of the structure and the rib are not equal, so two groups of real constant should he set. For the convenience of modeling, the two columns are alsoset into another component. The components can create an assembly. In this way, the joint positions between the beam core and columns could he easily selected, in the modifying the model and modifying process can automatically be performed. Analysis model is showed Fig.1. Because model and load are symmetric, computing model is only half. So the total of elements is decreased to 8927 and the total of nodes is decreased to 4341. All elements are triangle.3.)Optimization solutionThe optimization process is essentially a computing and modifying process. The original design is used as initial condition of the iterative process. The ending condition of the process is that stiffness differences of the joint locations between three driving bars and top beam are less than given tolerance or iterative times exceed expected value. Considering the speciality of the question, it is foreseen that the location is existent where stiffness values are equal. If iterative is not convergent, the cause cannot be otherwise than inappropriate displacement increment or deficient iterative times. In order to make the iterative process convergent quickly and efficiently, this paper uses the bisection searching method changing step length to modify the top beam displacement. This method is a little complex but the requirement on the initial condition is relatively mild.The flow chart of optimization as follows:1. Read the beam model data in initial position from backup file;2. Modify the position of beam;3. Solve;4. Read the deform of nodes where beam and three bars are joined;5. Check whether the convergent conditions are satisfied, if not, then continue to modify the beam displacement and return to 3, otherwise, exit the iteration procedure.6. Save the results and then exit.The program's primary control codes and their function commentaries are given in it, of which the detailed modeling instructions are omitted. For the convenience of comparing with the control flow, the necessary notes are added.the flag of the batch file in ANSYSBATCH RESUME, robbak.db, 0read original data from the backupfile robbak,.db/PREP7 enter preprocessordelete the joint part between beam core and columnsmove the core of the beam by one :step lengthapply load and constraint on the geometry meshing thejoint position between beam core and columns FINISH exit the preprocessorISOLU enter solverSOLVE solveFINISH exit the solverPOST1 enter the postprocessor*GET ,front,NODE,2013,U,Z read the deformation of first joint node on beam*GET,back,NODE, 1441 ,U,Z read the deformation of second joint node on beam intoparameter hacklastdif-1 the absolute of initial difference between front and hacklast timeflag=- 1 the feasibility flag of the optimizationstep=0.05 the initial displacement from initial position to the currentposition*D0,1,1,10,1 the iteration procedure begin, the cycle variable is I andits value range is 1-10 and step length is 1dif=abs(front-back) the absolute of the difference between front and hack inthe current result*IF,dif,LE,l .OE-6,THEN check whether the absolute difference dif satisfies therequest or noflag=l yes, set flag equal to 1*EXIT exit the iterative calculation*ELSEIF,dif,GE,lastdif,THEN check whether the dif value becomes great or not flag=2yes, set flag 2 modify step length by bisection methodperform the next iterative calculation, use the lastposition as the current position and modified last steplength as the current step lengthELSE if the absolute of difference value is not less thanexpected value and become small gradually, continue tomove top beam read the initial condition from back upfile enter the preprocessorMEN, ,P51X, , , step,, , ,1 move the core of the beam by one step length modify thejoint positions between beam core and column applyload and constraint meshingFINISH exit preprocessorISOLU enter solverSOLVE solveFINISH exit the solver/POST1 exit the postprocessor*GET,front,NODE,201 3,U,Z read the deformation of first joint node to parameter front *GET,back,NODE, 144 1,U,Z read the deformation of second joint node to parameter back lastdif-dif update the value of last dif*ENDIF the end of the if-else*ENDDO the end of the DO cycleMost of the control program above is copied from log file, which is long. The total of lines is up to about 1000 lines. Many codes such as modeling and post-process codes are used repeatedly. To make the program construct clear, these instructions can he made into macros, which are called by main program. This can efficiently reduce the length of the main program. In addition, modeling instructions from log file includes lots of special instructions that are only used under graphic mode but useless under hatch mode. Deleting and modifying these instructions when under batch mode in ANSYS can reduce the length of the file, too.In the program above, the deformation at given position is read from node deformation. In meshing, in order to avoid generating had elements, triangle mesh is used. In optimization, the shape of joint position between columns and beam continually is changed. This makes total of elements different after meshing each time and then element numbering different, too. Data read from database according to node numbering might not he data to want. Therefore, beam core first needs to he meshed, then saved. When read next time, its numbering is the same as last time.Evaluating whether the final result is a feasible result or not needs to check the flag value. If only the flag value is I, the result is feasible, otherwise the most proper position is not found. The total displacement of top beam is saved in parameter step. If the result is feasible, the step value is the distance from initial position to the most proper position. The sum of iterative is saved in parameter 1. According to the final value of I, feasibility of analysis result and correctness of initial condition can he evaluated.4)Optimization resultsThe sum of iterative in optimization is seven, and it takes about 2 hour and 37 minutes to find optimal position. Fig.3 shows the deformation contour of the half-construct. In Fig.3, the deformations in three joints between beam and the three driving bars is the same as level, and the corresponding deformation range is between -0.133E-04 and -0.1 15E-O4m, the requirement of the same stiffness is reached. At this time, the position of beam core along x-axis as shown in Fig. 1 has moved -0.71E-01m compared with the original designed positionBecause the speed of computer reading instruction is much faster than modifying model manually, the time modifying model can be ignored. The time necessary foroptimization mostly depends on the time of solution. Compared with the optimization procedure manually modifying model, the efficiency is improved and mistake operating in modeling is avoided.5)ConclusionThe analyzing result reveals that the optimization method given in this paper is effective and reaches the expected goal. The first advantage of this method is that manual mistakes do not easily occur in optimization procedure. Secondly, it is pretty universal and the control codes given in this paper may he transplanted to use in similar structure optimization design without large modification. The disadvantage is that the topology structure of the optimization object can not be changed. The more the workload of modifying the model, the more the advantages of this method are shown. In addition, the topology optimization function provided in ANSYS is usedto solve the optimization problem that needs to change the topology structure.The better optimization results can he achieved if the method in this paper combined with it.中文译文:机器人机构优化设计有限元分析摘要机器人结构最优化设计,设计模型需要反复的修正和计算。

led照明毕业论文中英文资料外文翻译文献

led照明毕业论文中英文资料外文翻译文献

led照明毕业论文中英文资料外文翻译文献Renewable and Sustainable Energy ReviewsHigh-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation ABSTRACTThe rapid development of optoelectronic technology since mid-1980 has significantly enhanced the brightness and efficiency of light-emitting diodes (LEDs). LEDs have long been proposed as a primary light source for space-based plant research chamber or bioregenerative life support systems. The raising cost of energy also makes the use of LEDs in commercial crop culture imminent. With their energy efficiency, LEDs have opened new perspectives for optimizing the energy conversion and the nutrient supply both on and off Earth. The potentials of LED as an effective light source for indoor agriculturalproduction have been explored to a great extent. There are many researches that use LEDs to support plant growth in controlled environments such as plant tissue culture room and growth chamber. This paper provides a brief development history of LEDs and a broad base review on LED applications in indoor plant cultivation since 1990.Contents1. Introduction2. LED development.3. Color ratios and photosynthesis4. LEDs and indoor plant cultivation.4.1. Plant tissue culture and growth4.2. Space agriculture84.3. Algaculture4.4. Plant disease reduction5. Intermittent and photoperiod lighting and energy saving6. Conclusion1. IntroductionWith impacts of climate change, issues such as more frequent and seriousdroughts, floods, and storms as well as pest and diseases are becoming more serious threats to agriculture. These threats along with shortage of food supply make people turn to indoor and urban farming (such as vertical farming) for help. With proper lighting, indoor agriculture eliminates weather-related crop failures due to droughts and floods to provide year-round crop production, which assist in supplying food in cities with surging populations and in areas of severe environmental conditions.The use of light-emitting diodes marks great advancements over existing indoor agricultural lighting. LEDs allow the control of spectral composition and the adjustment of light intensity to simulate the changes of sunlight intensity during the day. They have the ability to produce high light levels with low radiant heat output and maintain useful light output for years. LEDs do not contain electrodes and thus do not burn out like incandescent or fluorescent bulbs that must be periodically replaced. Not to mention that incandescent and fluorescent lamps consume a lot of electrical power while generating heat, which must be dispelled from closed environments such as spaceships and space stations.2. LED developmentLED is a unique type of semiconductor diode. It consists of a chip of semiconductor material doped with impurities to create a p–n junction. Current flows easily from the p-side (anode), to the n-side (cathode), but not in the reverse direction.Electrons and holes flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon. The color (wavelength) of the light emitted depends on the band gap energy of the materials forming the p–n junction. The materials used for an LED have a direct band gap with energies corresponding to near-infrared, visible or near-ultraviolet light.The key structure of an LED consists of the die (or light-emitting semiconductor material), a lead frame where the die is placed, and the encapsulation which protects the die (Fig. 1).Fig.1LED development began with infrared and red devices made with gallium arsenide. Advances in materials science have made possible the production of devices with ever-shorter wavelengths, producing light in a variety of colors. J.Margolin reported that the first known light-emitting solid state diode was made in 1907 by H. J. Round. No practical use of Round’s diode was made for several decades until the invention of the first practical LED by Nick Holonyak, Jr in 1962. His LEDs became commercially available inlate 1960s. These GaAsP LEDs combine three primary elements: gallium, arsenic and phosphorus to provide a 655nm red light with brightness levels of approximately 1–10 mcd at 20mA. As the luminous intensity was low, these LEDs were only used in a few applications, primarily as indicators. Following GaAsP, GaP (gallium phosphide) red LEDs were developed. These device sex hibit very high quantum efficiencies at low currents. As LED technology progressed through the 1970s, additional colors and wavelengths became available. The most common materials were GaP green and red, GaAsP orange, and high efficiency red and GaAsP yellow. The trend towards more practical applications (such as in calculators, digital watches, and test equipment) also began to develop. As the LED materials technology became more advanced, the light output was increased, and LEDs became bright enough to be used for illumination.In 1980s a new material, GaAlAs (gallium aluminum arsenide) was developed followed by a rapid growth in the use of LEDs. GaAlAs technology provides superiorperformance over previously available LEDs. The voltage requirement is lower, which results in a total power savings. LEDs could be easily pulsed or multiplexed and thus are suitable for variable message and outdoor signs. Along this development period, LEDs were also designed into bar code scanners, fiber optic data transmission systems, and medicalequipment. During this time, the improvements in crystal growth and optics design allow yellow, green and orange LEDs only a minor improvement in brightness and efficiency. The basic structure of the material remained relatively unchanged.As laser diodes with output in the visible spectrum started to commercialize in late 1980s, LED designers used similar techniques to produce high-brightness and high reliability LEDs. This led to the development of InGaAlP (indium gallium aluminum phosphide) visible light LEDs. Via adjusting the energy band gap InGaAlP material can have different color output. Thus, green, yellow, orange and red LEDs could all be produced using the same basic technology. Also, light output degradation of InGaAlP material is significantly improved.Shuji Nakamura at Nichia Chemical Industries of Japan introduced blue LEDs in 1993. Blue LEDs have always been difficult to manufacture because of their high photon energies (>2.5 eV) and relatively low eye sensitivity. Also, the technology to fabricate these LEDs is very different and less advanced than standard LED materials. But blue is one of the primary colors (the other two being red and green). Properly combining the red, green, and blue light is essential to produce white and full-color. This process requires sophisticated software and hardware design to implement. In addition, the brightness level is low and the overall light output of each RGB die being used degrades at a different rate resulting in an eventual color unbalance. The blue LEDs available today consist of GaN (gallium nitride) and SiC (silicon carbide) construction. The blue LED that becomes available in production quantities has result in an entire generation of new applications that include telecommunications products, automotive applications, traffic control devices, and full-color message boards. Even LED TVs can soon become commercially available.Compare to incandescent light’s 1000-h and fluorescent light’s 8000-h life span, LEDs have a very significantly longer life of 100,000 h. In addition to their long life, LEDs have many advantages over conventional light source. These advantages include small size, specific wavelength, low thermal output, adjustable light intensity and quality, as well as high photoelectric conversion efficiency. Such advantages make LEDs perfect for supporting plant growth in controlled environment such as plant tissue culture room and growth chamber. Table 1 is a list of some common types of LEDs as compiled from .The chlorophyll molecules in plants initiate photosynthesis bycapturing light energy and converting it into chemical energy to help transforming water and carbon dioxide into the primary nutrient for living beings. The generalized equation for the photosynthetic process is given as:CO2 + H2O—light—>(CH2O)+ O2where (CH2O) is the chemical energy building block for thesynthesis of plant components.Chlorophyll molecules absorb blue and red wavelengths most efficiently. The green and yellow wavelengths are reflected or transmitted and thus are not as important in the photosyntheticprocess. That means limit the amount of color given to the plants and still have them grow as well as with white light. So, there is no need to devote energy to green light when energy costs are aconcern, which is usually the case in space travel.The LEDs enable researchers to eliminate other wavelengths found within normal white light, thus reducing the amount of energy required to power the plant growth lamps. The plants grow normally and taste the same as those raised in white light.Red and blue light best drive photosynthetic metabolism. These light qualities are particularly efficient in improving the developmental characteristics associated with autotrophic growth habits. Nevertheless, photosynthetically inefficient light qualities also convey important environmental information to a developing plant. For example, far-red light reverses the effect of phytochromes, leading to changes in gene expression, plant architecture, and reproductive responses. In addition, photoperiod (the adjustment of light and dark periods) and light quality (the adjustment of red, blue and far-red light ratio) also have decisive impacts on photomorphogenesis.The superimposed pattern of luminescence spectrum of blue LED (450–470 nm) and that of red LED (650–665 nm) corresponds well to light absorption spectrum of carotenoids and chlorophyll. Various plant cultivation experiments are possible when these twokinds of LED are used with the addition of far-red radiation (730–735 nm) as the light source. Along the line of the LED technology advancement, LEDs become a prominent light source for intensive plant culture systems and photobiological researches. The cultivation experiments which use such light sources are becoming increasingly active. Plant physiology and plant cultivation researches using LEDs started to peak in 1990s and become inevitable in the new millennium. Those researches have confirmed that LEDs are suitable for cultivation of a variety of algae,crop, flower, fruit, and vegetable.Some of the pioneering researches are reviewed in the followings.Bula et al. have shown that growing lettuce with red LEDs in combination with blue tubular fluorescent lamp (TFL) is possible. Hoenecke et al. have verified the necessity of blue photons for lettuce seedlings production by using red LEDs with blue TFL. As the price of both blue and red LEDs have dropped and the brightness increased significantly, the research findings have been able to be applied in commercial production. As reported by Agence France Press, Cosmo Plant Co., in Fukuroi, Japan has developed a red LED-based growth process that uses only 60% of electricity than a fluorescent lighting based one.Tennessen et al. have compared photosynthesis from leaves of kudzu (Pueraria lobata) enclosed in a leaf chamber illuminated by LEDs versus by a xenon arc lamp. The responses of photosynthesis to CO2 are similar under the LED and xenon arc lamps at equal photosynthetic irradiance. There is no statistical significant difference between the white light and red light measurements in high CO2. Some leaves exhibited feedback inhibition of photosynthesis which is equally evident under irradiation of either lamp type. The results suggest that photosynthesis research including electron transport, carbon metabolismand trace gas emission studies should benefit greatly from the increased reliability, repeatability and portability of a photosynthesis lamp based on LEDs.Okamoto et al. have investigated the effects of different ratios of red and blue (red/blue) photosynthetic photon flux density (PPFD) levels on the growth and morphogenesis of lettuce seedlings. They have found that the lettuce stem length decreases significantly with an increase in the blue PPFD. The research has also identified the respective PPFD ratio that (1) accelerates lettuce seedlings’stem elongation, (2) maximizes the whole plant dry weight, (3) accelerates the growth of whole plants, and (4) maximizes the dry weights of roots and stems. Photosynthesis does not need to take place in continuous light. The solid state nature allows LEDs to produce sufficient photon fluxes and can be turned fully on and off rapidly (200 ns), which is not easily achievable with other light sources. This rapid on–off feature has made LEDs an excellent light source for photosynthesis research such as pulsed lighting for the study of photosynthetic electron transport details. The off/dark period means additional energy saving on top of the LEDs’low power consumption.4. LEDs and indoor plant cultivation4.1. Plant tissue culture and growthTissue culture (TC), used widely in plant science and a number of commercial applications, is the growth of plant tissues or cells within a controlled environment, an ideal growth environment that is free from the contamination of microorganisms and other contaminants. A controlled environment for PTC usually means filtered air, steady temperature, stable light sources, and specially formulated growth media (such as broth or agar). Micropropagation, a form of plant tissue culture (PTC), is used widely in forestry and floriculture. It is also used for conserving rare or endangered plant species. Other uses of PTC include:1short-term testing of genetic constructions or regeneration oftrans genic plants,2 cross breeding distantly related species and regeneration of the novel hybrid,3 screening cells for advantageous characters (e.g. herbicidere sistance/tolerance),4embryo rescue (i.e. to cross-pollinate distantly related specie sand then tissue culture there sulting embryo which would normally die),5 large-scale growth of plant cells in liquid culture inside bioreactors as a source of secondary products (like recombinant proteins used as biopharmaceuticals).6production of doubled monoploid plants from haploid cultures to achieve homozygous lines more rapidly in breeding programs (usually by treatment with colchicine which causes doubling of the chromosome number).Tissue culture and growth room industries have long been using artificial light sources for production. These light sources include TFL, high pressure sodium lamp (HPS), metal halide lamp (MHL) and incandescent lamp, etc. Among them, TFL has been the most popular in tissue culture and growth room industries. However, the use of TFL consumes 65% of the total electricity in a tissue culture lab. That is the highest non-labor costs. As a result, these industries continuously seek for more efficient light sources. The development of high-brightness LED has made LED a promising light source for plant growth in controlled environments.Nhut et al. have cultured strawberry plantlets under different blue to red LED ratios as well as irradiation levels and compared its growth to that under plant growth fluorescent. The results suggest that a culture system using LED is advantageous for the micropropagation of strawberry plantlets. The study also demonstrates that the LED light source for in vitro culture of plantlets contributes to an improved growth of the plants in acclimatization.Brown et al. have measured the growth and dry matter partitioning of ‘Hungarian Wax’pepper (Capsicum annuum L.) plants grown under red LEDs compared with similar plants grown under red LEDs with supplemental blue or far-red radiation. Pepper biomass reduces when grown under red LEDs without blue wavelengths compared to plants grown under supplemental blue fluorescent lamps. The addition of far-red radiation results in taller plants with greater stem mass than red LEDs alone. Fewer leaves developed under red or red plus far-red radiation than with lamps producing blue wavelengths. The results of their research indicate that with proper combination of other wavelengths, red LEDs may be suitable for the culture of plants in tightly controlled environments.4.2. Space agricultureBecause re-supply is not an option, plants are the only options to generate enough food, water and oxygen to help make future explorers self-sufficient at space colonies on the moon, Mars or beyond. In order to use plants, there must be a light source. Standard light sources that used in homes and in greenhouses and in growth chambers for controlled agriculture here on Earth are not efficient enough for space travel. While a human expedition outside Earth orbit still might be years away, the space farming efforts are aimed at developing promising artificial light sources. LEDs, because of their safety, small mass and volume, wavelength specificity, and longevity, have long been proposed as a primary light source for space-base plant research chamber or bioregenerative life support systems .Infrared LEDs that are used in remote controls devices have other uses. Johnson et al. have irradiated oat (Avena sativa cv Seger) seedlings with infrared (IR) LED radiation passed through a visible-light-blocking filter. The irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. This suggests that the oat seedlings are able to detect IR LED radiation. These findings also expand the defined range of wavelengths involved in radiation–gravity (light–gravity) interactions to include wavelengths in the IR region of the spectrum.Goins et al. grow wheat under red LEDs and compare them to the wheat grown under (1) white fluorescent lamps and (2) red LEDs supplemented with blue light from blue fluorescent lamps. The results show that wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to those grown under white light. Wheat grown under red LEDs + 10% BF light had comparable shoot dry matter accumulation and seed yield relative to those grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.The research of Goins and his team continues in plant growth chambers the size of walk-in refrigerators with blue and red LEDs to grow salad plants such as lettuce and radishes. They hope the plant growth chamber would enable space station staff to grow and harvest salad greens, herbs and vegetables during typical fourmonth tours on the outpost .4.3. AlgacultureAlgaculture, refers to the farming of species of algae, has been a great source for feedstock, bioplastics, pharmaceuticals, algae fuel, pollution control, as well as dyes and colorants. Algaculture also provides hopeful future food sources.Algae can be grown in a photobioreactor (PBR), a bioreactor which incorporates some type of light source. A PBR is a closed system, as opposed to an open tank or pond. All essential nutrients must be introduced into the system to allow algae to grow and be cultivated. A PBR extends the growing season and allows growing more species. The device also allows the chosen species to stay dominant. A PBR can either be operated in ‘‘batch mode’’or ‘‘continuous mode’’in which a continuous stream of sterilized water that contains air, nutrients, and carbon dioxide is introduced. As the algae grows, excess culture overflows and is harvested.When the algae grow and multiply, they become so dense that they block light from reaching deeper into the water. As a result, light only penetrates the top 7–10 cm of the water in most algalcultivation systems. Algae only need about 1/10 the amount of direct sunlight. So, direct sunlight is often too strong for algae. A means of supplying light to algae at the right concentration is to place the light source in the system directly.Matthijs et al. have used LEDs as the sole light source in continuous culture of the green alga (Chlorella pyrenoidosa). The research found the light output of the LED panel in continuous operation sufficient to support maximal growth. Flash operation at 5-ps pulse ‘‘on’’ duration between dark periods of up to 45 ps would stillsustain near maximum growth. While longer dark periods tend to cut the growth rate, the light flux decrease resulting from such operation does not reduce the growth as much as that of the similar flux decrease in continuous operation. Their research concludes that the use of flashing LEDs (which means intermittent light) in indoor algal culture yielded a major gain in energy economy comparing to fluorescent light sources. An additional advantage is that heat waste losses are much smaller. The most interesting discovery of this study may be that adding blue light to the red LED light did not change the growth properties.In order to take advantage of the biotechnological potential of algae, Lee and Palsson have calculated theoretical values of gas mass transfer requirements and light intensity requirements to support high-density algal cultures for the 680 nm monochromatic red light from LED as a light source. They have also designed a prototype PBR based on these calculations. Using on-line ultra filtration to periodically provide fresh medium, these researchers have achieved a cell concentration of more than 2×109cells/ml (more than 6.6%, vol/vol), cell doubling times as low as 12 h, and an oxygen production rate as high as 10 mmol oxygen/l culture/h. This research indicates that the development of a small LED-based algal photobioreactors is economically achievable.Another research of algae via LEDs is conducted by Nedbal et al. Their research is a study of light fluctuation effects on a variety of algae in dilute cultures using arrays of red LEDs to provide intermittent and equivalent continuous light in small-size (30 ml) bioreactors. The results endorse that the algae growth rates in certain calculated intermittent light can be higher than the growth rate in the equivalent continuous light. Yanagi and Okamoto has grown five spinach plants under the red LEDs and another five under 40W plant growth fluorescent lamps at the same light intensity of 125 mmol/m2/s. The dry matter production under the LEDs is slightly less than that under the fluorescent lamps. The plant leaf area under the red LEDs is also smaller than that under the fluorescent lamps. Nevertheless, they reach a conclusion that LEDs can qualify as an artificial light source for plant growth.4.4.Plant disease reductionSchuerger and Brown have used LED arrays with different spectral qualities to determine the effects of light on the development of tomato mosaic virus (ToMV) in peppers and powdery mildew on cucumbers. Their research concludes that spectral quality may alter plant disease development. Latter research regarding bacterial wilt on tomato has confirmed this conclusion and demonstrates that spectral quality may be useful as a component of an integrated pest management program for space-based ecological life support systems. Schuerger et al. have shown that the spectral quality effects on peppers’ anatomical changes in stem and leaf tissues are corr elated to the amount of blue light in primary light source.Miyashita et al. use red LEDs (peak wavelength: 660 nm) and white fluorescent lamps as light sources for potato plantlets growth in vitro. They found that shoot length and chlorophyll concentration of the plantlets increases with increasing 630–690 nm red photon flux (R-PF) while there are no significant differences in dry weight and leaf area of the plantlets with different R-PF levels. This means red lightaffects the morphology rather than the growth rate of potato plantlets in vitro. As a result, they suggest that red LEDs can be used for controlling plantlet morphology in micropropagation.5. Intermittent and photoperiod lighting and energy savingTime constants for photosynthetic processes can be divided into three ranges: primary photochemistry, electron shuttling, and carbon metabolism. These three photosynthetic processes can be uncoupled by providing pulses of light within the appropriate range for each process. At high frequencies, pulsing light treatments can be used to separate the light reactions (light harvesting and charge separation) from the dark reactions (electron shuttling) of photosynthetic electron transport. LEDs’ flexible pulsating ability can be coupled with such characteristics of photosynthesis and lead to additional energy saving.Tennessen et al. use LEDs to study the effects of light pulses (micro- to milli-second) of intact tomato leaves. They found that when the equivalent of 50 mmol photons mp -2s-1 is provided during 1.5 ms pulses of 5000 mmol photons mp -2s-1 followed by 148.5 ms dark periods, photosynthesis is the same as in continuous 50 mmol photons mp -2s-1 . Data support the theory that photons in pulses of 100 ps or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. Pigments of the xanthophyll cycle were not affected by pulsed light treatments. This research suggests that, instead of continuous light, using effectively calculated intermittent light (which means less energy consumption) might not affect the plant production.Jao and Fang have investigated the effects of intermittent light on growth of potato plantlets in vitro. They also use conventional TFLs for the experiment to explore the electrical savings realized by adjusting the frequency and duty ratio of LEDs. TFLs provide continuous fluctuating light at 60 Hz while LEDs provide nonfluctuating light and pulse light of the preset frequency and duty ratio. When the growth rate is the only concern, LEDs at 720 Hz (1.4 ms) and 50% duty ratio with 16-h light/8-h dark photoperiod stimulated plant growth the most. When energy consumption is the major concern, using LEDs at 180 Hz (5.5 ms) and 50% duty ratio with 16-h light/8-h dark photoperiod would not significantly sacrifice plant growth, especially when energy for heat removal is also taken into account.6. ConclusionsThe first sustained work with LEDs as a source of plant lighting occurred in the mid-1980s when a lighting system for plant growth was designed for space shuttles and space stations for it is realized that people cannot go to the Moon, Mars, or beyond without first mastering the art of indoor farming on Earth. As the performance of LED continues to improve, these lighting systems progress from red only LED arrays using the limited components available to high-density, multi-color LED chip-on-board technologies. Today, space age gardeners who have been testing high-efficiency light sources for future space colonists have identified energy efficient LEDs as the major light source not only to grow food but also to generate and purify oxygen and water—key sustainers of human life. The removal of carbon dioxide from a closed environment is another added benefit.LEDs are the first light source to provide the capability of true spectral composition control, allowing wavelengths to match to plant photoreceptors to optimize production as well as to influence plant morphology and composition. They are easily integrated into digital control systems, facilitating complex lighting programs like varying spectral composition over the course of a photoperiod or with plant development stage. LEDs do not contain mercury. They are safer to operate than current lamps since they do not have glass envelopes or high touch temperatures.While the process of photosynthesis does not require continuous light of full spectrum, LEDs can produce sufficient photon fluxes of specific wavelength on and off rapidly. Such mechanism of photosynthesis coupled with the solid state characteristics of LEDs constitute two ways of energy saving (cutting out unnecessary spectrum segment and turning off the light periodically) on top of the LEDs’ low power consumption. These are not easily achievable with other light sources.This paper provides a broad base review on LED applications in horticulture industry since 1990. These researches pave the way for the researches of similar types using different species and lead to comparable conclusion that LEDs are well qualified to replace its more energy demanding counterparts as controlled environment light source for agricultural research such as providing tissue culture lighting as well as supplemental and photoperiod lighting for greenhouses.With the energy it can save, LED’s becoming ec onomically feasible in large-scale indoor farming lighting applications is just around the corner.再生可持续能源评论高亮高效节能LED灯的来源及其在室内植物栽培中的潜力摘要自1980年中期以来,光电子技术的迅猛发展,显著调高了发光二极管(LED)的亮度和效率。

仿真技术仿真器中英文对照外文翻译文献

仿真技术仿真器中英文对照外文翻译文献

中英文资料对照外文翻译First, the development of simulatorThroughout nearly two decades of national development process of simulation technology, according to simulator technology to be used to divide the domestic about the design of simulators can be divided into the following periods:(1) the late 70s in the mid -80The technology during this period was mainly the development of simulation systems, now is not high technology, the user request is not high.(2) the late 80's during the late -90The main use of this period with an emulation function Winbond chip production, the technology is called Bondout. Using this chip to greatly simplify the design of emulator, so the standard of domestic emulator with a large increase can be largely occupied by the user resources.Simulation performance is due to the increase in domestic production in the emulator nearly 10 years no progress has been produced using this model. Although individual companies have also tried other techniques to improve the simulation of the standard, for example, HOOKS technology, but because of their technical limitations did not succeed. Instead abroad earlier simulator technology used HOOKS, HOOKS at the initial stage due to the complexity of the technology itself, simulation performance and price as the domestic use of the simulator Bondout.With the development of IC technology, the domestic production HOOKS technology is ripe, but several major domestic manufacturers also Bondout technologies intoxicated.(3)After 2000 yearChina in 2000 emulator period changes in the market, the largest, the most striking change is the Winbond W78958 chip simulation of the production.Winbond W78958 chip during the design stage, the internal functions of the simulation only to the production simulator to simulator manufacturers in order to better promote the W78958. After several years of change, however, W78958 simulator evolved into the use of a simulation of the ASIC rather than using the standard chip, the scope of use is limited to domestic and 20,000 a year less than the amount the company also contributed to the Winbond After entering in 2002 announced that it would stop production of the chip.W78958 production, the domestic manufacturers simulator in a very embarrassing situation. W78958 use at home as a result of nearly 10 years, the domestic user base is very large, these users will not be able to receive continued support, especially maintenance. In addition, the domestic focus in the W78958 on the technical work done can not be renewed and improved, many people in the industry that the industry will face a simulator to set up or re-shuffle of the situation.HOOKS simulator technology is no doubt W78958 manufacturers after the loss of alternatives, but the absence of long-term follow-up and attention, not the short term the majority of manufacturers of complex HOOKS mature technology products. Experts believe that the overall simulator manufacturers in transition may need 2-3 years of the cycle, and there is considerable simulator manufacturers will be eliminated, the market will have mainly concentrated in a few simulator manufacturers.Chip manufacturers as more and more resources getting stronger and stronger, with chip to chip compatible simulation simulation model, there is incomplete coverage of resources (such as additional ports, additional external interrupt), address different distribution (such as the P4 I ), to operate in different ways (such as EXTRAM, WTD) and other shortcomings. Simulation with a dedicated chip to chip or Philips simulation of more than 20 manufacturers more than 400 kinds of chips, the first simulation required more and more, so there's a new generation of simulator technology.But a new generation of patented technology makes the simulator there is no economic power can not afford to buy the beginners.Second, the development trend of single-chipIt can be said now is a single-chip opinions of the period, the world's major chip manufacturing companies have introduced their own single-chip, from the 8, 16-32, just to name a few, everything, it is compatible with mainstream C51 series of , thereare not compatible, but they own each other into each other, for SCM applications world wide.Throughout the development process of single-chip, you can indicate the development trend of single-chip, generally are:1. Low-power CMOS technologyMCS-51 series of 8031 introduced the power consumption of 630mW, and now widespread in the single-chip 100mW or so, with the growing demand for low-power single-chip, and now all the basic single-chip manufacturers are use of CMOS (complementary metal oxide semiconductor process). As the 80C51 on the use of HMOS (high density metal oxide semiconductor process) and CHMOS (high-density complementary metal oxide semiconductor process). Although the CMOS low power consumption, but because of its physical characteristics to determine its speed is not high enough, and then CHMOS with high-speed and low power consumption characteristics of these features, it is more suitable in low power consumption, as battery-powered applications . Therefore, the process for some time to come will be the main way to develop single-chip2. Of micro-chipNow are generally in conventional single-chip will be the central processing unit (CPU), random access data storage (RAM), read-only program memory (ROM), parallel and serial communication interface, system interruption, timing circuits, integrated circuit clock in a single chip, enhanced single-chip integration, such as A / D converter, PMW (pulse width modulation circuit), WDT (watchdog), and some will be single-chip LCD (LCD) driver integrated circuits are in a single chip, this unit includes single-chip circuits on more and more powerful features. Even single-chip manufacturers can also be tailored in accordance with the requirements of users, to create a single chip with its own chip characteristics. In addition, the product is now the universal demand of small size, light weight, which requires in addition to powerful single-chip and low power consumption, but also its smaller size. Many now have a variety of single-chip package, which SMD (surface mount) is gaining popularity, making the system constituted by the single-chip micro-moving in the direction of development.3. The mainstream and multi-species coexistenceAlthough a wide variety of single-chip, unique, but still single-chip microcomputer 80C51 prevailing at the core, compatible with its structure andcommand system of PHILIPS products, ATMEL company's products and China Taiwan's Winbond Series Single machine. Therefore, single-chip microcomputer as the core C8051 occupied the half. Microchip's PIC and reduced instruction set (RISC) has a strong development momentum of China Taiwan HOLTEK single-chip companies in recent years, increasing production, with its high quality low-cost advantages, to occupy a certain market share. MOTOROLA addition to the company's products, several large companies in Japan's exclusive single-chip microcomputer. A certain period of time, this situation will continue to be upheld, there will not be a single-chip monopoly domination, taking the complementary interdependence, complementarity and common development.Third, the technical development of digital single-chipThe number of single-chip technology is reflected in the internal structure, power consumption, as well as the external voltage level on the manufacturing process. In these areas, more typically describes the number of single-chip level. At the moment, users need more and more single-chip, but getting higher and higher requirements. The following four areas on which the technological progress that the situation of single-chip microcomputer.1, the internal structure of the progressSingle-chip integrated in-house has been an increasing number of parts, these parts include commonly used circuits, such as: timers, comparators, A / D converter, D / A converters, serial communication interface, Watchdog circuit , LCD controller. Some single-chip control network in order to constitute or form a local network, the internal local area network control module contains the CAN. For example, Infineon's C 505C, C515C, C167CR, C167CS-32FM, 81C90; Motorola's 68HC08AZ series. Especially in the C167CS-32FM in single-chip, also contains two internal CAN. Therefore, such single-chip networks are very easy to pose. Especially in the control system more complicated, the constitute a very useful control network. In order to facilitate the use of variable frequency control of single-chip, to form the most cost-effective embedded control systems. Some set up a special single-chip internal control for variable frequency pulse width modulation control circuit, the single-chip microcomputer has Fujitsu's MB89850 series of companies, MB89860 series; Motorola's MC68HC08MR16, MR24 and so on. In these single-chip, the pulse width modulation circuit 6-channel output, can produce three-phase PWM AC voltage, and internal control with dead-zone function.Of particular note are: It is now some have adopted the so-called single-chip trinuclear (TrCore) structure. This is a system-level chips built on the (System on a chip) on the structure of the concept. This single-chip consists of three core components: a micro-controller and the DSP core, a data and program memory is nuclear and the last one is the external application specific integrated circuit (ASIC). The most important feature of this single-chip is the DSP and microcontroller at the same time do so in a chip. Although the structure definition, DSP is a type of single-chip, but its role is mainly seen in the high-speed computing and special treatment as above, such as fast Fourier transform. It combines traditional single-chip integrated single-chip greatly enhanced functionality. This is the single-chip, one of the greatest progress. This single-chip microcomputer has the most typical Infineon's TC10GP; Hitachi's SH7410, SH7612 and so on. These are high-end single-chip single-chip, MCU is 32 and the DSP 16 or 32-bit structure, the frequency of 60MHz or more generally.2, power consumption, packaging and power supply voltage of the progressNow the new single-chip power consumption is getting smaller and smaller, especially the many single-chip are a variety of work settings, which include waiting, suspended, sleep, idle, power-saving mode and so on. P87LPC762 single-chip company Philips is a very typical example, in idle, the power consumption is 1.5 mA, while in power-saving mode, the power consumption is only 0.5mA. In the most amazing power is TI's MSP430 family of single chip, it is a series of 16, there are ultra-low power work. Its low-power way LPM1, LPM3, LPM4 three. When the power supply to 3V, if the work in the LMP1, even if the external circuit is active, inactive as a result of CPU, oscillator at 1 ~ 4MHz, when power consumption is only 50? A. In LPM3, the oscillator at 32kHz, this power consumption is only 1.3? A. In LPM4 when, CPU, peripherals and not the activities of 32kHz oscillator, the power consumption is only 0.1? A. Now the level of single-chip package has been greatly enhanced, with the emergence of chip technology, a large number of single-chip also used a variety of chip technology in line with the package appears to significantly reduce the volume. In this situation, Microchip has introduced the single-chip 8-pin special attention. This is PIC12CXXX series. It contains 0.5 ~ 2K program memory, 25 ~ 128 bytes of data memory, 6 I / O port and a timer, and some also with four A / D, fully able to meet a number of low-grade system. To expand the scope of supply voltage and low voltage work is still today one of the objectives of single-chipdevelopment. At the moment, it can be single-chip 3.3 ~ 5.5V conditions. And some manufacturers, it can produce 2.2 ~ 6V to work under the conditions of the single chip. These single-chip companies are Fujitsu's MB89191 ~ 89195, MB89121 ~ 125A, MB89130 series, it should be said that the company's F2MC-8L MCU meet the vast majority of the 2.2 ~ 6V operating voltage conditions. MSP430X11X and TI's family of operating voltage is as low as 2.2V's.3, the progress of technologyBasically, the current single-chip CMOS technology used, but most use 0.6? M above the lithography process, there are individual companies such as Motorola Inc. have been using 0.35? M or even 0.25? M technology. These technological advances greatly improved the internal single-chip density and reliability.Fourth, embedded system as the core of a single-chipSCM is a new name embedded micro-controller, because it can be embedded into any micro-or small-scale equipment or equipment. At present, the single-chip embedded systems and Internet connectivity is a trend. However, Internet has been used as a fat server, thin machine technology users. This technology on the Internet to store and access large amounts of data is appropriate, but for control of embedded devices has become the "sledgehammer cracking a nut," the. Embedded devices to achieve and Int ernet connection, we need the Internet to the traditional theory and practice of embedded devices are reversed. In order to make complex or simple embedded devices, such as single-chip microcomputer-controlled machine tools, single-chip microcomputer-controlled door locks, can be practical and Internet connection, requires specialized equipment for the embedded microcontroller design a web server to embed devices can be connected to Internet, and through a standard Web browser to process control.At present, in order to single-chip microcomputer as the core of embedded systems and Internet connected companies, there are many more studies in this area. More typical in this regard have emWare and TASKING company. Embedded systems companies EmWare network program - EMIT technology. This technology consists of three main parts: the emMicro, emGateway and web browser. Which, emMicro embedded devices is a 1K-byte memory capacity accounted for only a very small web servers; emGateway stronger as a function of the user or server, and it is used to achieve more than the management of embedded devices, as well as standard access the Internet communications, as well as the support of a web browser. Webbrowsers use to display and embedded emObjicts data transmission between devices. If sufficient resources embedded devices, while at the same time emMicro and emGateway into embedded devices, to achieve direct access to the Inter net. Otherwise, it will require a web browser emGateway and each other. EmWare's EMIT software technology using standard Internet protocol for 8-bit and 16-bit embedded devices to manage, but costs much less traditional. At present, single-chip applications, a new problem: This is how to make the 8-bit, 16-bit single-chip microcomputer to control the product, or embedded products or equipment to achieve the interconnection and the Internet? TASKING is now to solve this problem means. The company has emWare of EMIT software packages and related supporting integration, the formation of an integrated development environment, to provide users with convenient development. Embedded Internet Union ETI (embed the Internet Consortium) is to work closely with the development of embedded Internet solutions. Results in the near future there will be published.Fifth, technology development of the reliability of single-chip applicationIn single-chip applications, reliability is the primary factor in the application of SCM in order to expand the scope and areas to improve the reliability of its single-chip is an effective method. In recent years, manufacturers of single-chip single-chip design in the use of a variety of new technologies to improve reliability, the performance of these new technologies in the following points:1, EFT (Ellectrical Fast Transient) technology2, EFT is an anti-jamming technology, which is defined as the sinusoidal signal oscillation circuit outside interference, the waveform will be a variety of Deburring signal superposition, if you use their plastic Schmidt circuit, it will become a burr trigger signals interfere with the normal clock, in the alternate use of Schmitt circuit and RC filter circuit, it can be eliminated or their role in these gross failure to ensure that the clock signal systems work properly. In this way, a single chip to enhance the reliability of the work. Motorola's MC68HC08 family of single chip on the use of this technology. Low-noise cabling technology and drive technologyIn a traditional single-chip, the power and ground wire in the integrated circuit pin symmetric shell, the general is in the upper left, lower right or upper right, lower left of the two pairs of symmetric points. In this way, so that power supply noise on the chip through the block of single-chip interference caused by the internal circuit.Now, put a lot of single-chip power pin arrangement and the two adjacent pins. In this way, not only reduces the current through the entire chip, while still easy to layout printed circuit board decoupling capacitor, thus reducing system noise. Now in order to meet the needs of a wide range of applications, many single-chip output capacity has been greatly improved, Motorola's single-chip I / O port of the irrigation of up to 8mA current pull over, and Microchip's single-chip can be up to 25mA. Other companies: AMD, Fujitsu, NEC, Infineon, Hitachi, Ateml, Tosbiba basically been able to achieve, such as the level of 8 ~ 20mA. These large current drive circuit chip integrated into the work of bringing in all kinds of noise, in order to reduce this impact, and now the use of a number of small single-chip parallel tube equivalent ways of a large pipe, and in each small Guanzi different output equivalent series resistance of the resistor in order to reduce the di / dt, which is the so-called "hopping along the softening technology", in order to eliminate transient current noise.3, the use of low-frequency clockHigh-frequency noise sources outside the clock is one, not only can interfere with single-chip applications, but also interfere with the outside circuit, so that can not meet the requirements of electromagnetic compatibility. Requirements for high reliability systems, low-frequency external clock to reduce system noise. Single-chip used in a number of internal phase lock loop technology, in the external clock is low, it can produce a higher speed internal bus, thus ensuring the speed and reduce noise. Motorola's MC68HC08 family of 1 6 / 32-bit single-chip has been adopted to improve the reliability of this technology一、仿真器的发展纵观国内近二十年的仿真技术发展历程,根据仿真器使用的技术来划分,国内仿真器的设计大约可以分成以下几个时期:(1) 70年代末期-80年代中期这个时期采用的技术主要是仿真开发系统,现在看来技术含量不高,用户要求也不高。

PLC及变频器技术论文中英文资料对照外文翻译文献综述

PLC及变频器技术论文中英文资料对照外文翻译文献综述

PLC及变频器技术中英文资料对照外文翻译文献综述PLC and inverter technology trends1. The development trend of the programmable controller“PLC is one kind specially for the digital operation operation electronic installation which applies under the industry environment designs. It uses may the coding memory, uses for in its internal memory operation and so on actuating logic operation, sequence operation, time, counting and arithmetic operation instructions, and can through digital or the simulation-like input and the output, controls each type the machinery or the production process. PLC and the related auxiliary equipment should according to form a whole easy with the industrial control system, easy to expand its function the principle to design.”In the 21st century, PLC will have a bigger development. Technologically speaking, computer technology's new achievement more will apply in the programmable controller's design and the manufacture, will have the operating speed to be quicker, the storage capacity to be bigger, an intelligent stronger variety to appear; Looked from the product scale that further develops to subminiature and the ultra-large direction; Looked from the product overcoatability that the product variety will be richer, the specification to be more complete, the perfect man-machine contact surface, the complete communication facility will adapt each industrial control situation demand well; Looked from the market that various countries will produce the multi-variety product the situation to break respectively along with the international competition aggravating, will present the minority several brand monopoly international market the aspect, will present the international general programming language; Looking from the network state of play, the programmable controller and other industrial control computer networkconstitution large-scale control system is the programmable controller technology development direction. Present computer collection and distribution control system DCS (Distributed Control System) had the massive programmable controller application. Is following computer network's development, the programmable controller takes the automation directed net and the international universal network important component, outside industry and industry numerous domain display more and more major function.2. Inverter technology development trendsInverter into the practical phase of more than 1 / 4 century during this period, the frequency converter technology as the basis of power electronics technology and microelectronics technology manager of a leap in the development, as the new power electronic devices and high-performance microprocessor The application of control technology and the development of increasingly high cost performance of the inverter, more and more small size, but manufacturers are still in constant frequency converter to achieve the further miniaturization and doing new efforts. From a technical point of view, with the frequency converter to further expand the market of the future, with the converter and inverter technology will be on the development of technologies in the following areas further development:(1) large capacity and small size;(2) high-performance and multi-function;(3) enhance the ease-of-use;(4) increase in life expectancy and reliability;(5) of pollution-free.Large capacity and small size of the power semiconductor devices will be with the development of continuous development. In recent years, driven by a voltage power semiconductor devices IGBT (Isolated Gate Bipolar Transistor, isolation gate bipolar transistors) has developed very rapidly and quickly into the traditional use of BJT (bipolar power transistor) and power MOSFET (FET) The various fields. In addition, the IGBT switching device for the IPM (Intelligent Power Module, IPM) and Monolithic Power IC chip will power switching devices and driving circuit, such as the protection of integrated circuits in the same package, with high performance andreliability The merits, with their high current and high pressure of the development of small and medium-sized converter will certainly be more widely used.With micro-electronics technology and semiconductor technology development, for Inverter CPU and semiconductor devices and a variety of sensors of getting higher and higher. With the frequency converter technology and the development of the growing maturity of the exchange governor, modern control theory are constantly new applications. These have further improved the performance of inverter provided the conditions. In addition, with the frequency converter to further promote the use and support are also constantly made new demands, the frequency converter manufacturers to continuously improve the performance and frequency converter functions in Inverter new efforts to meet user And the need for the fierce competition in the market in an invincible position.With the frequency converter market continues to expand, how to further enhance the ease-of-use inverter, so that the technical staff and even ordinary non-technical staff can quickly master the use of frequency converter technology has become manufacturers must consider the issue. Because only easy-to-use products can continue to acquire new customers and further expand the market, so the future of the new converter will be more easy to operate.With the development of semiconductor technology and the development of power electronics technology, the frequency converter used in the various components of the life and reliability are constantly improving, they will make their own life and the frequency converter to further increase reliability.In recent years, people have attached great importance to environmental issues, and thus a "green products" name. Therefore, the inverter, must also consider its impact on the surrounding environment.Promote the use of the frequency converter in the early stages of the noise problem was once a big problem. With the low-noise converter IGBT the emergence of this issue has basically been resolved. However, with the noise problem to solve, people's looks and a converter to the surrounding environment and the impact of other continuously explore new solutions. For example, the use of a diode-voltage converter and PWMinverter circuit converter, the frequency converter itself the high harmonics will bring supply voltage and current distortion, and at the same power to affect the other equipment. However, through the use of the frequency converter Rectifier circuit PWM, we can basically solve the problem. Although because of price and control technology and other aspects of the reasons for the current PWM converter has not been promoting the inverter, but, with the frequency converter technology development and the people of the importance of environmental issues.PLC及变频器技术的发展趋势1.可编程控制器的发展趋势可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。

绿色建筑节约用水评价措施中英文资料外文翻译文献

绿色建筑节约用水评价措施中英文资料外文翻译文献

中英文资料外文翻译文献外文文献:Evaluating Water Conservation Measures For Green Building InTaiwanGreen Building evaluation is a new system in which water conservation is prioritized as one of its seven categories for saving water resources through building equipment design in Taiwan. This paper introduces the Green Building program and proposes a water conservation index with quantitative methodology and case study. This evaluation index involves standardized scientific quantification and can be used in the pre-design stage to obtain the expected result. The measure of evaluation index is also based on the essential researchin Taiwan and is a practical and applicable approach.Keywords: Green Building; Evaluation system; Water conservation; Building equipment1. IntroductionThe environment was an issue of deep global concern throughout the latter half of the 20th century. Fresh water shortages and pollution are becoming one of the most critical global problems. Many organizations and conferences concerning water resource policy and issues have reached the consensus that water shortages may cause war in the 21st century[1],if not a better solution .Actually, Taiwan is already experiencing significant discord over water supply. Building new dams is no longer an acceptable solution to the current water shortage problems, because of the consequent environmental problems. Previous studies have concludedthat water savings are necessary not only for water conservation but also for reducing energy consumption [2,3].Taiwan is located in the Asian monsoon area and has an abundant supply of rainwater. Annual precipitation averages around 2500mm. However, water shortages have recently beena critical problem during the dry season. The crucial, central issue is the uneven distribution of torrential rain, steep hillsides, and short rivers. Furthermore, the heavy demand for domestic water use in municipal areas, and the difficulties in building new reservoirs are also critical factors. Government departments are endeavoring to spread publicly the concept of water-conservation. While industry and commerce have made excellent progress in water conservation, progress among the public has been extremely slow.Due to this global trend, the Architecture and Building Research Institute (ABRI), Ministry of Interior in Taiwan, proposed the “Green Building” concept and built the evaluation system. In order to save water resources through building equipment design, this system prioritizes water conservation as one of its seven categories. This paper focuses on the water conservation measures for Green Building in Taiwan and a quantitative procedure for proving water-saving efficiency. The purpose of this work is not only aimed at saving water resources, but also at reducing the environmentalimpact on the earth.2. Water conservation indexThe water conservation index is the ratio of the actual quantity of water consumed in a building to the average water-consumption in general. The index is also called, “the water saving rate”. Evaluations of the water-consumption quantity include the evaluation to the water-saving efficiency within kitchens, bathrooms and all water taps, as well as the recycling of rain and the secondhand intermediate water.2.1. Goal of using the water conservation indexAlthough Taiwan has plenty of rain, due to its large population, the average rainfall for distribution to each individual is poor compared to the world average as shown in Fig. 1.Thus, Taiwan is reversely a country short of water. Yet, the recen t improvements in citizens’ standards of living have led to a big increase in the amount of water needed in cities, as shown in Fig. 2, which, accompanied by the difficulty of obtaining new water resources, makes the water shortage problem even worse. Due to the improper water facilities designs in the past, the low water fee, and the usual practical behavior of people when using water, Taiwanesepeople have tended to use a large quantity of tap water. In 1990,the average water-consumption quantity in Taiwan was 350l per person per day, whereas in Germany it is about 145l per person per day, and in Singapore about 150l per person per day. These statistics reveal the need for Taiwanese people to save water.The promotion of better-designed facilities which facilitate water-saving will become a new trend among the public and designers, because of concerns for environmental protection. The water conservation index was also designed to encourage utilization of the rain, recycling of water used in everyday life and use of water-saving equipment to reduce the expenditure of water and thus save water resources.2.2. Methodology for efficient use of water resourcesSome construction considerations and building system designs for effective use of water resources are described below.2.2.1. Use water-conservation equipmentA research of household tap-water consumption revealed that the proportion of the water used in flushing toilets and in bathing, amounts to approximately 50% of the total household water consumption, as given in Table 1. Many construction designers have tended to use luxurious water facilities in housing, and much water has thus been wasted. The use of water-saving equipment to replace such facilities is certain to save a large amount of water. For example, the amounts of water used in taking a shower and having a bath is quite different.A single shower uses around 70l of water, whereas a bath uses around 150l. Furthermore, current construction designs for housing in Taiwan tend to put two sets of bathtubs and toilets, and quite a few families have their own massage bathtubs. Such a situation can be improved only by removing the tubs and replacing them with shower nozzles, so that more water can be possibly saved. The commonly used water-saving devices in Taiwan now include new-style water taps, water-saving toilets, two-sectioned water closets, water-saving shower nozzles, and auto-sensor flushing device systems, etc. Water-saving devices can be used not only for housing, but also in other kinds of buildings. Public buildings, in particular, should take the lead in using water-saving devices.2.2.2. Set up a rain-storage water supply deviceThe rain-storage water supply device stores rain using natural landforms or man-made devices, and then uses simple water-cleaning procedures to make it available for use in houses. Rain can be used not only as a substitute water supply, but also for re control. Its use also helps to decrease the peak-time water load in cities. The annual average rainfall in Taiwan is about 2500 mm, almost triple better than the global average. However, due to geographic limitations, we could not build enough water storage devices, such as dams, to save all the rain. It is quite a pity that annually about 80% of the rain in Taiwan is wasted and flows directly into the sea, without being saved and stored. The rain-storage water supply system is used with a water-gathering system, water-disposal system, water-storage system and water-supply system. First, the water-gathering system gathers the rain. Then, the water flows to the water-disposal system through pipes, before being sent to the water-storage system. Finally, it is sent to the users’equipment through another set of pipes. Using the drain on the roof of a building, leading to the underground water-storage trough, is considered an effective means of gathering rain. The water, after simple water-disposal processes, can be used for chores such as house cleaning, washing floors, air-conditioning or watering plants.2.2.3. Establishing the intermediate water systemIntermediate water is that gathered from the rain in cities, and includes the recycled waste-water which has already been disposed of and can be used repeatedly only within a certain range, but not for drinking or human contact. Flushing the toilet consumes 35% of all water. If everyone were to use intermediate water to flush toilets, much water could be efficiently saved. Large-scale intermediate water system devices are suggested to be built up regularly with in a big area. Each intermediate water system device can gather, dispose and recycle a certain quantity of waste-water from nearby government buildings, schools, residences, hotels, and other buildings. The obtained water can be used for flushing toilets, washing cars, watering plants and cleaning the street, or for garden use and to supplement the water of rivers or lakes. A small-scale intermediate water system gathers waste-water from everyday use, and then, through appropriate water-disposal procedures, improves the water quality to a certain level, so that finally it can be repeatedly used for non-drinking water. Thereare extensive ways to use the intermediate water. It can be used for sanitary purposes, public fountains, watering devices in gardens and washing streets. In order to recycle highly polluted waste-water, a higher cost is needed for setting up the associated water-disposal devices, which are more expensive and have less economic benefits than the rain-utilization system. Except for the intermediate water-system set within a single building, if we build them within large-scale communities or major construction development programs, then it is sure to save more water resources efficiently and positively for the whole country as well as improve the environmental situation.4. Method for assessing the recycling of rainSystems for recycling rain and intermediate water are not yet economic beneficial, because of the low water fee and the high cost of water-disposal equipment. However, systems for recycling rain are considered more easily adoptable than those for recycling intermediate water. Herein, a method for assessing the recycling of rain is introduced to calculate the ratio (C) of the water-consumption quantity of the recycled rainwater to the total water-consumption.4.1. Calculation basis of recycling rainwaterThe designer of a system for recycling rainwater must first determine the quantity of rainwater and the demand, which will determine the rainwater collection device area and the storage tank volume. Rainwater quantity can actually be determined by a simple equation involving precipitation and collection device area. However, precipitation does not fall evenly spread over all days and locations. In particular, rain is usually concentrated in certain seasons and locations. Consequently, the critical point of the evaluation is to estimate and assess meteorological precipitation. Meteorological records normally include yearly, monthly, daily and hourly precipitation. Yearly and monthly precipitation is suitable for rough estimates and initial assessment. However, such approximation creates problems in determining the area of the rainwater collection device and the volume of the storage tank. Thus, daily precipitation has been most commonly considered. Hourly precipitation could theoretically support a more accurate assessment. However, owing to the increasing number of parameters and calculation data increases, the complexity of the process and the calculation time, result in inefficiencies. Herein, daily precipitation is adoptedin assessing rainwater systems used in buildings [4,7].4.3. Case study and analysisFollowing the above procedure, a primary school building with a rainwater use system is taken as an example for simulation and to verify the assessment results. This building is located in Taipei city, has a building area of 1260 m and a total floor area of 6960 m ; it is a multi-discipline teaching building. Roofing is estimated to cover 80% of the building area, and the rainwater collection area covers 1008 m .Rainwater is used as intermediate water for the restrooms, and the utilization condition is set at 20 m per day, whilethe out flow coefficient (Y) is 0.9. A typical meteorological precipitation in Taipei in 1992 was adopted as a database. The rainwater storage tank was set to an initial condition before the simulation procedure. Herein, four tank volumes were considered in the simulations of rainwater utilization—15, 25, 50, 100 m. The results indicate that increased storage tank volume reduces overflow and increases the utilization of rainwater. Given a 50 m storage tank, the quantity of rainwater collection closely approaches the utilization quantity of rainwater. Consequently, this condition obtains a storage tank with a roughly adequate volume. When the volume of the storage tank is 100 m, the utilization rate is almost 100% and the overflow quantity approaches zero. Despite this result being favorable with respect to utilization, such a tank may occupy much space and negatively impact building planning. Consequently, the design concept must balance all these factors. The building in this case is six floors high, and the roof area is small in comparison to the total floor area. The water consumption of the water closet per year, but the maximum rainwater approaches 7280 m collection is 2136 m per year. Thus, significant replenishment from tap water is required. This result also leads to a conclusion that high-rise buildings use rainwater systems less efficiently than other buildings. Lower buildings (e.g. less than three floors) have highly efficient rainwater utilization and thus little need for replenishment of water from the potable water system.The efficiency of rainwater storage tanks is assessed from the utilization rate of rainwater and the substitution rate of tap water. Differences in annual precipitation and rainfall distribution yield different results. Figs. 5 and 6 illustrate the results of the mentioned calculation procedure, to analyze differences in rainwater utilization and efficiency assessment.The simulation runs over a period often years, from 1985 to 1994, and includes storage tanks with four different volumes. When the volume of the rainwater tank is 50 m, the utilization rate of rainwater exceeds 80% with about 25% substitution with tap water. Using this approach and the assessment procedure, the volume of rainwater storage and the performance of rainwater use systems in building design, can be determined.In the formula of the water conservation index, C is a special weighting for some water recycling equipment that intermediates water or rain, and is calculated as the ratio of the water-consumption quantity of the recycled rainwater to the total water-consumption. Therefore, this assessment procedure can also offer an approximate value of C for the water conservation index.5. Green building label and policy“Green Building” is called “Environmental Co-Habitual Architecture” in Japan, “Ecological Building” or “Sustainable Building” in Europe and “Green Build ing in North American countries. Many fashionable terms such as “Green consumption”, “Green living”, “Green illumination” have been broadly used. In Taiwan, currently, “Green” has been used as a symbol of environmental protection in the country. The Construction Research Department of the Ministry of the Interior of the Executive Yuan has decided to adopt the term “Green Building” to signify ecological and environmental protection architecture in Taiwan.5.1. Principles of evaluationGreen Building is a general and systematic method of design to peruse sustainable building. This evaluation system is based on the following principles:(1) The evaluation index should accurately reflect environmental protection factors such as material, water, land and climate.(2) The evaluation index should involve standardized scientific quantification.(3) The evaluation index should not include too many evaluation indexes; some similar quality index should be combined.(4) The evaluation index should be approachable and consistent with real experience.(5) The evaluation index should not involve social scientific evaluation.(6) The evaluation index should be applicable to the sub-tropical climate of Taiwan.(7) The evaluation index should be applicable to the evaluation of community or congregate construction.(8) The evaluation index should be usable in the pre-design stage to yield the expected result.According to these principles, the seven-index system shown in Table 4 is the current Green Building evaluation system use d in Taiwan. The theory evaluates buildings’ impacts on the environment through the interaction of “Earth Resource Input” and “Waste Output”. Practically, the definition of Green Building in Taiwan is “Consume the least earth resource and create the least construction waste”.Internationally, each country has a different way of evaluating Green Building. This system provides only the basic evaluation on “Low environment impact”. Higher level issues such as biological diversity, health and comfort and community consciousness will not be evaluated. This system only provides a basic, practical and controllable environmental protection tool for inclusion in the government’s urgent construction environment protection policy. The “Green Building” logo is set to a ward Green Building design and encourage the government and private sector to pay attention to Green Building development. Fig. 7 is the logo of Green Building in Taiwan [6,8].5.2. Water conservation measureThis paper focuses on water conservation index in green building evaluation system. Water conservation is a critical category of this evaluation system, and is considered in relation to saving water resources through building equipment design. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the desired result. The evaluation index is also based on research in Taiwan and is practically applicable. Using water-saving equipment is the most effective way of saving water; using two-sectioned water-saving toilets and water-saving showering devices without a bathtub are especially effective. Various other types of water-recycling equipment for reusing intermediate water and rain are also evaluated. In particular, rainwater-use systems in building designs areencouraged. When a candidate for a Green Building project introduces water recycling system or a rainwater use system, the applicant should propose an appropriate calculation report to the relevant committee to verify its water-saving efficiency. This guideline actually appears to be a reasonable target for performing Green Building policy in Taiwan.A new building can easily reach the above water conservation index. This evaluation system is designed to encourage people to save more water, even in existing buildings. All this amounts to saying that large-scale government construction projects should take the lead in using such water-saving devices, as an example to society.6. ConclusionThis paper introduces the Green Building program and proposes a water conservation index with standardized scientific quantification. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the expected results. The measure of evaluation index is also based on the essential research on Taiwan and is a practical and applicable approach. The actual water-saving rate (WR) for Green Building projects should be <0.8, and the AR of the water-saving equipment should be higher than 0.8. Thus, qualified Green Building projects should achieve a water saving rate of over 20%. For the sustainable policy, this program is aimed not only at saving water resources, but also at reducing the environmental impact on the earth.The Green Building Label began to be implemented from 1st September 1999, and over twenty projects have already been awarded the Green Building Label in Taiwan, while the number of applications continues to increase. For a country with limited resources and a high-density population like Taiwan, the Green Building policy is important and represents a positive first step toward reducing environmental impact and promoting sustainable development.中文译文:台湾的绿色建筑节约用水评价措施在台湾绿色建筑评价是一个新的制度,在它的一个7个类别中,通过建筑设备设计节省水资源,使水资源保护置于优先地位。

沥青混合料的应用论文中英文资料对照外文翻译文献综述

沥青混合料的应用论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译Asphalt Mixtures-Applications, Theory andPrinciples1 . ApplicationsAsphalt materials find wide usage in the construction industry. The use of asphalt as a cementing agent in pavements is the most common of its applications, however, and the one that will be considered here.Asphalt products are used to produce flexible pavements for highways and airports. The term “flexible” is used to distinguish these pavements from those made with Portland cement, which are classified as rigid pavements, that is, having beam strength. This distinction is important because it provides they key to the design approach which must be used for successful flexible pavement structures.The flexible pavement classification may be further broken down into high and low types, the type usually depending on whether a solid or liquid asphalt product is used. The low types of pavement are made with the cutback, or emulsion, liquid products and are very widely used throughout this country. Descriptive terminology has been developed in various sections of the country to the extent that one pavement type may have several names. However, the general process followed in construction is similar for most low-type pavements and can be described as one in which the aggregate and the asphalt product are usually applied to the roadbed separately and there mixed or allowed to mix, forming the pavement.The high type of asphalt pavements is made with asphalt cements of some selected penetration grade.Fig. ·1 A modern asphalt concrete highway. Shoulder striping is used as a safely feature.Fig. ·2 Asphalt concrete at the San Francisco International Airport.They are used when high wheel loads and high volumes of traffic occur and are, therefore, often designed for a particular installation.2 . Theory of asphalt concrete mix designHigh types of flexible pavement are constructed by combining an asphalt cement, often in the penetration grade of 85 to 100, with aggregates that are usually divided into three groups, based on size. The three groups are coarse aggregates, fine aggregates, and mineral filler. These will be discussed in detail in later chapter.Each of the constituent parts mentioned has a particular function in the asphalt mixture, and mix proportioning or design is the process of ensuring that no function is neglected. Before these individual functions are examined, however, the criteria for pavement success and failure should be considered so that design objectives can be established.A successful flexible pavement must have several particular properties. First, it must be stable, that is to resistant to permanent displacement under load. Deformation of an asphalt pavement can occur in three ways, two unsatisfactory and one desirable.Plastic deformation of a pavement failure and which is to be avoided if possible. Compressive deformation of the pavement results in a dimensional change in the pavement, and with this change come a loss of resiliency and usually a degree of roughness. This deformation is less serious than the one just described, but it, too, leads to pavement failure. The desirable type of deformation is an elastic one, which actually is beneficial to flexible pavements and is necessary to their long life.The pavement should be durable and should offer protection to the subgrade. Asphalt cement is not impervious to the effects of weathering, and so the design must minimize weather susceptibility. A durable pavement that does not crack or ravel will probably also protect the roadbed. It must be remembered that flexible pavements transmit loads to the subgrade without significant bridging action, and so a dry firm base is absolutely essential.Rapidly moving vehicles depend on the tire-pavement friction factor for control and safety. The texture of the pavement surfaces must be such that an adequate skid resistance is developed or unsafe conditions result. The design procedure should be used to select the asphalt material and aggregates combination which provides a skid resistant roadway.Design procedures which yield paving mixtures embodying all these properties are not available. Sound pavements are constructed where materials and methods are selected by using time-tested tests and specifications and engineering judgments along with a so-called design method.The final requirement for any pavement is one of economy. Economy, again, cannot be measured directly, since true economy only begins with construction cost and is not fully determinable until the full useful life of the pavement has been recorded. If, however, the requirements for a stable, durable, and safe pavement are met with a reasonable safety factor, then the best interests of economy have probably been served as well.With these requirements in mind, the functions of the constituent parts can be examined with consideration give to how each part contributes to now-established objectives or requirements. The functions of the aggregates is to carry the load imposed on the pavement, and this is accomplished by frictional resistance and interlocking between the individual pieces of aggregates. The carrying capacity of the asphalt pavement is, then, related to the surface texture (particularly that of the fine aggregate) and the density, or “compactness,”, of the aggregates. Surface texturevaries with different aggregates, and while a rough surface texture is desired, this may not be available in some localities. Dense mixtures are obtained by using aggregates that are either naturally or artificially “well graded”. This means that the fine aggregate serves to fill the voids in the coarser aggregates. In addition to affecting density and therefore strength characteristics, the grading also influences workability. When an excess of coarse aggregate is used, the mix becomes harsh and hard to work. When an excess of mineral filler is used, the mixes become gummy and difficult to manage.The asphalt cement in the flexible pavement is used to bind the aggregate particles together and to waterproof the pavements. Obtaining the proper asphalt content is extremely important and bears a significant influence on all the items marking a successful pavement. A chief objective of all the design methods which have been developed is to arrive at the best asphalt content for a particular combination of aggregates.3 . Mix design principlesCertain fundamental principles underlie the design procedures that have been developed. Before these procedures can be properly studied or applied, some consideration of these principles is necessary.Asphalt pavements are composed of aggregates, asphalt cement, and voids. Considering the aggregate alone, all the space between particles is void space. The volume of aggregate voids depends on grading and can vary widely. When the asphalt cement is added, a portion of these aggregate voids is filled and a final air-void volume is retained. The retention of this air-void volume is very important to the characteristics of the mixture. The term air-void volume is used, since these voids are weightless and are usually expressed as a percentage of the total volume of the compacted mixture.An asphalt pavement carries the applied load by particle friction and interlock. If the particles are pushed apart for any reason , then the pavement stability is destroyed. This factor indicates that certainly no more asphalt should be added than the aggregate voids can readily hold. However ,asphalt cement is susceptible to volume change and the pavement is subject to further compaction under use. If the pavement has no air voids when placed, or if it loses them under traffic, then the expanding asphalt will overflow in a condition known as bleeding. The loss of asphalt cement through bleeding weakens the pavement and also reduces surface friction, making the roadwayhazardous.Fig. ·3 Cross section of an asphalt concrete pavement showing the aggregate framework bound together by asphalt cement.The need for a minimum air-void volume (usually 2 or 3 per cent ) has been established. In addition, a maximum air-void volume of 5 to 7 per cent should not be exceed. An excess of air voids promotes raveling of the pavement and also permits water to enter and speed up the deteriorating processes. Also, in the presence of excess air the asphalt cement hardens and ages with an accompanying loss of durability and resiliency.The air-void volume of the mix is determined by the degree of compaction as well as by the asphalt content. For a given asphalt content, a lightly compacted mix will have a large voids volume and a lower density and a greater strength will result. In the laboratory, the compaction is controlled by using a specified hammer and regulating the number of blows and the energy per blow. In the field, the compaction and the air voids are more difficult to control and tests must be made no specimens taken from the compacted pavement to cheek on the degree of compaction being obtained. Traffic further compact the pavement, and allowance must be made for this in the design. A systematic checking of the pavement over an extended period is needed to given factual information for a particular mix. A change in density of several per cent is not unusual, however.Asphalt content has been discussed in connection with various facets of the ix design problem. It is a very important factor in the mix design and has a bearing an all the characteristics ld a successful pavement: stability, skid resistance, durability, and economy. As has been mentioned, the various design procedures are intended to provide a means for selecting the asphalt content . These tests will be considered indetail in a future chapter ,but the relationship between asphalt content and the measurable properties of stability, unit weight, and air voids will be discussed here.Fig.4 Variations in stability, unit weight, and air-void content with asphalt cement content.If the gradation and type of aggregate, the degree of compaction, and the type of asphalt cement are controlled, then the strength varies in a predictable manner. The strength will increase up to some optimum asphalt content and then decrease with further additions. The pattern of strength variation will be different when the other mix factors are changed, and so only a typical pattern can be predicted prior to actual testing.Unit weight varies in the same manner as strength when all other variable are controlled. It will reach some peak value at an asphalt content near that determined from the strength curve and then fall off with further additions.As already mentioned, the air-void volume will vary with asphalt content. However, the manner of variation is different in that increased asphalt content will decrease air-void volume to some minimum value which is approached asymptotically. With still greater additions of asphalt material the particles of aggregate are only pushed apart and no change occurs in air-void volume.In summary, certain principles involving aggregate gradation, air-void volume, asphalt content, and compaction mist be understood before proceeding to actual mix design. The proper design based on these principles will result in sound pavements. If these principles are overlooked, the pavement may fail by one or more of the recognized modes of failure: shoving, rutting, corrugating, becoming slick when the max is too …rich‟; raveling, cracking, having lo w durability when the mix is too …lean‟.It should be again emphasized that the strength of flexible is, more accurately, astability and does not indicate any ability to bridge weak points in the subgrade by beam strength. No asphalt mixture can be successful unless it rests on top of a properly designed and constructed base structure. This fact, that the surface is no better than the base, must be continually in the minds of those concerned with any aspect of flexible pavement work.译文:沥青混合料的应用、理论和原则1、应用沥青材料如今在建筑行业广泛使用。

电子秤中英文资料翻译

电子秤中英文资料翻译

附录:英文技术资料翻译Journal of Jiaozuo Institute of Technology (Nstursl Science),Vol.20,No.4,Jul.2001英文原文:The development of portable digital balanceGUO San-ming' Z H ENG J un-zhong(Dept,of Electri.Eng .of JIT,Jiaozuo 454000,China)Abstract: More attention has been paid on the development of the portable digital balance with commercial worth since the usual measurers have been unpopular such as pole balance spring balance and some others .The scheme of the portable digital balance with high performance and low cost is put forward. The ideas for the signal process circuit is introduced and the specie hardware chart is made. The key parts of the weigh sensor elastomer are specified. Moreover the problems to deal with the current and the improvement on the accuration have been solved.Key words: digital balance; elastomer; power amplifier; measurement range conversion; electric resourceCLC; TH 715.1 +93 Document Code: A literature number 1007 -7332 (2001) 04-0269-040 IntroductionDevelopment of science and technology, the weighing technology put forward higher requirements, especially micro-processing technology and sensor technology, tremendous progress has greatly accelerated this process. Currently, electronic scales used in commercial sales have been quite common, but all kinds of electronic scales are widely used in the market, there are significant limitations. These electronic scales large volume, high cost, need for frequency AC power supply, and can not carry. Popular portableelectronic weighing scales on the market, or they use a rod to the spring compression, tensile deformation of the spring balance to achieve, such as metering, measurement error is large, more than once spring elastic limit, it will generate a lot of errors, as well as damage to the rod type scales are currently going out of the metering equipment, therefore, a miniaturized, can be replaced in the future development of universal rod scales electronic scales by the people attach great importance to design a lightweight, easy to carry, accurate measurement, intuitive readings civilian electronic scales imminent.This product is fully electronic circuit design, fully taking into account the advantages of various types of electronic scales, and small and portable, measurement error is small (1%), reliable / low prices on the civilian market has good prospects for use.1 System PrinciplesPortable electronic scale system shown( Figure 1), which consists of sensors, amplifiers, range conversion circuit, A / D converter and a display / power supply circuit and the like.Strain gauge sensor element consisting of a resistor, the weighing weak signal, the precision of the differential amplifier, two stages (0~2Kg, 2~10Kg) automatic conversion range, the A/D converter, said amplified re-converted into an analog signal to a digital liquid crystal display (LCD) display, the processing circuit power supply voltage into the battery power supply voltage level required for the type of each unit circuit.2 load cell selection and designIn the electronic scale system , the sensor is the most critical component is also part of the design of electronic scales difficult to deal with , its performance directlydetermines the accuracy of electronic scales . Small -scale load cell structure , type and more categories . In order to make the load cell has good linearity , strong input sensitivity and strong resistance to lateral load force , we have adopted a two-hole parallel beam load cell [1] ( Figure 2 ),as the use of domestic hard aluminum alloy LY12 elastomer material, the elastic hysteresis and creep is small, the small -scale load cell, the storage of this material is larger than W, elastic modulus is small (about 1 / 3 of steel), the manufacture of small the load cell weighing scale , and the ideal material.Working principle of the sensor is : When the sensor is subjected to external loads prole of the upper and lower beams parallel elastomer elastic deformation / paste in a parallel beam of four strain gauges R1~ R4 consists of bridge output voltage is generated with linearized external load increment p , p can know the size of the external load.Size of the sensor according to the maximum range of the elastic element may be primarily determined detection point ( peak stress ) section thickness h1,, to determine the form and size of the opening , the sensor sensitivity is generally require (1.5 ~ 2) mV / V range, the full-bridge The output voltage U 0.As 0CC U S U ε=,Where: S-strain gauge sensitivity factor;U C C - -for the bridge voltageε-Detection Point (strain gauge affixed at) strain,S U U CC /)/(0=εAlso 1/P M E W ε= ,Where: Mp-detection point bending moment;E -modulus of elasticity of the material;W1-detection point flexural modulus; .)6/(211bh l W =Beacuse ),2/(:)2/(:max L l M M P = (Similar triangles);So ,4/)4/)(/(pl pL L l M P -=Where: b -elastic element width;h1-sectional thickness detection point ;Mmax = pL/4- maximum bending moments at both ends of the elastic element ; p-Maximum weight;l-double hole center distance;L-length of elastomersCan push 164pl h Ebε= Open hole diameter 12h φα=-,2()/2h L l φ=--The stiffness ratio αL h h K 312)(= . This value can be used as calibration values estimated elastic stiffness is adequate. Size elastomer determined according to the above principles, its processing byconventional technology standards, through the heat out of the library , the opening line cutting , grinding and other processes required by conventional patch3 amplifier circuit design processing several problems(1) Power : This e- weighed 2 on the 5th ordinary zinc-manganese batteries (3V) or rechargeable battery (2.4V) power supply. For each level of the supply voltage circuit for this is not enough , so the choice of switching to Boost Regulator Manifold TL499A for power conversion ( Figure 3 ).The output voltage of the regulator TL499A range of up to 2.9 ~ 30V, output current of 100mA, the required input voltage range of 1.1 ~ 10V. TL499A the battery voltage up to 15V, 7.5V and then get a symmetrical voltage output through the op amp. (2) Reduce the influence of the equivalent offset voltage measurement accuracy ; bridge output signal is superimposed on a high voltage DC supply mold weak signal , you should first ensure that the power bridge to get a high degree of stability , constant current bridge uses circuitry as shown in ( 4 ) below.By the A1, R5, R6, R1 constitute a constant current source circuit for providing a high degree of stability bridge power circuit . R1-R4 constituting the detection resistance strain gauge bridge force due to the action of the force to deform the elastic body , leaving a corresponding change in strain gauge resistance , thereby weak bridge output voltage signal proportional to the force by the elastic body , Rp is zero potentiometer to adjust the bridge output to zero. A2-A5 and peripheral components of the differential amplifier . The circuit has an input impedance (300-500mΏ) high , high common mode rejection ratio (110DB). Input offset voltage (20uv) and offset voltage drift (0.25-10uv / ℃) small features, ideal for the bridge amplifier circuit form . Circuit is divided into two , the first stage consists of A2, A3 , thereby to improve the input impedance of the amplifier circuit , the second stage by the A4, A5 constitute a differential amplifier , seeking an exact match to A4 external resistor , while lower gain circuit has guaranteed small offset voltage , Rw number tune the gain of the amplifier.(3) Achieve scale transformation , the electronic scale range is divided into two ranges , the first range 0-2Kg, second range 2-10Kg, automatic conversion range fromthe circuit ( Figure 5 ).A/D conversion and the reality circuit ICL7106 completed by the manifold, range conversion by changing the reference voltage VREF 7106 implementation. Weighing comparator circuit compares the output signal of the differential amplifier composed by A6 , when the weighing scale at 0 - 1999g range, the signal is small , the comparator does not move from Rp1 adjusted reference voltage through analog switches SW1, plus to VREF end 7106 ; when weighing more than 1999g, comparator A6 flip RP2 obtained by the reference voltage signal via the analog switch SW2 to 7106 ; simultaneously output A6 control the position of the decimal point is lit LCD display.4 Test ResultsBy actual measurement , the electronic scale technical indicators are as follows : Accuracy degree level : 3 Maximum weighing : 10kgMinimum scale value : Range :0 - 1999g time error : ≤1%Range :1.999-10kg when drift : <0.1% / ℃Weight : ≤400g volume: about 110mmx80mmx35mm5 ConclusionsRenamed some of the performance characteristics of some failings , one of which is the high price , after accounting cost about 120 yuan ; Furthermore high linearity error ; function is still lacking, such as tare function , computing functions. These need to be addressed in a future circuit improvements . As electronic scales small, easy to carry , such as to further reduce costs in the civilian market will have good prospects for use A/D conversion and the reality circuit ICL7106 completed by the manifold , range conversion by changing the reference voltage VREF 7106 implementation. Weighing comparator circuit compares the output signal of the differential amplifiercomposed by A6 , when the weighing scale at 0 - 1999g range, the signal is small , the comparator does not move from Rp1 adjusted reference voltage through analog switches SW1, plus to VREF end 7106 ; when weighing more than 1999g, comparator A6 flip RP2 obtained by the reference voltage signal via the analog switch SW2 to 7106 ; Simultaneously output A6 control the position of the decimal point is lit LCD display.焦作工学院(自然科学版),第20卷,第四期,2001年7月中文译文:便携式电子秤的研制郭三明,郑均忠(焦作工学院电气工程系,河南焦作454000)摘要:目前,市场上常见的杆式秤和弹簧秤等计量器具已逐步被淘汰。

微控制器论文中英文资料对照外文翻译

微控制器论文中英文资料对照外文翻译

中英文资料对照外文翻译微控制器早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031 因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高开始出现了16位单片机但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展单片机技术得到了巨大提高。

随着INTEL i960系列特别是后来的ARM系列的广泛应用 32位单片机迅速取代16位单片机的高端地位并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高处理能力比起80年代提高了数百倍。

目前高端的32位单片机主频已经超过300MHz 性能直追90年代中期的专用处理器而普通的型号出厂价格跌落至1美元最高端[1]的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机也被称为微控制器MICROCONTROLLER UNIT常用英文字母的缩写MCU表示单片机它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中使计算机系统更小更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器从此以后单片机和专用处理器的发展便分道扬镳。

单片机比专用处理器更适合应用于嵌入式系统因此它得到了最多的应用。

事实上单片机是世界上数量最多的计算机。

现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。

而个人电脑中也会有为数不少的单片机在工作。

汽车上一般配备40多部单片机复杂的工业控制系统上甚至可能有数百台单片机在同时工作单片机的数量不仅远超过PC机和其他计算的总和甚至比人类的数量还要多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要Characteristics of stamping and properties of sheetmetal formingStamping is a kind of plastic forming process in which a part is produced by means of the plastic forming of the material under the action of a die. Stamping is usuall y carried out under cold state, so it is also called cold stamping. Heat stamping is used onl y when the blank thickness is greater than 8~100mm. the blank material for stamping is usuall y in the form of sheet or strip, and therefore it is also called sheet metal forming. Som e non-metal sheets (such as plywood, mica sheet, asbestos, leather) can also be formed by stamping.Stamping is widel y used in various fields of the metalworking industry, and is plays a crucial role in the industries for manufacturing automobiles, instrum ents, military parts and household electrical appliances, etc.The process, equipment and die are the three foundational problems that needed to be studied in stamping.The characteristics of the sheet metal forming are as follows:(1)high material utilizatio n.(2)Capacit y to produce thin-walled parts of complex shape.(3)Good interchangeability between stamping parts due to precision in shape and dimension.(4)Parts with lightweight, high-strength and fine rigidit y cane obtained.(5)High productivity, easy to operate an d to realize mechanization and automatization.The manufacture of the stamping die is costly, and therefore it only fits to mass production. For the manufacture of products in small batch and rich variety, the simple stamping die and the new equipment such as a stamping machining center, are usually adopted to meet the market demands.The materials for sheet metal stamping include mile steel, copper, aluminum, magnesium alloy and high-plasticit y alloy-steel, etc.Stamping equipment includes plate shear and punching press. The former shears plate into strips with a definite width, which would be pressed later. The late can be used both in shearing and forming.Characteristics of stamping formingThere are various processes of stamping forming with different working patterns and names. But these processes are similar to each other in plastic deformation. There are following conspicuous characteristics in stamping:The force per unit area perpendicular to the blank surface is not large but is enough to cause the material plastic deformation. It is much less than the inner stresses on the plate plane directions. In most cases stamping forming can be treated approximatel y as that of the plane stress state to simplify vastl y the theoretical analysis and the calculation of the process parameters.Due to the small relative thickness, the anti-instability capabilit y of the blank is weak under compressive stress. As a result, the stamping process is difficult to proceed successfull y withoutusing the anti-instability device (such as blank holder). Therefore the varieties of the stamping processes dominated by tensile stress are more than those dominated by compressive stress.During stamping forming, the inner stress of the blank is equal to or sometimes less than the yie ld stress of the material. In this point, the stamping is different from the bulk forming. During stamping forming, the influence of the hydrostatic pressure of the stress state in the deformation zone to the forming limit and the deformation resistance is not so important as to the bulk forming. In some circumstances, such influence may bi neglected. Even in the case when this influence should be considered, the treating method is also different from that of bulk forming.In stamping forming, the restrain action of the die to the blank is not severe as in the case of the bulk forming (such as die forging). In bulk forming, the constraint forming is proceeded by the die with exactl y the same shape of the part. Whereas in stamping, in most cases, the blank has a certain degree of freedom, onl y one surface of the blank contacts with the die. In some extra cases, such as the forming of the suspended region of sphere or cone, and curling at the end of tube, neither sides of the blank on the deforming zone contact with the die. The deformation in these regions are caused and controlled by the die appl ying an external force to its adjacent area.Due to the characteristics of stamping deformation and mechanics mentioned above, the stamping technique is different from the bulk metal forming:The importance of the strength and rigidit y of the die in stamping forming is less than that in bulk forming because the blank can be formed without appl ying large pressure per unit area on itssurface. Instead, the techniques of t he simple die and the pneumatic and hydraulic forming are developed.Due to the plane stress or simple strain state in comparison with bulk forming, more research on deformation or force and power parameters has been done. Stamping forming can be performed by more reasonable scientific methods. Based on the real time measurement and anal ysis on the sheet metal properties and stamping parameters, by means of stamping process is also in proceeding.It is shown that there is a close relationship between stampi ng forming and raw material. The research on the properties of the stamping forming, that is, forming ability and shape stability, has become a key point in stamping technology. The research on the properties of the sheet metal stamping not only meets the need of the stamping technology development, but also enhances the manufacturing technique of iron and steel industry, and provides a reliable foundation for increasing sheet metal quality.A stamping die is a special, one-of-a-kind precision tool that cuts and forms sheet metal into a desired shape or profile. Most dies are constructed of several basic components, including die plates, shoes, die sets, guide pins, bushings, heel blocks, heel plates, screws, dowels, and keys. Dies also need stripper, pressu re, and drawing pads, as well as the devices used to secure them—spools, shoulder bolts, keepers, and retainers; and gas, coil, or urethane springs.Stamping forming propert y of sheet metal and its assessing methodThe stamping forming propert y of the shee t metal is the adaptation capability of the sheet metal to stamping forming. It has crucial meaning to the investigation of the stamping forming propert yof the sheet metal. In order to produce stamping forming paramerters, it is necessary to understand cl earl y the properties of the sheet metal, so as to utilize the potential of the sheet metal full y in the prodection. On the other hand, to select plate material accuratel y and rationall y in accordance with the characteristics of the shape and dimension of the stamping forming part and its forming technique is also necessary so that a scientific understanding and accurate judgment to the stamping forming properties of the sheet metal may be achieved.There are direct and indirect testing methods to assess the stamping propert y of the sheet metal. practicalit y stamping test is the most direct method to assess stamping forming propert y of the sheet metal. The simulation test is a kind of assessing method that after simplifying and summing up actual stamping form ing methods, as well as eliminating many trivial factors, the stamping properties of the sheet metal are assessed, based on simplified axial-symmetric forming method under the same deformation and stress states between the testing plate and the actual form ing states.A stamping die is a special, one-of-a-kind precision tool that cuts and forms sheet metal into a desired shape or profile. The die's cutting and forming sections t ypicall y are made from special types of hardenable steel called tool steel. Dies also can contain cutting and forming sections made from carbide or various other hard, wear-resistant materials.Most stamping dies are constructed of several basic components, including die plates, shoes, die sets, guide pins, bushings, heel blocks, heel plates, screws, dowels, and keys. Dies also need stripper, pressure, and drawing pads, as well as the devices used to securethem: spools, shoulder bolts, keepers, and retainers, as well as gas, coil, or urethane springs.1. Die Plates, Shoes, and Die SetsDie plates, shoes, and die sets are steel or aluminum plates that correspond to the size of the die. They serve as the foundation for mounting the working die components. These parts must be machined—milled or ground—so that they are parallel and flat wit hin a critical tolerance. Although grinding is the most popular, a milled surface now can be obtained that is as accurate as a ground surface.Most die shoes are made from steel. Aluminum also is a popular die shoe material. Aluminum is one-third the weight of steel, it can be machined very quickl y, and special alloys can be added to it to give it greater compressive strength than low-carbon steel. Aluminum also is a great metal for shock adsorption, which makes it a good choice for blanking dies.The upper and lower die shoes assembled together with guide pins create the die set. The lower die shoe often has machined or flame-cut holes that allow slugs and scrap created in the die to fall freel y through the die shoe onto the press bed. The holes also may serve as clearances for gas springs and other die components.The die shoe thickness is based on how much force can be expected during cutting and forming. For example, a coining die, one that compresses metal by squeezing it between an upper and lower die section, requires a much thicker die shoe than a simple bending die.2. Guide Pins and BushingsGuide pins, sometimes referred to as guide posts or pillars, function together with guide bushings to align both the upper andlower die shoes precisel y . They a re precision-ground components, often manufactured within 0.0001 in. Although numerous specialt y mounting methods can be used to install these components, there are only two basic t ypes of guide pins and bushings—friction pins and ball bearing-st yle pins.Friction pins are precision-ground pins that are slightl y smaller than the guide bushing's inside diameter. Pins are made from hardened tool steel, while bushings often are made from or lined with a special wear-resistant material called aluminum-bronze. The aluminum-bronze may contain graphite plugs that help to reduce friction and wear that occur to the pins and bushings.Friction pins also help to heel the die shoes and prevent them from moving from side to side.Precision or ball bearing-st yle guide pins comprise precision-hardened pins, ball cages, ball bearings, and bushings. Unlike friction pins, these pins ride on a series of ball bearings contained in a special aluminum ball cage that permits the bearings to rotate without falling out.These pins have several advantages. First, friction is reduced so the die can run at faster speeds without generating excessive friction and heat. Second, they allow the diemaker to separate the upper and lower die shoes easily. Third, because they use ball bearings, they can be manufactured with greater accuracy than friction pins.Remember, guide pins are meant to align the upper and lower die shoes, not to align a poorl y maintained or sloppy ram in a press! Some companies try to compensate for a poorl y maintained pr ess by adding oversized guide pins or grinding the guide pin ends to a coneshape. Care must be taken when flipping die shoes over so that the guide pins are not bent.3. Heel Blocks and Heel PlatesHeel blocks are special steel blocks that are precision-machined, screwed, doweled, and often welded to both the upper and lower die shoes. They contain components called wear plates and function to adsorb any side thrust that may be generated during the cutting and forming processes. They are especiall y import ant if the generated force is one-directional. Too much force generated from one direction onl y can cause the guide pins to deflect, which results in misalignment of critical cutting and forming components.Most heel blocks have steel heel plates, and the heel block on the opposite shoe has a wear plate made from aluminum-bronze or some other dissimilar metal. The plate selection process is critical. Using two opposing plates made of the same metal t ype can result in high friction, heat, and eventuall y gall ing or cold welding of the wear plates.Heel blocks can be used to heel the die in any or all directions. Box heels often are used to heel the die in all directions.4. Screws, Dowels, and KeysScrews fasten and secure the working components to both the upper and lower die shoes. The socket head cap screw is the most popular fastener used in stamping dies. This hardened tool steel screw, often referred to as an Allen head screw, offers superior holding power and strength.Dowels are hardened, precision-ground pins that precisel y locate the die section or component in its proper location on the die shoe.Although dowels have much heeling ability, their main function is to locate the die section properl y.Keys are small, rectangular blocks of precision-ground steel that are inserted into milled pockets in the die shoes and sections called keyways. Keys locate and heel die sections and components.5. PadsA pad is simpl y a pressure-loaded plate, either flat or contoured, that holds, controls, or strips the meta l during the cutting and forming processes. Several t ypes of pads are used in stamping dies. Depending on their function, pads can be made from soft low-carbon steel or hardened tool steel. Contoured pads must fit very closel y to the mating die section. Pr ecision requirements determine whether the pads are positioned with guide pins and bushings or left unguided.Stripper Pads/Plates. Stripper pads are flat or contoured spring-loaded plates that pull, or strip, the metal off the cutting punches. When it is cut, metal naturall y tends to collapse around the body or shank of the cutting punches; this is especiall y true during piercing. The stripper pad surrounds the cutting punches and mounts to the upper die shoe. As the punch exits the lower die, the spring-loaded pad holds the metal down flush with the lower die section, which allows the cutting punches to withdraw from the sheet metal or piece part.Often stripper pads are inserted with a small block of steel called a pad window. This pad window usuall y is s mall and lightweight and can be removed easil y to allow the die maintenance technician to remove the ball lock-style pierce punch from the retainer without removing the entire stripper pad. Stripper pads alsofunction to hold the metal flat or to the desir ed shape during the cutting process.Pressure Pads/Plates.During the wipe bending process, the metal must be held down tightl y to the lower die section before the forming punch contacts the metal. Pressure pads must apply a force that is at least equivale nt to the bending force. Most pressure pads use high-pressure coil or gas springs. When loaded with ver y high-pressure springs, contoured or flat pads also can form sheet metal. These pad t ypes often are referred to as power punches.Draw Pads.Draw pads control metal flow during the drawing process. In drawing, the amount of pressure, or downward force, exerted on the sheet metal determines how much metal is allowed to flow and enter the draw die cavit y. Too much pressure may stop the metal from flowing an d cause splitting; too little downward force may allow excess metal to flow inward and cause loose metal or wrinkling.Draw pads, often referred to as binders or blank holders, usuall y are made from hardened tool steel. They can be flat or contoured, depending on the piece part shape. Most drawing dies use a single draw pad; however, in special cases, some use two.6. Spools, Shoulder Bolts, and KeepersSpools, shoulder bolts, and keepers are used to fasten pads to the die shoes while allowing them to move up and down. They are secured to either the top or bottom die shoe with screws and often dowels for precision location. Of all of the components used for securing pads, spools are the most common, especiall y in larger dies.7. RetainersRetainers hold or s ecure cutting or forming die components to both the upper and lower die shoes. One of the most popular retainers is a ball-lock retainer, a high-precision, accuratel y manufactured die component that secures and aligns both cutting and forming punches. It uses a spring-loaded ball bearing to locate and secure the punches, which feature a precisel y machined teardrop or ball seat. The spring-loaded ball bearing locks into the teardrop shape and prevents the punches from coming out of the retainer.The advantage of ball-lock retainers is that they allow the die maintenance technician to remove and reinstall punches quickl y. The punch is removed by depressing the spring-loaded ball bearing and pulling up on the punch. Specialt y retainers also can be made to hold and align irregular punch shapes, as well as headed-st yle punches and pilot pins.8. SpringsSprings suppl y the force needed to hold, strip, or form metal. Many different springs are used in stamping dies. Spring selection is based on many factors, includi ng the required force and travel, the spring's life expectancy, and, of course, cost. Among the most popular are gas springs, which, when filled with nitrogen, can suppl y a great deal of force. They also have an excellent life expectancy.Other t ypes are coil and urethane springs, often called marshmallow springs. Coil springs are very popular when a reasonable amount of force is needed and budget constraints are present. Urethane springs work well in short-run or protot ype stamping operations. They also ar e inexpensive.冲压成形的特点与板材冲压成形性能冲压是通过模具使板材产生塑性变形而获得成品零件的一种成形方法。

相关文档
最新文档