微分方程数值解法李荣华答案

合集下载

微分方程数值解法(信息与计算科学专业核心课程)

微分方程数值解法(信息与计算科学专业核心课程)

f (t , u1 ) − f (t , u2 )
≤ L u1 − u2
(1.2)
则(1.1)的解存在且唯一。
不是所有的初值问题(1.1)都有解析解u(t)的。因此, 对于科学和工程目的,有必要用逼近方法求出其近似解, 若要求解有多位有效数字,则需要更多的计算量和复杂的 算法。 逼近方法求解初值问题一般可分为两类: 近似解析方法 级数法和Picard逐步逼近法 数值解法
1.2 Euler法 考虑初值问题(1.1),首先将区间[t0,T]划分为N个 等距小区间,小区间长度
T − t0 h= N
并选取网格点, 点列
ti=ih,i=0,1,…,N(不妨设t0=0)。已知u(0)=u0,则可计算
f (t0 , u (t0 )) = f (t0 , u0 ) = u ′(t0 ) ,
un +1 = un + h f (tn +1 , un +1 ) n = 0, 1, 2, L, N − 1
这就是求解初值问题的隐式Euler公式。
(1.5)
将Euler与隐式Euler公式做算术平均,可得梯形公式: h un +1 = un + [ f (tn , un ) + f (tn +1 , un +1 ) ] 2 (1.6) n = 0, 1, 2, L, N − 1
)
2 2 = un + 0.1× t n + 100un
(
)
由初值 u (0) = u0 = 0,计算得 2 2 u ( 0 .1) ≈ u1 = u0 + 0.1× t0 + 100u0
( ) = 0.0 + 0.1× (0.1 + 100 × 0.0 ) = 0.0010 u(0.3) ≈ u = u + 0.1× ( t + 100u )

华理高数答案(下)

华理高数答案(下)
解法一可分离变量方程的分离变量法这是一个一阶可分离变量方程同时也是一个一阶线性非齐次方程这时一般作为可分离变量方程求解较为容易
第 9 章(之 1) (总第 44 次)
教学内容:§9.1 微分方程基本概念 *1. 微分方程 2( y ) 9 y y 5xy 的阶数是
3 7
( (D)7.
0.
解: 方程变形为
y
2 1 1 y 2 ,是一阶线性非齐次方程,其通解为 x x x
ye

2 2 1 1 x dx x dx c ( ) e dx 2 x x


1 x2
c 1 1 1 1 1 1 c ( 2 ) x 2 dx 2 c x 2 x 2 2 x x x 2 x x
y C cos 2 x 1 C sin 2 x ,实质上只有一个任意常数;
(D)中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 y c1e c2 e 中,求出与直线 y x 相切于坐标原点的曲线.
x x
2

根据题意条件可归结出条件 y(0) 0, y (0) 1,
2
解:分离变量 2 ye y dy xe 2 x dx ,两边积分就得到了通解
ey
2
1 1 1 ( xe 2 x e 2 x dx) ( xe 2 x e 2 x ) c . 2 2 2

(3) (2 x 1)e y y 2e y 4 0 .
ey d y dx 解: , y 2x 1 2e 4
2
为 y y (2 x yy ) .
2

微分方程数值解法

微分方程数值解法

《微分方程数值解法》【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。

其中,常微分方程求解是微分方程的重要基础内容。

但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。

,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。

同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。

【关键词】 常微分方程 数值解法 MA TLAB 误差分析引言在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。

2 欧拉法和改进的欧拉法2.1 欧拉法2.1.1 欧拉法介绍首先,我们考虑如下的一阶常微分方程初值问题 ⎩⎨⎧==00)(),('y x y y x f y(2--1)事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。

欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。

设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:))(()(',n n n x y x f x y =,(2--2)又由差商的定义可得:hx y x y x y n n n )()(('1-≈+)(2--3) 所以有 ))(,()()(1n n n n x y x hf x y x y +≈+ (2--4)用)(k x y 的近似值k y )1,(+=n n k 代入(2--4),则有计算1+n y 的欧拉公式))(,(1n n n n x y x hf y y +=+ (2--5)2.1.2欧拉法误差分析从欧拉公式中可以看出,右端的n y 都是近似的,所以用它计算出来的1+n y 会有累计误差,累计误差比较复杂,为简化分析,我们考虑局部截断误差,即认为n y 是精确的前提下来估计11)(++-n n y x y ,记为1+n ε,泰勒展开有)()()(''2)(')()(1321++<<+++=n n n n n x x h O y h x hy x y x y ξξ(2--6)联立(2--5),(2--6)即得1+n ε=)(''22ξy h +)(3h O =)(2h O ,根据数值算法精度的定义,如果一个数值方法的局部截断误差1+n ε=)(1+p h O 则称这个算法具有P 阶精度,所以,欧拉方法具有一阶精度或者称欧拉方法为一阶方法。

微分方程数值解第五章答案

微分方程数值解第五章答案

第五章1,0,0, (,0)1/2,0,0,0.x u uu x x t x x ⎧<⎪∂∂+==⎨∂∂⎪>⎩1. 对初值问题=2试分别用左偏心格式、LW 格式计算其数值解u , k =1,2,3,4, 取/1/h τ=.k 解: 矩形网格剖分区域. 取空间步长h , 时间步长τ的矩形网格剖分区域, 用节点表示坐标点0,1,2,...;j =±±(,)j k (,)(,)j k x t jh k τ=,0,1,2,3,4.k =0=⎥⎦⎤⎢⎣⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂kjk j x u t u (1)左偏心格式:,在t 上用向前差商,x 上用向后差商,得011=−+−−+hu u u u kj k j k jk j τ中国地质大学(北京)廉海荣编 1,因为2/1/=h τ,整理得到k j k j k ju u u 212111+=−+ 把已知条件离散成,则可以根据下一层求上一层的值得到,=1,2,3,4,下图中节点处值即为求出来的值:⎪⎩⎪⎨⎧>=<0,00,2/10,1j j j =0j u k k u k uLW 格式: )2(2)(21122111kj k j k j k j k j k jk ju u u r a u u ar u u−++−−=−+−++ 在本题中,2/1/,1===h r a τ,整理得到:中国地质大学(北京)廉海荣编 2k j k j k j k ju u u u 111814383+−+−+=,同理可根据边值条件,根据下一层求上一层的值得到,k =1,2,3,4,下图中节点处值即为求出来的值:⎪⎩⎪⎨⎧>=<0,00,2/10,1j j j =0j u k u k u0, 0,0x<, u(x,0)=(x), 0x<, u(0,t)=(t), 0. u u a t T t x t T ϕψ∂∂⎧+=<≤<∞⎪∂∂⎪≤∞⎨⎪≤≤⎪⎩中国地质大学(北京)廉海荣编32. 试对初边值问题其中建立以下差分格式 0a >111102k k k k j jj j u u u u ahτ++++−−−+=1,(a )1111111()222k k k k k kj jj j j j u u u u u u a h hτ++++−+−−−−++(b )0=. 试分析它们的稳定性。

微分方程读书报告

微分方程读书报告

读书报告—读李荣华《微分方程数值解》数值求解微分方程具有重要的意义,如果能找到一个(或一族)具有所要求阶连续导数的解析函数,将它代入微分方程(组)中,恰好使得方程(组)的所有条件都得到满足,我们就将它称为这个方程(组)的解析解(也称古典解)。

“微分方程的真解”或“微分方程的解”就是指解析解。

寻找解析解的过程称为求解微分方程。

微分方程的解在数学意义上的存在性可以在非常一般的条件下得到证明,这已有许多重要的结论。

但从实际上讲,人们需要并不是解在数学中的存在性,而是关心某个定义范围内,对应某些特定的自变量的解的取值或是近似值-这样一组数值称为这个微分方程在该范围内的数值解,寻找数值解的过程称为数值求解微分方程。

下面主要介绍一下这本书中有关边值问题的变分形式的内容。

第一节主要讲了二次函数的极值,n n R 在维欧氏空间中引入向量、矩阵记号:12(,,)T n x ξξξ= ,12(,,)T n b b b b =111212122212n n n n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦12()(,)T T n y ηηη= 表示括号内向量或矩阵的转置。

令,,定义内积为1(,)ni i i x y ξη==∑:n 考虑个变量的二次函数12,11()(,,)n nn ij iji i i j i F x F a b ξξξξξξ====-∑∑(,)(,)Ax x b x =-2(0)(0)(0)01(,,):n T x ξξξ= 它在取得极值的必要条件是2(0)(0)(0)1(0)1(,,)()0n i nik ki k i kF a a b ξξξξξ=∂=+-=∂∑ ,1,2,,.k n =ik ki a a A =假定,即为对称矩阵,则(0)121,2,,.i nki ki a b k n ξ===∑1()(,)(,)(1.1)2J x Ax x b x =-若令0()J x x 则二次函数于取得极值的必要条件是:0(1.2)x Ax b=是线性方程组的解.二次函数,0()()J x x φλλ=+,其中x 是任意n 维非零向量.0()0J x x λ≠若于取极小值,则对任何,00()()()(0),J x x J x φλλφ=+>=即()φλ于0λ=取极小值.反之,若()φλ于0λ=取极小值,则对任何非零向量x ,有00()1(0)(),J x x J x λφφ+=>=()0()J x x 即于取极小值.下面给出()J x 存在极小值的充分必要条件:显然000()()[(,)(,)2(,)]2J x Ax x Ax x b x λφλ=++-2(,)2Ax x λ+,因为A 是对称矩阵,故000()()()(,)J x x J x Ax b x φλλλ=+=+-2(,)(1.3)2Ax x λ+若()J x 于0x 取极小值,则0(0)(,)0Ax b x φ'=-=,对任意n x R ∈,从而00Ax b -=,这说明0x 是(1.2)的解.又(0)(,)0,Ax x φ''=>对任意非零向量n x R ∈,故A 必为正定矩阵.反之,设A 是正定矩阵,0x 是方程(1.2)的解,即:00Ax b -=,则由(1.3)得20()()(,)2J x Ax x λφλ=+2(0)(,)(0),0,02Ax x x λφφλ=+>≠≠这说明()J x 于0x 取极小值.结论:设矩阵A 对称正定,则下面两个问题等价:0(1)n x R ∈求使00()min ()(1.4)nx RJ x J x ∈=()(1.1)J x 其中是由定义的二次函数。

偏微分方程数值解_图文_图文

偏微分方程数值解_图文_图文

估计误差
这种误差称为“局部截断误差”,如图。
局部截断误差是以点 的精确解 而产生的误差。
为出发值,用数值方法推进到下一个点
2.整体截断误差—收敛性
整体截断误差是以点 的初始值 为出发值,用数值方法推进i+1步到点
,所得的近似值 与精确值
的偏差:
称为整体截断误差。
特例,若不计初始误差,即 则
即 3.舍入误差—稳定性
五、线性多步(Linear Multistep Method)法
1. 预备知识:插值多项式
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况, 估算出函数在其他点处的近似值。
从几何上理解:对一维而言,已知平面上n+1个不同点,要寻找一条n次多项式 曲线通过这些点。插值多项式一般常见的是拉格朗日插值多项式。

代入 中,有
经比较得到
取 为自由参数: 从而得到不同的但都是二阶的R-K方法,对应的有中点法、Heun(亨)法 以及改进的Euler法。
基于相同的过程,通过比较五次Taylor多项式,得到更加复杂的结果,给出了包含 13个未知数的11个方程。得到多组系数,其中常用的是以下四阶R-K法:
改进的Euler法、R-K法以及解析解的比较:
是待定的系数。
Euler法就是
的R-K法。
其系数的确定如下:将 展开成 的幂级数,并与微分方程的精确解
在点 的Taylor展开式相比较,使两者的前
项相同,这样确定的R-K法,
其局部截断误差为
,根据所得关于待定系数的方程组,求出它们的值后
代入公式,就成为一个 阶R-K方法。
例题 以二阶R-K法为例说明上述过程
2. Curtis F.Gerald and Patrick O., Applied Numerical Analysis, Person Education, Inc., 2004.

偏微分课设

偏微分课设

一维热传导方程一. 问题介绍考虑一维热传导方程:(1) ,0),(22T t x f xua t u ≤<+∂∂=∂∂其中a 是正常数,)(x f 是给定的连续函数。

按照定解条件的不同给法,可将方程(1)的定解问题分为两类:第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件:(2)),()0,(x x u ϕ= ∞<<∞-x第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3)),()0,(x x u ϕ= l x <<0及边值条件 (4).0),(),0(==t l u t u T t ≤≤0假定)(x ϕ在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。

二. 区域剖分考虑边值问题(1),(4)的差分逼近。

去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。

用两族平行直线:),,1,0(N j jh x x j ===),,1,0(M k k t t k ===τ将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。

以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h Γ=h G --h G 是网格界点集合。

三. 离散格式第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。

第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。

显格式。

第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。

1. 向前差分格式 (5) ,22111j kj k j k j k jk j f h u u u au u ++-=--++τ)(j j x f f =,)(0j j j x u ϕϕ==, 00==kN k u u ,其中j = 1,2,…,N-1,k = 1,2,…,M-1。

高等数学(经济类)课后习题及答案第十二章 微分方程答案

高等数学(经济类)课后习题及答案第十二章 微分方程答案

习题12—1(A )1. 指出下列各微分方程的阶数:(1)y y x 3='; (2)0d 2d )(3=--y x x x y ; (3)y y x y x '='+''+2)2(; (4)22()yy y y ''''''=-;(5)(5)(3)242cos y yy y x ''+-+=; (6)232d d 2d d P P tt t t+=; (7)0222)4(=+'-''+'''-y y y y y;答案:(1)一阶;(2)一阶;(3)二阶;(4)三阶;(5)五阶;(6)二阶;(7)四阶. 2. 验证下列各函数是否为所给微分方程的解. 如果是解,请指出是通解,还是特解?(1)函数3y x =,微分方程y y x 3=';(2)函数sin 3y C x =,微分方程90y y ''+=;(3)由C x y xy =++22确定的函数)(x y y =,微分方程(1)()0y dx x y dy +++=; (4)函数xy λe =(其中λ是给定的实数),微分方程0=+'''y y .解:(1)因为23y x '=,左式233=xy x x y '==⋅=右式,所以函数3y x =是微分方程y y x 3='解.又因为函数3y x =不包含任意常数,所以是特解.(2)因为9sin39y C x y ''=-=-,即90y y ''+=,所以函数sin 3y C x =是微分方程90y y ''+=解,但是由于sin 3y C x =中只有一个任意常数,又因为微分方程是二阶的,所以sin 3y C x =既不是微分方程90y y ''+=的通解,也不是特解,只是解.(3)等式C x y xy =++22两边同时对x 求导,有d d 10d d y y y x y x x+++=,整理得(1)()0y dx x y dy +++=,所以由C x y xy =++22确定的函数)(x y y =是(1)()0y dx x y dy +++=的解,又C x y xy =++22中含有一个任意常数,而(1)()0y dx x y dy +++=是一阶微分方程,所以Cx y xy =++22是(1)()0y dx x y dy +++=通解.(4)因为x y λe =,则有3e xy λλ'''=,所以33ee (1)e xx x y y λλλλλ'''+=+=+.当1λ=-时,3(1)e 0x y y λλ'''+=+=,则x y λe =是微分方程0=+'''y y 的解,并且是特解;当1λ≠-时,3(1)e0xy y λλ'''+=+≠,则x y λe =不是微分方程0=+'''y y 的解.3. 若函数e xy α=是微分方程0y y ''''-=的解,求的α值.解:由e x y α=得,e x y αα'=,3e xy αα'''=,将它们代入微分方程0y y ''''-=,得32e e (1)=0x x x y y e ααααααα''''-=-=-,所以1α=-,0或1.4.验证下列所给的各函数是微分方程的通解,并求满足初始条件的特解.(1)函数21y Cx =+,微分方程22xy y '=-,初始条件(1)2y =; (2)函数22x y C +=,微分方程0yy x '+=,初始条件1)1(=y ;(3)函数12()xy C C x e =+,微分方程20y y y '''-+=,初始条件(0)0y =,(0)1y '=.解:(1)因为2y Cx '=,所以222(1)222xy x Cx Cx y '=⋅=+-=-.又2Cx y =中含有一个任意常数,22xy y '=-是一阶微分方程,所以函数21y Cx =+是微分方程22xy y '=-的通解.由(1)2y =,可得1C =,所以微分方程22xy y '=-满足初始条件(1)2y =的特解是2+1y x =.(2)对隐函数22x y C +=的两边求关于x 的导数,得220x yy '+=,即0yy x '+=.又22x y C +=中含有一个任意常数,0yy x '+=是一阶微分方程,所以隐函数22x y C +=是微分方程0yy x '+=的通解.由1)1(=y ,可得2C =,所以微分方程0yy x '+=满足初始条件1)1(=y 的特解是222x y +=.(3)因为212()e x y C C C x '=++,212(2)e xy C C C x ''=++,所以2y y y '''-+21221212(2222)e 0x C C C x C C C x C C x =++---++=.又因为函数12()x y C C x e =+中含有两个独立的任意常数,而20y y y '''-+=是二阶微分方程,所以12()xy C C x e =+是微分方程20y y y '''-+=的通解.由初始条件(0)0y =,(0)1y '=,有12101C C C =⎧⎨+=⎩,,得01=C ,12=C ,所以微分方程20y y y '''-+=满足初始条件(0)0y =,(0)1y '=的特解是e xy x =.习题12—1(B )1.给定微分方程21y x '=+, (1)求过点(1,3)的积分曲线方程;(2)求出与直线13+=x y 相切的积分曲线方程.解:易验证2y x x C =++是微分方程21y x '=+的通解.(1)由曲线2y x x C =++过点(1,3),有311C =++,得1C =,所求积分曲线为21y x x =++.(2)若曲线2y x x C =++与直线13+=x y 相切,则有213x +=(斜率相等),得1x =. 当1=x 时,4=y ,所以切点为(1,4),将其代入2y x x C =++,有411C =++,得2C =,所求曲线为22y x x =++.2.将积分方程2()()sin cos xf t dt xf x x x x π=--⎰(其中)(x f 是连续函数)转化为微分方程,给出初始条件,并求函数)(x f . 解:将2()()sin cos xf t dt xf x x x x π=--⎰两边同时对x 求导,有()()()sin cos sin f x f x xf x x x x x '=+--+, 即()cos f x x '=,这就是所求的微分方程,容易得到其通解为()cos sin f x xdx x C ==+⎰.将2x π=代入到原方程2()()sin cos x f t dt xf x x x x π=--⎰中,有0()12f π=-,得初始条件为()12f π=,所以有11C =+,得0C =,所求函数为()sin f x x =.习题12—2(A )1. 求下列可分离变量的微分方程的通解:(1)32yy x '=; (2)e yy x -'=;(3)y '=; (4)2(3)0ydx x x dy +-=.解:(1)分离变量32d 4d y y x x =,两边积分32d 4d y y x x =⎰⎰,整理得通解为24y x C =+.(2)分离变量e d d yy x x =,两边积分e d d y y x x =⎰⎰,整理得通解为21e 2y x C =+,或写作2ln()2x y C =+.(3)分离变量d y y =,两边积分d y y =⎰,整理得通解为1ln y C =,进而原方程通解为:y Ce =(4)分离变量有2d d 3y x y x x =--,整理得d 111()d 33y x y x x=---,两边积分d 111()d 33y x y x x ==---⎰⎰,整理得通解为11ln (ln 3ln )d 3y x x x C =---+,进而原方程通解为:3(3)x y Cx -=.2. 求下列齐次方程的通解:(1)2xy x y '=+; (2)(2)x y y y '-=;(3)22()d d 0x y x xy y -+=; (4)d (1ln)d 0yx y y x x-+=. 解:(1)将方程改写为2y y x '=+,令u xy=,则x u x u x y y d d d d +==',于是原方程化为d 2d u u xu x +=+,即2d d x u x =,积分得2ln ln u x C =+,即2ln yCx x=,所以原方程通解为2ln y x Cx =.(2)将方程改写为2d d -=y x y x ,令v yx =则y vy v y x d d d d +=,于是原方程化为2d d -=+v y v yv ,即y y v d 2d -=,积分得C y v ln ln 2+-=,即2ln yCy x =,所以原方程通解为2lny Cy x =.(3)将方程改写为d d y y x x x y =-,令u xy=,则x u x u x y d d d d +=,于是原方程化为d 1d u u x u x u +=-,即d d xu u x=-,积分得2ln 22u C x =-+,即222ln y C x x =-,所以原方程通解为2y 2x =2(ln )C x -.(4)将方程改写为(1ln )dy y y dx x x =+,令y u x =,则xu x u x y y d d d d +==',于是原方程化为(1ln )du u xu u dx +=+,即ln du dxu u x=,积分得1ln ln ln u x C =+,即ln u Cx =(其中1)C C e =±,所以原方程通解为lnyCx x=,或写作e Cx y x =. 3. 求下列一阶线性微分方程的通解:(1)2y xy x '-=; (2)d 2e d x yy x+=; (3)sin cos e x y y x -'+=; (4)2(2cos )d (+1)d 0xy x x x y -+=.解:(1)法一:相应齐次方程为0y xy '-=,即d d y x x y =,积分得211ln 2y x C =+,即22e x y C =(其中1)C C e =±.令22()ex y u x =,代入原方程,有222222ee e2x x x u xu xu x '+-=,即222ex u x -'=,得2222()2ed 2e x x u x x x C --==-+⎰,所以原方程通解为222222(2e )e e 2x x x y C C -=-+=-.法二:()P x x =-、()2Q x x =,方程通解为 ()d ()d [()e d ]e P x xP x x y Q x x C -⎰⎰=+⎰d d (2e d )e x x x xx x C -⎰⎰=+⎰2222(2ed )e x x x x C -=+⎰2222(2e)e x x C -=-+22e 2x C =-.(2)()1P x =、()2e xQ x =,方程通解为 ()d ()d d d [()e d ]e (2e e d )e P x xP x x x xx y Q x x C x C --⎰⎰⎰⎰=+=+⎰⎰22(2e d )e (e )e e e x x x x x x x C C C ---=+=+=+⎰.(3)()cos P x x =、sin ()exQ x -=,方程通解为()d ()d cos d cos d sin [()e d ]e (e e d )e P x xP x x x x x x x y Q x x C x C ---⎰⎰⎰⎰=+=+⎰⎰sin sin (d )e ()e x x x C x C --=+=+⎰.(4)方程化为222cos 11x x y y x x '+=++,则有22()1x P x x =+、2cos ()1xQ x x =+,方程通解为 2222d d ()d ()d 112cos [()e d ]e (e d )e 1xxxx P x xP x xx x x y Q x x C x C x --++⎰⎰⎰⎰=+=++⎰⎰221sin (cos d )+1+1x Cx x C x x +=+=⎰. 4.求下微分方程满足所给初始条件的特解: (1)d 1d 2y x x y -=,(3)1y =; (2)sec y xy x y x '+=,2)1(π=y ; (3)2e xy y x '-=,(0)2y =; (4)ln ln xy x y x '+=,(e)1y =.解:(1)这是可分离变量方程,分离变量为2d (1)d y y x x =-,积分得22(1)2x y C -=-+,即方程通解为22(1)2x y C -+=.由(3)1y =,有3C =,方程特解为22(1)32x y -+=. (2)这是齐次方程secy y y x x '+=,令u xy=,则x u xu x y d d d d +=,于是原方程化为d sec d u u xu u x ++=,即d cos d xu u x=-,积分得1sin ln u x C =-+,即方程的通解为sin eyxx C =(其中1)C C e =±.由2)1(π=y ,可得1C e=,所以方程特解为sin 1e yx x -=.(3)这是一阶线性方程,2()1()e xP x Q x x =-=、,因此,方程通解为d d 2(e e d )e (e d )e [(1)e )]e x xx x x x x y x x C x x C x C -⎰⎰=+=+=-+⎰⎰. 由(0)2y =,有21C =-+,得3=C ,方程特解为xx x y 2e )1(2e 3-+=.(4)原方程可化为11ln y y x x x '+=,这是一阶线性方程,1()ln P x x x =、1()Q x x=,方程通解为11d d 2ln ln 1111[e d ]e (ln )ln 2ln 2ln x x x x x xC y x C x C x x x x-⎰⎰=+=+=+⎰.由(e)1y =,有1121C =+,得12C =,所以方程特解为11(ln )2ln y x x =+.习题12—2(B )1.求下列伯努利微分方程的通解: (1)yx xy y =-'; (2)2xy y y =-'. 解:(1)1-=n ,令21y y z n==-(21=-n ),则原方程化为x n xz n x z )1()1(d d -=--,即x xz xz22d d =-,该方程通解为 222222d 2d (2e d )e (2e d )e (e )e e 1x x x xx x x x x z x x C x x C C C ---⎰⎰=+=+=-=-⎰⎰.所以,原方程通解为1e 22-=x C y . (2)2=n ,令yyz n11==-(11-=-n ), 则原方程化为x n z n x z )1()1(d d -=--,即x z xz-=+d d ,该方程通解为 1e e )e e (e )d e (e )d e (d d +-=+-=-=⎰+⎰-=----⎰⎰x C x C x x C C x x z x x x x x x xx .所以,原方程通解为1e 1+-=-x C yx . 2.用适当的变量代换求下列微分方程的通解: (1)22x y x y +=+'; (2)1+-='y x y ;(3))ln (ln y x y y y x +=+'; (4)xy x y y xy 22tan 2+='.解:(1)令u x y =+2,则x u x x y d d 2d d =+,于是u x u=d d ,分离变量有x uu d d =,积分得C x u +=2,原方程通解为C x x y +=+22. (2)令1x y u -+=,则x u x y d d d d 1=-,于是u x u =-d d 1,即u xu-=1d d ,分离变量得x u u u u d )1(d -=-,或x u u d d )111(2-=-+,积分得x C u u -=-+)1ln (2,所以原方程通解为x C y x y x -=+--++-)11ln 1(2.(3)令u xy =,则x u x y xy d d d d =+,于是u x u x u ln d d =,分离变量得xxu u u d ln d =,积分得Cx u ln ln ln =,即Cx u e =,所以原方程通解为Cxxy e 1=.(4)u x y =2,即xu y =2,则x u x u y y d d 2+=',原方程化为u x xu xu x xu tan d d 2+=+,分离变量有xxu u d d cot =,该方程通解为Cx u ln sin ln =,即Cx u =sin ,所以原方程通解为Cx xy =2sin .3.求微分方程(0(0)ydx x dy y -=>的通解.解:将方程改写为222)(1d d yxy x y y x x y x ++=++=这是以)(y x x =为未知函数的齐次方程,为此令yv x =,则y v y v y x d d d d +=,于是方程化为21d d v yvy +=,分离变量有yyv v d 1d 2=+,积分得C y v v ln ln )1ln(2+=++,即Cy v v =++21,进而原方程通解为Cx Cy 211+=. 4.求微分方程2d d yx yx y +=的通解. 解:方程改写为y y x y x +=d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 2d d )d ()d e(ey Cy y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.5.设函数)(x f 连续,且不恒为零,若⎰⎰+=120d )(2d )()(t t tf t t f x f x ,求函数)(x f .解:方程两边同时对x 求导,有)()(x f x f =',分离变量有x ffd d =,得通解为x C x fe )(=.记a t t tf =⎰12d )(,则a t t f x f x2d )()(0+=⎰,令0=x ,得初始条件a f 2)0(=.用0=x 代入到x C x f e )(=之中,有a C 2=,所以x a x f e 2)(=.由)e 21e (2)d e e(2d e 4d )(102221021221022102t t t t a t t a t t at t tf a -=-===⎰⎰⎰)1e ()e 21e (22210222+=-=a a t , 得1e 12+=a ,所以1e e 2)(2+=x x f .6.设连续函数)(x f 满足1)(d )()(12-=+⎰x f t tt f t f x ,求函数)(x f . 解:方程1)(d )()(12-=+⎰x f t t t f t f x 两边同时对x 求导,有)()()(2x f xx f x f '=+,令)(x f y =,则方程可以改写为y x y y x +=2d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 )()d ()d e(ed d y C y y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.用1=x 代入到方程1)(d )()(12-=+⎰x f t tt f t f x 之中,得初始条件1)1(=f ,于是11+=C ,故0=C ,于是2y x =,即所以函数为x x f =)((注:根据初始条件1)1(=f ,所以不能取x x f -=)().习题12—3(A )1. 求下列各微分方程的通解:(1)2+1y x ''=; (2)2cos e x y x '''=+; (3)20y xy '''-=; (4)2e xy y '''-=;(5)201y y y'''+=-. 解:(1)2311(1)3y x dx x x C '=+=++⎰, 342112111()d 3122y x x C x x x C x C =++=+++⎰.(2)2211(cos e )d sin e 22x xy x x x C ''=+=++⎰, 2211211(sin e 2)d cos e 224x x y x C x x C x C '=++=-+++⎰, 2121(cos e 2)d 4x y x C x C x =-+++⎰221231sin e 8x x C x C x C =-++++. (3)方程不显含y ,令)(x p y =',则p y '='',于是d 20d pxp x-=,分离变量为d 2d p x x p =,积分得2ln p x C =+,即213p C x =(其中13)C C e =±,于是原方程降阶为213y C x '=,原方程通解为23121d 3C x C x x C y +==⎰.(4)方程不显含y ,令)(x p y =',则p y '='',于是2e xp p '-=,这是一阶线性微分方程,其通解为d d 2111(e e d )e (e d )e (e )e x x x x x x xp x C x C C -⎰⎰=+=+=+⎰⎰,于是原方程降阶为21e e x x y C '=+,所以原方程的通解为221121(e e )d e e 2x x xx y C x C C =+=++⎰. (5)方程不显含x ,令()y q y '=,则y qq '''=,于是2d 0d 1q q q y y +=-,即d 0d 1q q y y+=-,这是可分离变量的方程,先分离变量d d 1q y q y=--,再两边积分,并整理可得1(1)q C y =-.所以1d (1)d yC y x=-,解得12e 1C x y C =+,这就是原方程的通解. 2. 求下列各微分方程满足初始条件的特解: (1)311y x '''=+,(1)1y =,(1)1y '=,1(1)2y ''=;(2)2y y x '''-=,(0)1y =,(0)0y '=; (3)2eyy ''=,(0)0y =,(0)1y '=.解:(1)13211(1)d 2y x x C x x ''=+=-++⎰,由1(1)2y ''=,得10C =,所以212y x x''=-+; 222111()d 222y x x x C x x '=-+=++⎰,由(1)1y '=,得02=C ,所以21122y x x '=+; 2331111()d ln 2226y x x x x C x =+=++⎰,由1)1(=y ,得356C =,所以方程满足初始条件的特解为3115ln 266y x x =++. (2)方程不显含y ,令)(x p y =',则p y '='',原方程化为2p p x '-=,此方程通解为d d 1111(2e d )e (2e d )e (2e 2e )e e 22x xx x x x x x p x x C x x C C x C x ----⎰⎰=+=+=--=--⎰⎰,即1e 22xy C x '=--,由(0)0y '=,得12C =,从而2(e 1)x y x '=--,此方程通解为222(e 1)d 2e 2x x y x x x x C =--=--+⎰,由(0)1y =,得21C =-,所以方程满足初始条件的特解为22e 21x y x x =---.(3)方程不显含x ,令()y q y '=,则y qq '''=,于是2e y qq '=,分离变量有2d e d yq q y =,积分得221e yp C =+,即y '=由1)0(='y ,可知道0>'y ,所以y '=再由(0)0y =,(0)1y '=,得01=C ,所以e y y '=.分离变量有e d d yy x -=,积分得2e y x C --=+,由0)0(=y ,得21C =-,于是e 1y x --=-,化简为ln (1)y x =--,这就是方程满足初始条件的特解.习题12—3(B )1. 求下列各微分方程的通解: (1)()e n ax b yx =+(a ,b 为常数); (2)0ln=''-''xy y y x ;(3)2)(y y '=''. 解:(1)由于1e d e axax x a =⎰,11d 1t t x x x t +=+⎰,故原方程的通解为 1121211e [()(1)(1)]axb n n n n n n y b n b n b x C x C x C x C a-+---=+++-++++++.(2)方程不显含y ,令)(x p y =',则p y '='',于是x p p p x ln=',即xpx p p ln =',这是齐次方程,令u x p =,则x u x u x p p d d d d +==',原方程化为u u xux u ln d d =+,分离变量有x x u u u d )1(ln d =-,积分得x C u 1ln )1ln(ln =-,即11e +==x C u xp ,原方程降阶为11e +='x C x y ,原方程通解为⎰⎰+++-==x x C x x y x C x C x C )d e e (1d e 11111112111)1(e 11C C x C x C +-=+. (3)方程既不显含y ,也不显含x .(方法1)令)(x p y =',则p y '='',则2p p =',分离变量有x ppd d 2=,积分得11C x p -=-,即xC p -=11,原方程降阶为x C y -='11,所以原方程的通解为)ln(d 121x C C x C xy --=-=⎰.(方法2)令()y q y '=,则y qq '''=,于是2d d q qq y =,分离变量有2d d q q q y=,积分得2ln q y C =-,即原方程降阶为2e d d C y xy-=,分离变量为x y y C d d e 2=-,积分得12e C x y C -=--,化简为)ln(12x C C y --=,这就是原方程的通解.2. 求下列各微分方程满足初始条件的特解: (1)2)(1y y '+='',(0)1y =,(0)0y '=;(2)3()y y y ''''=+,(0)0y =,(0)1y '=;(3))(22y y y y '-'='',(0)1y =,(0)2y '=.解:(1)按不显含y 的方程求解,(注:本题按不显含x 方程求解困难).令)(x p y =',则p y '='',于是21p p +=',分离变量有x ppd 1d 2=+,积分得1arctan C x p +=,即1arctan C x y +=',由(0)0y '=,得01=C ,于是x y tan =',积分得2tan d ln cos y x x C x ==-⎰,由(0)1y =,得12=C ,所以方程满足初始条件的特解为1ln cos y x =-.(2)令()y q y '=,则y qq '''=,得3d d qqq q y=+,因为0q =不满足初始条件(0)1y '=,所以0q ≠,分离变量有2d d 1qy q =+,积分得1arctan q y C =-,即1tan ()y q y C '==-. 由初始条件(0)0y =,(0)1y '=,有11tan (0C =+),得14C π=,故tan ()4y y π'=-. 分离变量d d tan ()4y x y π=-,积分并整理得2sin ()e 4xy C π-=.再由初始条件(0)0y =,得22C =-arcsin 24x y =+π. (3)这是不含x 的二阶可降阶微分方程,令()y q y '=,则y qq '''=,则方程化为22()yqq q q '=-.因为0q =不满足初始条件2)0(='y ,所以0q ≠,分离变量有d d 21q yq y=-,积分得21ln(1)ln q C y -=,解得211y q C y '==+.由初始条件(0)1y =,(0)2y '=,有121+=C ,得11=C ,故12+='y y ,分离变量有x y y d 1d 2=+,积分得1arctan C x y +=,再由初始条件1)0(=y ,得42π=C ,所以原方程满足初始条件的特解为4arctan π+=x y ,即xxx y tan 1tan 1)4tan(-+=+=π.习题12—4(A )1.指出下列各对函数在其定义区间内的线性相关性:(1)3x 与2x ; (2)e x 与e xx ; (3)e x-与2ex-; (4)x e 与5e x;(5)sin x 与x 2sin ; (6)x x cos sin 与x 2sin ; (7)e sec x x 与e tan xx ; (8)x ln 与ln x μ(0μ>).解:(1)因为233x xx =不恒为常数,所以3x 与2x 在区间)(∞+-∞,内线性无关. (2)因为e ex x x x =不恒为常数,所以e x与e x x 在区间)(∞+-∞,内线性无关. (3)因为2e e e x xx ---=不恒为常数,所以e x -与2e x -在区间)(∞+-∞,内线性无关. (4)因为5e 5ex x =恒为常数,所以xe 与5e x 在区间)(∞+-∞,内线性相关. (5)因为sin 22cos sin xx x=不恒为常数,所以sin x 与x 2sin 在区间)(∞+-∞,内线性无关. (6)因为sin 22sin cos xx x=恒为常数,所以x x cos sin 与x 2sin 在区间)(∞+-∞,内线性相关.(7)因为e tan sin e sec x x xx x=不恒为常数,所以e sec x x 与e tan x x 在区间)(∞+-∞,内线性无关.(8)因为ln 0ln x xμμ=>恒为常数,所以x ln 与ln x μ在区间)0(∞+,内线性相关. 2.验证函数21e x y =,22e xy x =是微分方程440y y y '''-+=的两个线性无关的解,并写出该方程的通解.解:因为21e xy =,所以22112e =4e x xy y '''=,,因此 222111444e 8e 4e 0xx x y y y '''-+=-+=,所以21e xy =是440y y y '''-+=的解;同理,22e xy x =是440y y y '''-+=的解.又因为2221e exx y x x y ==不恒为常数,所以函数21e x y =,22e x y x =是微分方程440y y y '''-+=的两个线性无关的解.因此二阶线性齐次微分方程440y y y '''-+=通解为2112212()e x y C y C y C C x =+=+.3.通过观察给出微分方程0y y ''+=的两个线性无关的特解,并写出该方程的通解. 解:0y y ''+=是二阶线性齐次微分方程,改写为y y ''=-,二阶导数与自身呈相反数的函数有1sin y x =,2cos y x =,它们是0y y ''+=的两个解,又21cos cot sin y x x y x==不恒为常数,于是1sin y x =,2cos y x =线性无关,所以方程0y y ''+=的通解为12sin cos y C x C x =+.4.写出下列各二阶常系数线性齐次微分方程的通解:(1)320y y y '''-+=; (2)10250y y y '''-+=;(3)2100y y y '''-+=; (4)02d d 22=-x tx.解:(1)特征方程为2320r r -+=,即(1)(2)0r r --=,特征根为11=r 、22r =(不相等实根),所以方程320y y y '''-+=的通解是212e e x x y C C =+.(2)特征方程为210250r r -+=,即2(5)0r -=,特征根为125r r ==(两个相等实根),所以方程10250y y y '''-+=的通解是512()e xy C C x =+.(3)特征方程为22100r r -+=,由二次代数方程求根公式,得特征根为21322b y i a -===±(一对共轭复根),所以方程2100y y y '''-+=的通解是12(cos3sin 3)e xy C x C x =+. (4)特征方程为022=-r ,特征根为21=r 、22-=r (不同实根),所以方程02d d 22=-x tx的通解是ttC C x 2221e e -+=(注意t 是自变量,x 是因变量).5.求下列各微分方程满足初始条件的特解:(1)22d d 340d d y yy t t+-=,(0)2y =,(0)3y '=-; (2)20y y y '''-+=,(0)1y =,(0)2y '=; (3)450y y y '''-+=,(0)1y =,(0)0y '=.解:(1)特征方程为2340r r +-=,即(1)(4)0r r -+=,特征根为11=r 、24r =-,所以方程22d d 340d d y yy t t +-=的通解是412e e t t y C C -=+,且412e 4e t t dy C C dt-=-. 由初始条件(0)2y =,(0)3y '=-,有1212243C C C C +=⎧⎨-=-⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)2y =,(0)3y '=-的特解是4e e t ty -=+.(2)特征方程为2210r r -+=,即2(1)0r -=,特征根为121r r ==,所以方程20y y y '''-+=的通解是12()e x y C C x =+,且212()e x y C C C x '=++.由初始条件(0)1y =,(0)2y '=,有12112C C C =⎧⎨+=⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)1y =,(0)1y '=-的特解是(1)e x y x =+.(3)特征方程为2450r r -+=,由二次代数方程求根公式,得特征根为2r i ==±,所以方程450y y y '''-+=的通解是212(cos sin )e x y C x C x =+,且21221[(2)cos (2)sin ]e xy C C x C C x '=++-.由初始条件(0)1y =,(0)0y '=,有112120C C C =⎧⎨+=⎩,,得1212C C =⎧⎨=-⎩,,所以方程满足初始条件(0)1y =,(0)0y '=的特解是2(cos 2sin )e xy x x =-. 6.求下列各二阶常系数线性非齐次微分方程的通解:(1)x y y +=+''1; (2)xy y y -=+'+''e 22; (3)223y y y x x '''+-=+-; (4)xx y y e 4=-''.解:(1)相应齐次方程为0=+''y y ,特征方程012=+r ,特征根为i r i r -==21、,相应齐次方程通解为x C x C Y sin cos 21+=.这里x x f +=1)(,01==λ、n 不是特征根,因此设b ax y +=*,将其代入到原方程之中,有x b ax +=+1,比较系数得11==b a 、,于是原方程的一个特解为x y +=1*.原方程的通解为x x C x C y Y y +++=+=1sin cos 21*.(2)相应齐次方程为02=+'+''y y y ,特征方程0122=++r r ,即0)1(2=+r ,特征根为121-==r r ,相应齐次方程通解为xx C C Y -+=e )(21.这里xx f -=e 2)(,10-==λ、n 是二重特征根,因此设x x ax a x y --=⋅=e e 22*,将其代入到原方程之中,化简有22=a ,得1=a ,于是原方程的一个特解为xx y -=e 2*,原方程的通解为212()exx y C C x x e --=++.(3)相应齐次方程为02=-'+''y y y ,特征方程0122=-+r r ,即0)1)(12(=+-r r ,特征根为2/1121=-=r r 、,相应齐次方程通解为2/21e e x x C C Y +=-.这里2()3f x x x =+-,02==λ、n 不是特征根,因此设c bx ax y ++=2*,代入到原方程之中,有224(2)()3a ax b ax bx c x x ++-++=+-,比较系数有12143a a b a b c -=-⎧⎪-=⎨⎪+-=⎩,,,得112a b c ===、、,于是原方程的一个特解为*22y x x =++.所以,原方程的通解为*/2212e e 2x x y Y y C C x x -=+=++++.(4)相应齐次方程为0=-''y y ,特征方程012=-r ,特征根为1121-==r r 、,相应齐次方程通解为xx C C Y -+=e e 21.这里xx x f e 4)(=,x x P n 4)(=,11==λ、n 是单重特征根,因此设x x bx ax b ax x y e )(e )(2*+=+=,将其代入到原方程之中,化简有x b ax a 4)2(22=++,比较系数得11-==b a 、,于是原方程的一个特解为x x x y e )(2*-=,所以原方程的通解为*y Y y +=x x x x x C C e )(e e 221-++=-.7.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)261y y x '''-=-,(0)1y =,(0)3y '=;(2)xy y e 54=+'',(0)0y =,(0)1y '=;解:(1)相应齐次方程为20y y '''-=,特征方程220r r -=,特征根为10r =、22r =,相应齐次方程通解为212e xY C C =+.这里()61f x x =-,1n =、0λ=是单重特征根,因此设*2()y x ax b ax bx =+=+,代入到原方程之中,有42261ax a b x -+-=-,得32a =-,1b =-,于是原方程的一个特解为*232y x x =--. 所以,原方程的通解为*22123e 2x y Y y C C x x =+=+--. 222e 31x y C x '=--,由初始条件(0)1y =,(0)3y '=,有1221213C C C +=⎧⎨-=⎩,,得11C =-、22C =,所以方程261y y x '''-=-满足初始条件(0)1y =,(0)3y '=的特解为2232e 12x y x x =---.(2)相应齐次方程为04=+''y y ,特征方程042=+r ,特征根为i r i r 2221-==、,相应齐次方程通解为x C x C Y 2sin 2cos 21+=.这里x x f e 5)(=,10==λ、n 不是特征根,因此设xa y e *=,代入到原方程之中,有x x x a a e 5e 4e =+,得1=a 于是原方程的一个特解为xy e *=.所以,原方程的通解为xx C x C y Y y e 2sin 2cos 21*++=+=.122sin 22cos 2e x y C x C x '=-++,由初始条件(0)0y =,(0)1y '=,有1210211C C +=⎧⎨+=⎩,,得11C =-、20C =,所以方程xy y e 54=+''满足初始条件(0)0y =,(0)1y '=的特解为e cos x y x =-.8. 求常系数线性非齐次微分方程2e xy +y =x+'''的通解.解:相应齐次方程为0='+''y y ,特征方程02=+r r ,特征根为1021-==r r 、,相应齐次方程通解为x12Y C C e -=+.这里x x x f e 2)(+=,将其分为)()()(21x f x f x f +=,x x f 2)(1=、xx f e )(2=.对x y y 2='+'',这里01==λ、n 是单重特征根,因此设bx ax b ax x y +=+=2*1)(, 代入到x y y 2='+''之中,有x b ax a 2)2(2=++,比较系数得21-==b a 、,于是方程x y y 2='+''的一个特解为x x y 22*1-=;对xy y e ='+'',不难观察得一个特解2/e *2xy =.于是,原方程的一个特解为2/e 22*2*1*xx x y y y +-=+=.所以,原方程的通解为*y Y y +=2/e 2e221x xx x C C +-++=-..习题12—4(B )1.若)(1x y ϕ=,)(2x y ϕ=是二阶线性非齐次微分方程)()()(x f y x Q y x P y =+'+''的两个解,证明)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解. 证:因为)()(12x x y ϕϕ-=,所以212121()()[()()]()[()()]()[()()]y P x y Q x y x x P x x x Q x x x φφφφφφ'''++''''''=-+-+-)]()()()()([)]()()()()([111222x x Q x x P x x x Q x x P x ϕϕϕϕϕϕ+'+''-+'+''= ()()0f x f x =-=.所以)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解.2.已知函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,xx x x x y -++=e e e )(23都是微分方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:)()()(x f y x Q y x P y =+'+''是二阶非齐次线性微分方程,由函数xx x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23都是它的解,根据上题,则x x y y y y 22313e e =-=--、是相应齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,而它们之比不恒等于常数,于是它们是线性无关的解,所以0)()(=+'+''y x Q y x P y 的通解为212x xY C e C e -=+,根据二阶非齐次线性微分方程解的结构,得方程)()()(x f y x Q y x P y =+'+''的通解是 22112C e e x x x x y Y y C e e x -=+=+++.3.若二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,则该二阶常系数线性齐次微分方程的特征根是21121==r r 、,于是特征方程是0)21)(1(=--r r ,即01322=+-r r ,所以微分方程为032=+'-''y y y ,通解为2/21e C e x x C y +=.4.若二阶常系数线性齐次微分方程有一个特解xx y 21e -=,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程有一个特解xx y 21e -=,则该二阶常系数线性齐次微分方程有一个特征根2-=r ,并且是二重根,于是特征方程是0)2(2=+r ,即0442=++r r , 所以微分方程为044=+'+''y y y ,通解为xx C y 221)e C (-+=.5.求下列各常系数线性非齐次微分方程的通解:(1)x x y y cos 4=+''; (2)xy y -=''+''e .解: (1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.这里x x x f cos 4)(=,最高多项式次数1=n ,i i =+βα是单重特征根,为此设*22[()cos +()sin ]=()cos +()sin y x ax b x cx d x ax bx x cx dx x =++++,代入到原方程之中,有x x x c b ax x d a cx cos 4sin )224(cos )224(=+--+++,比较系数有⎪⎪⎩⎪⎪⎨⎧=-=-=+=,,,,022*******b c a d a c 得,⎪⎪⎩⎪⎪⎨⎧====,,,,0110d c b a 于是原方程的一个特解为x x x x y sin cos 2*+=. 所以,原方程的通解是x x x x x C x C y sin cos sin cos 221+++=.(2) 相应齐次方程为0=''+'''y y ,特征方程为023=+r r ,特征根为、021==r r ,13-=r 应齐次方程通解为x C x C C Y -++=e 321.对原方程xy y -=''+''e ,这里10-==λ,n 是单重特征根,为此设xax y -=e *,代入到原方程之中,有x x x x a x a ---=-+-e e )2(e)3(,即x x a --=e e ,得1=a ,于是原方程x y y -=''+''e 的一个特解为x x y -=e *.所以,原方程的通解是*y Y y +=xx x C x C C --+++=e e 321.6.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)x y y sin =+'',(0)1y =,(0)0y '=;(2)x y y xcos e 5='-'',(0)0y =,(0)2y '=.解:(1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.对原方程x y y sin =+'',这里多项式最高次数i i n =+=βα,0是单重特征根,为此设x bx x ax y sin cos *+=,代入到原方程之中,有x x b x a sin cos 2sin 2=+-,比较系数有0212==-b a 、,得021=-=b a 、,于是原方程的一个特解为x x y cos 2*-=.所以,原方程的通解是x xx C x C y Y y cos 2sin cos 21*-+=+=. x xx C x C y sin 2cos )21(sin 21+-+-=',由初始条件(0)1y =,(0)0y '=,得21121==C C 、,所以方程满足初始条件的特解为x x x y sin 21cos )21(+-=. (2)相应齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为1021==r r 、,应齐次方程通解为xC C Y e 21+=.对原方程x y y xcos e 5='-'',这里多项式最高次数i i n +=+=10βα,不是特征根,为此设*(cos sin )x y e a x b x =+,代入到原方程之中,有]sin )2(cos )2[(e x b a x a b x--+-x x cos e 5=,比较系数有⎩⎨⎧=--=-,,0252b a a b 得⎩⎨⎧=-=,,21b a 于是原方程的一个特解为)cos sin 2(e *x x y x -=,原方程的通解是)cos sin 2(e e 21*x x C C y Y y x x -++=+=.)cos sin 3(e e 2x x C y xx++=',由初始条件(0)0y =,(0)2y '=,有⎩⎨⎧=+=-+,,2101221C C C 得1021==C C 、,所以原方程满足初始条件的特解是x x x y e )cos sin 21(-+=.7.若连续函数()y f x =满足0()e ()()d xxf x t x f t t =+-⎰,求()y f x =的表达式.解:0()e ()d ()d xx xf x tf t t x f t t =+-⎰⎰,0()e ()d xxf x f t t '=-⎰,()e ()x f x f x ''=-,于是函数()y f x =满足微分方程e x f f ''+=,初始条件是(0)(0)1f f '==.e xf f ''+=是二阶常系数线性非齐次微分方程,相应齐次方程是0f f ''+=,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为12cos sin Y C x C x =+.对原方程e xf f ''+=,这里10==λ,n 不是特征根,为此设*e xf a =,代入到原方程之中,得21=a ,于是原方程的一个特解为*1e 2x f =. 所以,原方程的通解是*121()cos sin e 2xf x Y f C x C x =+=++. 因为121()sin cos e 2xf x C x C x '=-++,由初始条件(0)(0)1f f '==,有12112112C C ⎧+=⎪⎪⎨⎪+=⎪⎩,,得2121==C C ,所以所求函数是1()(cos sin e )2xf x x x =++.8. 证明:若()f x 满足方程()(1)f x f x '=-,则必满足方程()()0f x f x ''+=,并求方程()(1)f x f x '=-的解.解:先证()f x 必满足方程()()0f x f x ''+=.由于()(1)f x f x '=-,则求导可得()(1)(1)[1(1)]()f x f x f x f x '''=--=---=-, 故证明了()f x 必满足方程()()0f x f x ''+=. 下面求解方程()(1)f x f x '=-.由于方程()()0f x f x ''+=的通解为12()cos sin f x C x C x =+,且()(1)f x f x '=-, 所以1212sin cos cos(1)sin (1)C x C x C x C x -+=-+-,令0x =可得212cos1sin1C C C =+,则112cos1(1sin1)1sin1cos1C C C +==-,从而方程()(1)f x f x '=-的解为11sin1()(cos sin )cos1f x C x x +=+.习题12—5(A )1. 设在冷库中存储的某种新鲜水果500吨,放置一段时间之后开始腐烂,腐烂率是未腐烂数量的0.001倍,设腐烂的数量为y 吨,则显然它是时间t 的函数,求此函数的表达式. 解:由题意知0.001(500)dyy dt=⨯-, 分离变量得,0.001500dydt y=-,两边积分,并整理得0.001500e t y C -=-(C 为任意常数),再结合(0)0y =,容易求出500C =,所以水果腐烂数量与时间的函数关系式为0.001500(1e )t y -=-.2. 已知某商品的需求量Q (单位:kg )对价格P (单位:元)的弹性为ln 2EQP EP=-,且当0P =时,需求量600Q =Kg. (1)求该商品对价格的需求函数()Q P ;(2)求当价格1P =元时,市场对该商品的需求量; (3)当+P →∞时,需求量是否趋于稳定? 解:(1)由已知条件知,ln 2EQ P dQP EP Q dP=⋅=-, 分离变量得ln 2dQdP Q=-, 所以有()2P Q P C -=(C 为任意常数).再由(0)600Q =得,600C =,所以()6002P Q P -=⨯.(2)由(1)可知,当1P =元时,1(1)6002300Q -=⨯=(kg ).(3)由()6002PQ P -=⨯可知,当+P →∞时,0Q →,即随着商品价格的无限增大,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程数值解法李荣华答案【篇一:高阶常微分方程的数值求解】t>谷照升(长春工程学院理学院,长春,130012)摘要对经典初始条件的高阶常微分方程,给出其数值求解方法。

该方法比runge-kutta法具有更好的适应性、易用性、计算速度和可控制的更高精度。

关键词常微分方程;数值解;算法中图分类号: o241.81文献标识码: a 11 引言求解复杂的1阶常微分方程,通常只能采用数值解法。

数值解法一般又以runge-kutta法为主。

对高阶常微分方程,则通常是将其转化为1阶常微分方程组,再用runge-kutta法求解[1, 2]。

但这种通用性方法,在精度、软件计算的适应度方面,常常不够理想,甚至得不到结果。

针对不同的广普性方程类型,可以建立更具针对性的计算方法。

例如,针对三类边值条件和特定形式的方程,已经有有相应的差分法和有限元法。

每一种更具针对性的方法,都有其更高的精度和更为健壮的算法,当然也存在其必然的局限性。

本文对如下形式的2阶常微分方程?d2ydy?a(x)?b(x)y?f(x)?2dxdx?? x∈[a, b](1) ?y(a)?ya?y?(a)?y?a???给出了完整、方便、高效的单步法数值求解算法,并将其推广到任意高阶问题的求解。

2 算法思路:将[a, b]分割为a=x0 x1…xn=b,步长?xi?xi?xi?1。

从i=1开始,利用数值积分公式,通过[xi-1, xi]上的数值积分,先求y??(xi),再求出y?(xi),最后求y(xi)。

依次取i=2, 3, … ,n,得到各点y??(xi)、y?(xi)、y(xi)的近似值。

根据数值积分的算法不同,主要有两种不同的计算公式。

2.1、矩形数值积分算法矩形算法形式简单,精度偏低。

基于不同的积分形式,又可以得到3种不同的计算公式,其精1 基金项目:吉林省自然科学基金项目(201215115)1度无显著差别。

此处仅给出与2.2梯形算法最为接近的一种。

利用y?(xi)?y?(xi?1)??xixi?1y??(x)dx?y??(xi)?xiy(xi)?y(xi?1)??在xi点得到 xixi?1y?(x)dx?y?(xi)?xiy?(xi)?y??(xi)?xi?y?(xi?1) (2)2y(xi)?y?(xi)?xi?y(xi?1)?y??(xi)?xi?y?(xi?1)?xi?y(xi?1)(3)这里 i?1,2,...,n。

将(2) 、(3)代入(1), 在xi点得到2y??(xi)?a(xi)[y??(xi)?xi?y?(xi?1)]?b(xi)[y??(xi)?xi?y?(xi?1)?xi ?y(xi?1)]?f(xi) ???xi?y(xi?1)] (4) 从而y??(xi)?f(xi)?a(xi)y(xi?1)?b(xi)[y(xi?1)1?a(xi)?xi?b(xi)?xi算法:step 1: i=1;?代入 (4), 输出y??(x1); 将(1)中 y(x0)?ya、y?(x0)?ya将y??(x1)代入 (2), 输出y?(x1);取y(x1)?y?(x0)?x1?y(x0), 输出y(x1)。

step 2: while in{i= i+1;将y(xi?1)、y?(xi?1)代入 (4), 输出y??(xi);将y??(xi)代入 (2), 输出y?(xi);取y(xi)?y?(xi?1)?xi?y(xi?1), 输出y(xi);}2.2、梯形数值积分算法根据(1)式,首先算出y??(x0)?f(x0)?a(x0)y?(x0)?b(x0)y(x0)(5)2对i?1,2,3,...,n, 取y?(xxii)?y?(xi?1)??xy??(x)dx?1[y??(xi)?y??(xi?1)]?xi,i?12y(xxi1i)?y(xi?1)??xy?(x)dx?[y?(xi)?y?(x?12i?1)]?xi,i则xi点满足y?(x1i)?2[y??(xi)?y??(xi?1)]?xi?y?(xi?1) (6)y(x1i)?2[y?(xi)?y?(xi?1)]?xi?y(xi?1)?12{12[y??(xi)?y??(xi?1)]?xi?y?(xi?1)?y?(xi?1)}?xi?y(xi?1) (7)?14y??(x214??(x2i)?xi?yi?1)?xi?y?(xi?1)?xi?y(xi?1),将(6) 、(7)代入(1), 得到y??(x?a(x1i)i2[y??(xi)?y??(xi?1)]?xi?y?(xi?1)}?b(x1212i)[4y??(xi)?xi?4y??(xi?1)?xi?y?(xi?1)?xi?y(xi?1)]?f(xi)从而f(xa(x1(x12y??(xi)?i)[y??(xi?1)?xi?y?i?1)]?b(xi)[y??(xi?1)?xi?y?(xi?1)?xi? y(xi)?24i?1)]1?12a(x12i)?xi?4b(xi)?xii?1,2,3,...,n算法:step 1:按(5)式求出y??(x0)。

step 2:i=0; while in{i= i+1;将y(xi?1)、y?(xi?1)、y??(xi?1)代入 (8), 输出y??(xi);3 (8)将y??(xi?1)、y??(xi)代入 (6), 输出y?(xi);将y(xi?1)、y?(xi?1)、y?(xi)代入 y(xi)?} 1[y?(xi)?y?(xi?1)]?xi?y(xi?1), 输出y(xi); 23 误差分析记h=?xi?xi?xi?1(实际计算中,步长通常是取定的,不随i变化),在矩形算法中,根据(3)式,误差的阶为o(h3)。

在梯形算法中,根据(7)式,误差的阶仍为o(h3)。

虽然两种方法误差的阶是相同的,但由于在数值微积分中,没有可以确定的绝对误差与相对误差,所以仅凭误差的阶还不能完全说明实际误差水平。

本文算法对h、y(xi?1)、y?(xi?1)、y??(xi)是敏感的,像所有单侧初始条件的微分方程数值算法一样,其误差随求解区间的增长、步数的增加,会产生传递和累进。

所以,控制误差的基本原则,是尽可能选择初始点和步进方向,让敏感因素的绝对值尽可能从小到大变化(参看后文)。

通过多个计算实例的统计比较发现,对同水平的h,梯形算法的相对误差通常远远小于矩形算法相对误差的一半。

由于梯形算法和矩形算法的运算速度没有显著差别,建议尽可能采用梯形算法。

4 算例通过一个比较复杂的方程d2y2dyx?sincos(x)?cos(e?1)y?f(x) 2dxdx先取y?x,由于函数2阶导比较稳定,所以误差太小。

又取y?xcos2x,得到方程 33d2y2dyx223x?sincos(x)?cos(e?1)y?6x?3xsincos(x)?xcos(e?1) 2dxdx在 [0, 100] 内根据其在x=0的初始条件进行梯形算法数值求解,并与精确解进行比较,结果如下(图1、2、3)。

4图1 y(xi)的数值解、精确解、绝对误差、相对误差图2 y?(xi)的数值解、精确解、绝对误差、相对误差5【篇二:019数学大题】数学学院硕士生复试方案一、学术型学位1.复试方式基础数学:常微分方程、复变函数、实变函数(各约占1/3);计算数学:数值逼近、数值方法、微分方程数值解(各约占1/3);概率论与数理统计:概率论、数理统计(各约占1/2);应用数学:计算方法、线性规划、数学模型(各约占1/3);运筹学与控制论:运筹学方向:概率论与数理统计、线性规划、整数线性规划(各约占1/3);控制论方向:概率论与数理统计、线性系统、矩阵代数(各约占1/3);信息安全:概率论与数理统计、数论与代数结构、应用密码学(各约占1/3);金融学、金融数学与金融工程:概率论、数理统计(各约占1/2);系统理论:概率论与数理统计、线性规划、整数线性规划(各约占1/3); 统计学:概率论、数理统计(各约占1/2)。

3.复试面试内容:基础数学:英语、数学分析、线性代数、常微分方程、复变函数、实变函数;计算数学:英语、数学分析、线性代数、微分方程数值解、数值逼近、数值代数、算法语言;概率论与数理统计:英语、数学分析、线性代数、概率论、数理统计、实变函数;应用数学:英语、数学分析、线性代数、常微分方程、线性规划、数学模型、计算方法;运筹学与控制论:英语、数学分析、线性代数、常微分方程、线性规划、整数线性规划、概率论与数理统计;或英语、数学分析、线性代数、常微分方程、线性系统理论、概率论与数理统计;信息安全:英语、数学分析、线性代数、概率论、数论与代数结构、计算机网络安全、应用密码学;金融数学与金融工程:英语、数学分析、线性代数、概率论、数理统计、实变函数;系统理论:英语、数学分析、线性代数、概率论、线性规划。

统计学:英语、数学分析、线性代数、概率论、数理统计、实变函数;4.复试笔试科目参考书目:基础数学:《复变函数》(第四版),余家荣著,高等教育出版社2007年版;《复变函数论》(第三版),钟玉泉编著,高等教育出版社2004年版;《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大学出版社2005年版;《常微分方程教程》(第二版),丁同仁、李承治编著,高等教育出版社2006年版。

《复变函数教程》扈配础著,科学出版社,2008年第一版。

计算数学:《数值逼近》,孙淑英、张圣丽等编著,山东大学出版社;《数值线性代数》(第一版),徐树方著,北京大学出版社2007年版;《偏微分方程数值解法》(第二版),李荣华等编著,吉林大学,高等教育出版社2010年12月版;也可参考其他同类教材。

概率论与数理统计:《概率论基础》(第三版),复旦大学李贤平编,高等教育出版社2010年版;《数理统计》(一),复旦大学编,高等教育出版社1979年版;《概率论与数理统计》,刘建亚编,高等教育出版社2003年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2005年版。

《概率论与数理统计》,刘建亚、吴臻编,山东大学出版社2004。

应用数学:《数学模型》(第三版),姜启源编著,高等教育出版社2008年版;《计算方法引论》(第三版),徐萃薇、孙绳武编著,高等教育出版社2007年版;《线性代数》,刘建亚、秦静编,高等教育出版社,2004版;《运筹学》(第三版)(线性规划部分),刁在筠等编著,高等教育出版社2007年版。

运筹学与控制论:《概率论基础》(第三版),复旦大学李贤平编,高等教育出版社2010年版;《概率论与数理统计》(第一版),茆诗松、周纪芗编著,中国统计出版社2007年版;《运筹学》(第三版),刁在筠等编著,高等教育出版社2007年版;《线性系统理论》(第一版),程兆林、马树萍编著,科学出版社2006年版;矩阵分析(第三版), 史昌荣等编著,北京理工大学出版社2010年版。

相关文档
最新文档