【世纪金榜】人教版第一轮复习理科数学教师用书配套 102PPT课件

合集下载

【世纪金榜】高三数学(人教版理)二轮复习练习:1.2.4导数的简单应用及定积分(含答案)

【世纪金榜】高三数学(人教版理)二轮复习练习:1.2.4导数的简单应用及定积分(含答案)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时巩固过关练六导数的简单应用及定积分(35分钟55分)一、选择题(每小题5分,共20分)1.(2016·四川高考)已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2【解析】选D. f′=3x2-12=3,令f′=0,得x=-2或x=2,易知f在上单调递减,在上单调递增,故f的极小值为f,所以a=2.2.(2016·益阳一模)函数f(x)=x2-2lnx的单调减区间是()A.(0,1]B.[1,+∞)C.(-∞,-1)∪(0,1]D.[-1,0)∪(0,1] 【解析】选A.f′(x)=2x-=(x>0),令f(x)≤0,解得:0<x≤1.3.(2016·承德二模)在平面直角坐标系中,过原点O的直线l与曲线y=e x-2交于不同的两点A,B,分别过A,B作x轴的垂线,与曲线y=lnx交于点C,D,则直线CD的斜率为()A.3B.2C.1D.【解析】选C.设直线l的方程为y=kx(k>0),且A(x1,y1),B(x2,y2),故kx1=,kx2=⇒x1=,x2=,则k CD====1.4.(2016·莱芜一模)设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)的解集为()A.B.C.D.【解析】选B.因为3f(x)=f′(x)-3,所以f′(x)=3f(x)+3,可设f(x)=ae bx+c,由f(0)=1,所以a+c=1,又3f(x)=f′(x)-3,所以3ae bx+3c=abe bx-3,即(3a-ab)e bx=-3-3c,所以解得b=3,c=-1,a=2.所以f(x)=2e3x-1,x∈R,又4f(x)>f′(x),所以8e3x-4>6e3x,即e3x>2,解得x>,所求不等式的解集为.二、填空题(每小题5分,共10分)5.(2016·衡阳一模)曲线f(x)=2x2-3x在点(1,f(1))处的切线方程为__________.【解析】f′(x)=4x-3,f′(1)=1,f(1)=-1,所以切线方程为y+1=x-1,即x-y-2=0.答案:x-y-2=06.(2016·汕头一模)若过点A(2,m)可作函数f(x)=x3-3x对应曲线的三条切线,则实数m的取值范围为__________.【解题导引】设切点为(a,a3-3a),利用导数的几何意义,求得切线的斜率k=f′(a),利用点斜式写出切线方程,将点A代入切线方程,可得关于a的方程有三个不同的解,利用参变量分离可得2a3-6a2=-6-m,令g(x)=2x3-6x2,利用导数求出g(x)的单调性和极值,则根据y=g(x)与y=-6-m有三个不同的交点,即可得到m的取值范围.【解析】设切点为(a,a3-3a),因为f(x)=x3-3x,所以f′(x)=3x2-3,所以切线的斜率k=f′(a)=3a2-3,由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a),因为切线过点A(2,m),所以m-(a3-3a)=(3a2-3)(2-a),即2a3-6a2=-6-m,因为过点A(2,m)可作曲线y=f(x)的三条切线,所以关于a的方程2a3-6a2=-6-m有三个不同的根,令g(x)=2x3-6x2,所以g′(x)=6x2-12x=0,解得x=0或x=2,当x<0时,g′(x)>0,当0<x<2时,g′(x)<0,当x>2时,g′(x)>0,所以g(x)在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,所以当x=0时,g(x)取得极大值g(0)=0,当x=2时,g(x)取得极小值g(2)=-8,关于a的方程2a3-6a2=-6-m有三个不同的根,等价于y=g(x)与y=-6-m的图象有三个不同的交点,所以-8<-6-m<0,所以-6<m<2,所以实数m的取值范围为(-6,2).答案:(-6,2)三、解答题(7题12分,8题13分,共25分)7.(2016·合肥二模)已知函数f(x)=lnx+(a>0).(1)当a=2时,求出函数f(x)的单调区间.(2)若不等式f(x)≥a对于x>0的一切值恒成立,求实数a的取值范围.【解题导引】(1)对函数求导,令导函数为0,得导函数的根,做表,通过导函数的正负确定原函数的增减.(2)将所要证明的式子变形,建立一个函数,求导后再建立一个新的函数,再求导.需要用到两次求导.再来通过最值确定正负号,然后确定原函数的单调性.【解析】(1)f(x)的定义域为(0,+∞),a=2时,f(x)=lnx+,f′(x)=-=,令f′(x)=0,得x=e.①当0<x<e时,f′(x)<0,则f(x)在区间(0,e)上是单调递减的.②当e<x时,f′(x)>0,则f(x)在区间(e,+∞)上是单调递增的.所以f(x)的递减区间是(0,e),递增区间是(e,+∞).(2)原式等价于xlnx+a+e-2-ax≥0在(0,+∞)上恒成立.令g(x)=xlnx+a+e-2-ax.因为g′(x)=lnx+1-a,令g′(x)=0,得x=e a-1.①0<x<e a-1时,g′(x)<0,g(x)单调递减,②e a-1<x时,g′(x)>0,g(x)单调递增.所以g(x)的最小值为g(e a-1)=(a-1)e a-1+a+e-2-ae a-1=a+e-2-e a-1.令t(x)=x+e-2-e x-1.因为t′(x)=1-e x-1,令t′(x)=0,得x=1,且③0<x<1时,t′(x)>0,t(x)单调递增,④1<x时,t′(x)<0,t(x)单调递减.所以当a∈(0,1)时,g(x)的最小值t(a)>t(0)=e-2-=>0.当a∈[1,+∞)时,g(x)的最小值为t(a)=a+e-2-e a-1≥0=t(2).所以a∈[1,2].综上得:a∈(0,2].8.(2016·葫芦岛一模)已知函数f(x)=-x3+ax2+1(a∈R).(1)若在f(x)的图象上横坐标为的点处存在垂直于y轴的切线,求a的值.(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a的取值范围.(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象与函数f(x)的图象恰有三个交点,若存在,试求出实数m的值;若不存在,说明理由.【解析】(1)依题意,f′=0,因为f′(x)=-3x2+2ax,所以a=1.(2)若f(x)在区间(-2,3)内有两个不同的极值点.则f′(x)=0在(-2,3)内有两个不同的实根.又f′(x)=-3x2+2ax=-x(3x-2a),x1=0,x2=,所以-2<<3.解得-3<a<,且a≠0,所以a∈(-3,0)∪.(3)在(1)的条件下,a=1.要使函数f(x)与g(x)=x4-5x3+(2-m)x2+1的图象恰有三个交点,等价于方程-x3+x2+1=x4-5x3+(2-m)x2+1,即方程x2(x2-4x+1-m)=0恰有三个不同的实根.因为x=0是一个根,所以应使方程x2-4x+1-m=0有两个非零的不等实根,则Δ>0,1-m≠0,解得m>-3,m≠1.所以存在m∈(-3,1)∪(1,+∞)使得两个函数图象恰有三个交点.【加固训练】(2016·洛阳二模)已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式.(2)设函数g(x)=lnx+,若对任意的x1∈[-1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,求实数a的取值范围.【解题导引】(1)利用函数的求导公式计算函数的导数,根据函数在x=1处取到极值得出函数在x=1处的导数值为0,再把x=2代入函数,联立两式求出m,n的值即可.(2)由(1)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[-2,2].从而f(x1)+≥.依题意有g(x)最小值≤.【解析】(1)f′(x)==.由f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2,即解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故f(x)=.(2)由(1)知f(x)的定义域为R,且f(-x)=-f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[-2,2].从而f(x1)+≥.依题意有g(x)最小值≤.函数g(x)=lnx+的定义域为(0,+∞),g′(x)=.①当a≤1时,g′(x)>0,函数g(x)在[1,e]上单调递增,其最小值为g(1)=a≤1<合题意;②当1<a<e时,函数g(x)在[1,a)上有g′(x)<0,单调递减,在(a,e]上有g′(x)>0,单调递增,所以函数g(x)最小值为f(a)=lna+1,由lna+1≤,得0<a≤.从而知1<a≤符合题意;③当a≥e时,显然函数g(x)在[1,e]上单调递减,其最小值为g(e)=1+≥2>,不合题意.综上所述,a的取值范围为a≤.(30分钟55分)一、选择题(每小题5分,共20分)1.曲线C:y=xlnx在点M(e,e)处的切线方程为()A.y=x-eB.y=x+eC.y=2x-eD.y=2x+e【解析】选 C.因为y=xlnx,所以y′=lnx+1,所以k=lne+1=2,所以切线方程为y-e=2(x-e),即y=2x-e.【加固训练】在曲线y=x2上切线倾斜角为的点是()A.(0,0)B.(2,4)C.D.【解析】选D.y′=2x,设切点为(a,a2),所以y′=2a,得切线的斜率为2a,所以2a=tan45°=1,所以a=,在曲线y=x2上切线倾斜角为的点是.2.若函数f(x)=x2-lnx+1在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围为()A.[1,+∞)B.C.[1,2)D.【解析】选B.因为f(x)的定义域为(0,+∞),f′(x)=2x-=,由f′(x)>0得,x>;由f′(x)<0得,0<x<;因为函数f(x)在其定义域内的一个子区间(k-1,k+1)内不是单调函数,所以0≤k-1<<k+1,所以1≤k<.3.函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=e x,且f(1)=e,则() A.f(x)的最小值为e B.f(x)的最大值为eC.f(x)的最小值为D.f(x)的最大值为【解析】选A.设g(x)=xf(x)-e x,所以g′(x)=f(x)+xf′(x)-e x=0,所以g(x)=xf(x)-e x为常数函数.因为g(1)=1×f(1)-e=0,所以g(x)=xf(x)-e x=g(1)=0,所以f(x)=,f′(x)=,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)≥f(1)=e.【加固训练】设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx,f=,则f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值【解析】选D.f(x)的定义域为(0,+∞),因为xf′(x)-f(x)=xlnx,所以=,所以′=,所以=ln2x+c,所以f(x)=xln2x+cx.因为f=ln2+c×=,所以c=.所以f′(x)=ln2x+lnx+=(lnx+1)2≥0,所以f(x)在(0,+∞)上单调递增,所以f(x)在(0,+∞)上既无极大值也无极小值.4.设函数f(x)=sin.若存在f(x)的极值点x0满足+[f(x0)]2<m2,则m的取值范围是()A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(4,+∞)【解析】选C.由题意知:f′(x0)=·cos=0,所以x0=,所以m2>+[f(x0)]2=+3sin2=+3,故>3,解得m>2或m<-2.二、填空题(每小题5分,共10分)5.若函数y=f(x)的图象在点(1,f(1))处的切线方程是x-2y+3=0,则f(1)-2f′(1)=__________.【解析】依题意得:当x=1时,y=2,即f(1)=2,又因为切线方程为x-2y+3=0,所以切线的斜率为,所以f′(1)=,所以f(1)-2f′(1)=2-2×=1.答案:1【加固训练】已知直线l:y=kx+b与曲线y=x3+3x+1相切,则斜率k取最小值时,直线l的方程为__________.【解题导引】求出原函数的导函数,得到导函数的最小值,求出此时x的值,再求出此时的函数值,由直线方程的点斜式,求得斜率k最小时直线l的方程.【解析】由y=x3+3x+1,得y′=3x2+3,则y′=3(x2+1)≥3,当y′=3时,x=0,此时f(0)=1,所以斜率k最小时直线l的方程为y-1=3(x-0),即3x-y+1=0.答案:3x-y+1=06.已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有>0,给出下列命题:①f(3)=0;②直线x=-6是函数f(x)的图象的一条对称轴;③函数y=f(x)在[-9,-6]上为增函数;④函数y=f(x)在[-9,9]上有四个零点.其中所有正确命题的序号为__________.【解析】对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,令x=-3,则f(-3+6)=f(-3)+f(3),又因为f(x)是R上的偶函数,所以f(3)=0,故①正确.②由(1)知f(x+6)=f(x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(-x),而f(x)的周期为6,所以f(x+6)=f(-6+x),f(-x)=f(-x+6),所以:f(-6-x)=f(-6+x),所以直线x=-6是函数y=f(x)的图象的一条对称轴,故②正确.③当x1,x2∈[0,3],且x1≠x2时,都有>0,所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[-3,0]上为减函数,而f(x)的周期为6,所以函数y=f(x)在[-9,-6]上为减函数,故③错误.④f(3)=0,f(x)的周期为6,所以:f(-9)=f(-3)=f(3)=f(9)=0,函数y=f(x)在[-9,9]上有四个零点,故④正确.答案:①②④三、解答题(7题12分,8题13分,共25分)7.设函数f(x)=ae x(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(1)求函数f(x),g(x)的解析式.(2)求函数f(x)在[t,t+1](t>-3)上的最小值.(3)若对∀x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.【解题导引】(1)求导函数,利用两函数在x=0处有相同的切线,可得2a=b,f(0)=a=g(0)=2,即可求函数f(x),g(x)的解析式.(2)求导函数,确定函数的单调性,再分类讨论,即可求出函数f(x)在[t,t+1](t>-3)上的最小值.(3)令F(x)=kf(x)-g(x)=2ke x(x+1)-x2-4x-2,对∀x≥-2,kf(x)≥g(x)恒成立,可得当x≥-2时,F(x)min≥0,即可求实数k的取值范围.【解析】(1)f′(x)=ae x(x+2),g′(x)=2x+b,由题意,两函数在x=0处有相同的切线.所以f′(0)=2a,g′(0)=b,所以2a=b,f(0)=a=g(0)=2,所以a=2,b=4,所以f(x)=2e x(x+1),g(x)=x2+4x+2.(2)f′(x)=2e x(x+2),由f′(x)>0得x>-2,由f′(x)<0得x<-2,所以f(x)在(-2,+∞)上单调递增,在(-∞,-2)上单调递减.因为t>-3,所以t+1>-2.①当-3<t<-2时,f(x)在[t,-2]上单调递减,在[-2,t+1]上单调递增,所以f(x)min=f(-2)=-2e-2.②当t≥-2时,f(x)在[t,t+1]上单调递增,所以f(x)min=f(t)=2e t(t+1).所以f(x)min=(3)令F(x)=kf(x)-g(x)=2ke x(x+1)-x2-4x-2,由题意当x≥-2时,F(x)min≥0.因为∀x≥-2,kf(x)≥g(x)恒成立,所以F(0)=2k-2≥0,所以k≥1,F′(x)=2ke x(x+1)+2ke x-2x-4=2(x+2)(ke x-1),因为x≥-2,由F′(x)>0得e x>,所以x>ln;由F′(x)<0得x<ln.所以F(x)在上单调递减,在上单调递增.①当ln<-2,即k>e2时,F(x)在[-2,+∞)上单调递增,F(x)min=F(-2)=-2ke-2+2=(e2-k)<0,不满足F(x)min≥0.②当ln=-2,即k=e2时,由①知,F(x)min=F(-2)=(e2-k)=0,满足F(x)min≥0.③当ln>-2,即1≤k<e2时,F(x)在上单调递减,在上单调递增.F(x)min=F=lnk(2-lnk)>0,满足F(x)min≥0.综上所述,满足题意的k的取值范围为[1,e2].8.已知函数f(x)=ax+-2a+1(a>0).(1)求f(x)的单调区间.(2)若f(x)≥lnx在[1,+∞)上恒成立,求实数a的取值范围.(3)证明:ln>.【解题导引】(1)求出f(x)的定义域,以及导函数,根据导函数的正负与增减性的关系判断即可确定出f(x)的单调区间.(2)令g(x)=ax+-2a+1-lnx,x∈[1,+∞),求出g(1)的值以及导函数,根据导函数的正负与增减性的关系确定出f(x)≥lnx在[1,+∞)上恒成立时实数a的取值范围即可.(3)令a=,根据第二问的结论列出关系式,进而可得lnx2<x-(x>1)(*),所证不等式等价于>,令x=>1(n>2),代入不等式(*),整理即可得证.【解析】(1)f(x)的定义域为{x|x≠0},f′(x)=a-=(a>0),当0<a≤1时,f′(x)>0恒成立,此时,f(x)在(-∞,0),(0,+∞)上是增函数;当a≥1时,令f′(x)=0得:x1=-,x2=,列表如下:此时,f(x)的递增区间是(-∞,-),(,+∞);递减区间是,.(2)令g(x)=ax+-2a+1-lnx,x∈[1,+∞),则g(1)=0,g′(x)=a--==,(i)当0<a<时,>1,若1<x<,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即f(x)<lnx,故f(x)≥lnx在[1,+∞)上不恒成立;(ii)当a≥时,≤1,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即f(x)>lnx,故当x≥1时,f(x)≥lnx,综上所述,所求a的取值范围是.(3)在(2)中,令a=,可得不等式:lnx≤(x≥1)(当且仅当x=1时等号成立),进而可得lnx2<x-(x>1)(*),ln>⇒ln>,令x=>1(n>2),代入不等式(*)得:ln<-=-=,则所证不等式成立.【加固训练】已知函数f(x)=e x+a|x-1|.(1)当a=3时,求函数f(x)在区间[0,2]上的值域.(2)若f(x)≥0对一切实数x∈[0,+∞)恒成立,求a的取值范围.【解析】(1)当a=3时,f(x)=e x+3|x-1|=则函数的导数f′(x)=当0<x<1时,f′(x)=e x-3<0,此时函数单调递减,当1<x<2时,f′(x)=e x+3>0,此时函数单调递增,所以函数的最小值为f(1)=e,又f(0)=4,f(2)=e2+3,则函数在[0,2]上的最大值为e2+3,即函数的值域为[e,e2+3].(2)当x=1时,f(1)=e>0,对一切x≥0都恒成立,所以此时a为任意实数. 当x≠1时,f(x)≥0等价为e x+a|x-1|≥0,即a≥,设g(x)=,则g(x)=g′(x)=即g(x)在[0,1)上单调递减,在(1,2]上单调递增,在(2,+∞)上单调递减, 所以g(x)的极大值为g(2)=-e2,所以a≥-e2,且a≥g(0)=-1,综上a≥-1.1.(2016·包头一模)已知函数f(x)=alnx+x2(a为实常数).(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数.(2)求函数f(x)在[1,e]上的最小值及相应的x值.【解析】(1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞)时,f′(x)=>0,故函数f(x)在(1,+∞)上是增函数.(2)f′(x)=(x>0),当x∈[1,e]时,2x2+a∈[a+2,a+2e2].若a≥-2,f′(x)在[1,e]上非负(仅当a=-2,x=1时,f′(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.若-2e2<a<-2,当x=时,f′(x)=0;当1≤x<时,f′(x)<0,此时f(x)是减函数;当<x≤e时,f′(x)>0,此时f(x)是增函数.故[f(x)]min=f=ln-.若a≤-2e2,f′(x)在[1,e]上非正(仅当a=-2e2,x=e时,f′(x)=0),故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2.综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x)的最小值为ln-,相应的x值为;当a≤-2e2时,f(x)的最小值为a+e2,相应的x值为e.2.设函数f(x)=lnx+x2-2mx+m2,m∈R.(1)当m=0时,求函数f(x)在[1,3]上的最小值.(2)若函数f(x)在上存在单调递增区间,求实数m的取值范围.(3)若函数f(x)存在极值点,求实数m的取值范围.【解析】(1)当m=0时,f(x)=lnx+x2,其定义域为(0,+∞),f′(x)=+2x.所以f(x)在[1,3]上是增函数,当x=1时,f(x)取得最小值为f(1)=1.故函数f(x)在[1,3]上的最小值为1.(2)依题意,可知f′(x)=+2x-2m=.设g(x)=2x2-2mx+1,则区间上存在子区间使得不等式g(x)>0成立.因为函数g(x)的图象是开口向上的抛物线,所以只要g>0,或g>0即可.由g>0,即-m+1>0,解得m<,由g>0,即-3m+1>0,解得m<,因此,实数m的取值范围是.(3)由(2)可知f′(x)=+2x-2m,假设函数f(x)不存在极值点,所以函数f(x)在定义域内恒单调,所以f′(x)≥0恒成立,所以+2x-2m≥0恒成立,所以m≤,所以若函数存在极值点,m的取值范围是(,+∞).关闭Word文档返回原板块。

2019年届高三一轮复习地理(人教版)课件:132中国地理分区 共79张PPT语文

2019年届高三一轮复习地理(人教版)课件:132中国地理分区 共79张PPT语文

作用;既能增加降水下渗,又能减少土壤水分蒸发,利于 防旱保湿;可减少杂草生长,增加土壤有机质,增强土壤 肥力。第(3)题,主要从荔枝的自身品质和上市时间进 行分析。合江县分布纬度最高,气温低,生长周期长,品 质最好;成熟期最晚,与其他产地大规模上市时间错开。 第(4)题,联系生活进行回答,问题①:荔枝直接口食一
畜饲料需求;同时,积雪融水和降水多,水资源补给充足。 第(3)题,根据材料可知,食盐运输过程中,要从西藏西 部和西北部运输到藏东南的拉萨地区,沿途气候多变, 路途艰险;运输牲畜队伍庞大;食物补给困难;海拔高, 缺氧且紫外线强烈;地质灾害多;食盐装卸过于耗时。
答案:(1)该地区多内流湖,湖水盐度高,气候干旱;太阳 辐射强;多大风天气,水分蒸发强烈,因而多盐。 (2)该季节气候温暖,利于人类活动;夏半年沿途地区草 料茂盛,满足牲畜饲料;积雪融水和降水多,水资源补给 充足。
(2)人文地理特征。
降水
贺兰山
河套
宁夏
(3)环境问题:_荒__漠__化、水土流失、沙尘暴。
【知识链接】西北地区农牧业的分布及发展条件 (1)牧场分布:西北地区的高山牧场主要集中在天山、 阿尔泰山等地,夏季牧场主要分布在山坡林带以上,冬 季牧场则分布在山麓地带。
(2)新疆发展绿洲农业的条件。 ①有利条件:盆地边缘有绿洲,附近水源丰富;光热充足, 昼夜温差大。 ②不利条件:荒漠广布;降水少,蒸发旺盛,总体上水资 源匮乏。
是说明荔枝的质量好,二是深加工的效益不大。 问题②:荔枝果汁等精深加工厂较少可从荔枝的产销特 点和深加工的效益两个角度分高(有霜 期短甚至无霜,减少霜冻危害),夏季降水丰沛。 (2)夏季可减少光照直射地面,降低土温,冬季可减少地 面热量损失,起到保暖作用;既能增加降水下渗,又能减 少土壤水分蒸发,利于防旱保湿;可减少杂草生长,增加 土壤有机质,增强土壤肥力。

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

令x+1=t,则ln t<t-1(t>1),
所以 2 1 1 ln 1,
aa
a
所以S(x)在 (ln 1 , 2) 上有且只有一个零点,
aa
综上,0<a<1.
【规律方法】 处理函数y=f(x)与y=g(x)图象的交点问题的常用方法 (1)数形结合,即分别作出两函数的图象,观察交点情况; (2)将函数交点问题转化为方程f(x)=g(x)根的个数问题,通过构造函数y=f(x)g(x),利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.
【解析】(1)a=1,f(x)=x2-x-ln x,则
f′(x)=2x-1- 1 (2x 1)(x 1) (x 0),
x
x
当0<x<1时,f′(x)<0,函数f(x)单调递减,
当x>1时,f′(x)>0,函数f(x)单调递增, 所以f(x) 在x=1处取最小值0.
(2)由 f(x)=ax2-x-ln x,
a
(2)由(1)知,f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4. 由题意知1-k>0, 当x≤0时,g′(x)=3x2-6x+1-k>0, g(x)单调递增, g(-1)=k-1<0,g(0)=4, 所以g(x)=0在(-∞,0]有唯一实根. 当x>0时,令h(x)=x3-3x2+4,
2
(2)若直线l与曲线y=f(x)有两个不同的交点,求实数a的取值范围.
【解题导思】
序号
(1)曲线y=f(x)在直线l的上方
1 2
x2

13九年级数学世纪金榜教师用书配套课件

13九年级数学世纪金榜教师用书配套课件

9 【解析】因为两函数有交点,所以 x , 解得x=〒3,因为点A x
在第一象限,所以点A的坐标为(3,3),故 ①正确;由图象可以 看出,当x>3时,y2<y1,故②错误;由题意可求出点B,C的坐 标分别为(1,1),(1,9),所以BC=8,故③正确;根据正比例函 数、反比例函数的性质可判断④正确.
特 在坐标系中求一个图形的面积一般利用“割补法”.在求三 别 角形面积时,一般把与坐标轴重合的边或与坐标轴平行的 提 边作为底. 醒
【例3】(2012·嘉兴中考)如图,一次函数y1=kx+b的图象与反 比例函数 y 2 C(8,0). (1)求这两个函数的解析式;
m 的图象相交于点A(2,3)和点B,与x轴相交于点 x
x 2 x
【对点训练】
4.(2012·益阳中考)反比例函数 y k 的图象与一次函数y=2x+1
x
的图象的一个交点是(1,k),则反比例函数的解析式是_____. 【解析】把(1,k)代入y=2x+1,解得k=3,所以反比例函数的解析
3 . x 答案: 3 y x
式是 y
5.(2011·常德中考)如图所示的曲线是一个反比例函数图象的
x 6 的图象 x
3.已知反比例函数 y k1 和正比例函数y=k2x无交点,则
三、反比例函数 y (k≠0)中k的几何意义
反比例函数中k的几何意义:如
图,过双曲线上任一点P(x,y)作 x轴、y轴的垂线PN,PM,所得矩 形PMON的面积S=PN·PM= |y|· _____ |x| |xy| |k| ____= _____=____. |k|越大,双曲线在同一坐标系中的位置离原点越远.
m , 得m=6. x 2k b 3, 把 A(2,3),C(8,0)代入y1=kx+b,得 8k b 0, 1 k , 解得 2 b 4, 1 6 ∴这两个函数的解析式为 y1 x 4,y 2 . 2 x 1 y 2 x 4, x 3 6, x 4 2, (2)由题意得 解得 6 y3 1, y 4 3, y , x

一轮复习利用导数研究函数单调性

一轮复习利用导数研究函数单调性
a a
2.若典例中的函数变为f(x)=(a-1)ln x+ax2+1,a∈R, 试讨论f(x)的单调性.
a 1 【解析】f(x)的定义域为(0,+∞),f′(x)= +2ax x 2ax 2 a 1 = . x
(1)当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增. (2)当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减.
3ax2+2bx+c=0有两个不同的正根,所以 c>0,- 2b >0,b<0.
3a c >0,所以 3a
2.已知函数f(x)=ln x+a(1-x),讨论f(x)的单调性. 【解析】f(x)的定义域为(0,+∞),f′(x)= 1 -a.
x
若a≤0,则f′(x)>0恒成立, 所以f(x)在(0,+∞)上单调递增.
【解析】由题意得f′(x)=ex[ax2+(2a-2)x](a>0),
2 2a 令f′(x)=0,解得x1=0,x2= . a
(1)当0<a<1时,f(x)的单调递增区间为(-∞,0)和
2 2a ( , ), 单调递减区间为 (0, 2 2a ). a a
(2)当a=1时,f(x)在(-∞,+∞)内单调递增; (3)当a>1时,f(x)的单调递增区间为 ( , 2 2a ) 和 (0,+∞),单调递减区间为 ( 2 2a ,0).
(3)得出结论:f′(x)>0时为增函数,f′(x)<0时为减函 数. 提醒:研究含参数函数的单调性时,需注意依据参数取 值对不等式解集的影响进行分类讨论.

高三物理一轮复习第六章碰撞与运量守恒第1讲动量动量定理课件

高三物理一轮复习第六章碰撞与运量守恒第1讲动量动量定理课件
的物块a和b,从同一时刻开始,a自由下落,b沿圆弧下
滑。以下说法正确的是 ( )
A.a比b先到达S,它们在S点的动量不相等 B.a与b同时到达S,它们在S点的动量不相等 C.a比b先到达S,它们在S点的动量相等 D.b比a先到达S,它们在S点的动量相等
【解析】选A。在物体下落的过程中,只有重力对物体 做功,故机械能守恒 故有mgh=1 mv2
2.用动量定理解释现象: (1)Δ p一定时,F的作用时间越短,力就越大;时间越长, 力就越小。 (2)F一定,此时力的作用时间越长,Δ p就越大;力的作 用时间越短,Δ p就越小。 分析问题时,要把哪个量一定,哪个量变化搞清楚。
3.动量定理的两个重要应用: (1)应用I=Δ p求变力的冲量。 如果物体受到大小或方向改变的力的作用,则不能直接 用I=Ft求变力的冲量,可以求出该力作用下物体动量的 变化量Δ p,等效代换为力的冲量I。
【易错辨析】 (1)动量越大的物体,其速度越大。 ( ) (2)物体的动量越大,其惯性也越大。 ( ) (3)物体所受合力不变,则动量也不变。 ( ) (4)物体沿水平面运动时,重力不做功,其冲量为零。
()
(5)物体所受合外力的冲量方向与物体末动量的方向相 同。 ( ) (6)物体所受合外力的冲量方向与物体动量变化的方向 相同。 ( )
【高考命题探究】 【典例1】(2017·合肥模拟)一质量为m的物体放在光 滑的水平面上,今以恒力F沿水平方向推该物体,在相同 的时间间隔内,下列说法正确的是 ( )
世纪金榜导学号42722132 A.物体的位移相等 B.物体动能的变化量相等 C.F对物体做的功相等 D.物体动量的变化量相等
【解析】选D。物体在水平恒力作用下做匀加速直线运 动,在相同的时间间隔内物体的位移逐渐增大,故A错误; 根据动能定理得知,物体动能的变化量逐渐增大,故B错 误;由功的公式W=FL知道,在相同的时间间隔内,F做功 增大,故C错误;根据动量定理得:Ft=Δ P,F、t相等,则 Δ P相等,即物体动量的变化量相等,故D正确。

2021版新高考数学一轮复习第八章8.3空间中的平行关系课件新人教B版

第三节ꢀ空间中的平行关系内容索引【教材·知识梳理】1.直线与平面平行的判定定理和性质定理文字语言此平面内图形语言符号语言平面外一条直线与_________l∥a,因为______判定的一条直线平行,则该直线定理与此平面平行(简记为“线线平行⇒线面平行”)a⊂α,l⊄α___________,所以l∥α一条直线与一个平面平行,则过这条直线的任一平面与l∥α,因为_______ _______α∩β=b_________,l⊂β,性质定理交线此平面的_____与该直线平行(简记为“线面平行⇒线线平行”)所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言a∥β,因为________相交直线判一个平面内的两条_________b∥β,a∩b=P,________________a ⊂α,b ⊂α定与另一个平面平行,则定这两个平面平行(简记为理“线面平行⇒面面平行”)____________,所以α∥βα∥β,因为_________性如果两个平行平面同时和质α∩γ=a,___________β∩γ=b 相交第三个平面_____,那么它定理_________,交线们的_____平行所以a∥b【常用结论】1.两个平面平行,则其中任意一个平面内的直线与另一个平面平行.2.三种平行关系的转化:线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想,解题中既要注意一般的转化规律,又要看清题目的具体条件,选择正确的转化方向.【知识点辨析】ꢀ(正确的打“√”,错误的打“×”)(1)若直线a与平面α内无数条直线平行,则a∥α.(ꢀꢀ)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(ꢀꢀ)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(ꢀꢀ)(4)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(ꢀꢀ)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(ꢀꢀ)(6)平行于同一条直线的两个平面平行.(ꢀꢀ)提示:(1) ×.若直线a与平面α内无数条直线平行,则a∥α或a⊂α.(2)×. 一条直线与一个平面平行,那么它与平面内的直线可能平行,也可能是异面直线.(3)×.如果一个平面内的两条相交直线平行于另一个平面,那么这两个平面平行.(4)×.若平面外的一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(5)√.这两条直线没有公共点.(6)×.平行于同一条直线的两个平面平行或相交.【易错点索引】序号易错警示典题索引考点一、T3 1证明线面平行时忽略该直线不在平面内致误考点二、T2利用线面平行的性质定理时不会找过该直线的2考点二、T1平面3证明面面平行时忽略两直线相交致误考点三、角度1【教材·基础自测】1.(必修2 P44练习BT2改编)平面α∥平面β的一个充分条件是(ꢀꢀ)A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【解析】选D.若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.2.(必修2 P46练习AT1改编)下列命题中正确的是(ꢀꢀ)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【解析】选D.A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.3.(必修2 P44 练习BT4改编)如图,长方体ABCD-ABCD中,E为DD的中点,则BD与111111平面AEC的位置关系为________.ꢀ【解析】连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD∥EO,而BD⊄平面ACE,EO⊂平面ACE,所以BD∥平面ACE.111答案:平行考点一ꢀ直线、平面平行的基本问题ꢀ【题组练透】1.如图,P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是(ꢀꢀ)A.OQ∥平面PCD C.AQ∥平面PCDB.PC∥平面BDQ D.CD∥平面PAB2.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是(ꢀꢀ)A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b3.如图是正方体的平面展开图.关于这个正方体,有以下判断:①EC⊥平面AFN;②CN∥平面AFB;③BM∥DE;④平面BDE∥平面NCF.其中正确判断的序号是(ꢀꢀ)A.①③B.②③C.①②④D.②③④4.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.世纪金榜导学号ꢀꢀ【解析】1.选C.因为O为平行四边形ABCD对角线的交点,所以AO=OC,又Q为PA的中点,所以QO∥PC.由线面平行的判定定理,可知A、B正确,又四边形ABCD为平行四边形,所以AB∥CD,故CD∥平面PAB,故D正确.2.选D.选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言.3.选C.由已知中正方体的平面展开图,得到正方体的直观图如图所示:由⇒FN⊥平面EMC,故FN⊥EC;同理AF⊥EC,故EC⊥平面AFN,故①正确;由CN∥BE,则CN∥平面AFB,故②正确;由图可知BM∥DE显然错误,故③不正确;由BD∥NF得BD∥平面NCF,DE∥CF得DE∥平面NCF,由面面平行判定定理可知平面BDE∥平面NCF,故④正确.4.因为平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形【规律方法】ꢀ直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.【秒杀绝招】ꢀ直接法解T1,因为Q是AP的中点,故AQ∩平面PCD =P,所以AQ∥平面PCD是错误的.考点二ꢀ直线、平面平行的判定与性质ꢀ【典例】1.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.ꢀ2.在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.求证:A1C∥平面DEF.【解题导思】序号1联想解题由直线SB∥平面DEFH,联想到利用线面平行的性质,判定四边形DEFH的形状,进而得到其面积.求证A C∥平面DEF,只要设法在平面DEF上找到与A C 112平行的直线即可,因为CD=3BD,故联想到连接A1B,在△BA1C中由比例关系证明平行关系.【解析】1.取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥AC∥DE,且HF=AC=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=答案:2.如图,连接AB,A B,交于点H,A B交EF于点K,连接DK,111因为ABB A为矩形,所以H为线段A B的中点,因为点E,F分别为棱AB,BB的中点,所1111K=3BK,以点K为线段BH的中点,所以A1又因为CD=3BD,所以A C∥DK,又A C⊄平面DEF,DK⊂平面DEF,所以A C∥平面DEF.111【规律方法】1.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β;α∥β,a⊄β,a∥α⇒a∥β).【变式训练】1.如图所示,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.ꢀ【解析】在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2.又E为AD中点,EF∥平面AB C,EF⊂平面ADC,平面ADC∩平面AB C=AC,11所以EF∥AC,所以F为DC中点,所以EF=AC=.答案:2.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,∠BAD=60°,AB=2,CD=4,E 为PC的中点.求证:BE∥平面PAD.【证明】设F为PD的中点,连接EF,FA.因为EF为△PDC的中位线,所以EF∥CD,且EF=CD=2.又AB∥CD,AB=2,所以AB EF,故四边形ABEF为平行四边形,所以BE∥AF.又AF⊂平面PAD,BE⊄平面PAD,所以BE∥平面PAD.考点三面面平行的判定与性质及平行的综合问题命考什么:(1)考查面面平行的判定与性质定理的应用.(2)考查直线、平题面平行的综合问题.(3)考查直观想象、逻辑推理、数学运算的核心素精养.解怎么考:以柱、锥等几何体为载体,考查证明线线、线面、面面平行.读新趋势:考查作已知几何体的截面或求截面面积问题.1.证明面面平行的方法学(1)面面平行的定义.霸(2)面面平行的判定定理.好(3)垂直于同一条直线的两个平面平行.方(4)两个平面同时平行于第三个平面,那么这两个平面平行.法(5)利用“线线平行”“线面平行”“面面平行”的性质相互转化.2.交汇问题:常联系柱、锥等几何体命题,考查平行、垂直或空间角.命题角度1面面平行的判定与性质【典例】如图所示,在三棱柱ABC-A B C中,E,F,G,H分别是AB,AC,A B,A C的中1111111点,求证:(1)B,C,H,G四点共面.∥平面BCHG.(2)平面EFA1【证明】(1)因为G,H分别是A B,A C的中点,1111所以GH是△A B C的中位线,所以GH∥B C.11111又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又G,E分别为A B,AB的中点,A B∥AB且A B=AB,所以A G∥EB,A G=EB, 11111111所以四边形A EBG是平行四边形,所以A E∥GB.11E⊄平面BCHG,GB⊂平面BCHG,又因为A1所以AE∥平面BCHG.1又因为A E∩EF=E,A E,EF⊂平面EFA,111∥平面BCHG.所以平面EFA1命题角度2平行关系的综合应用【典例】如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=a,试在AB上找一点F,使EF∥平面PAD.世纪金榜导学号【解析】在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,因为EG∥CD∥AF,EG=AF,所以四边形FEGA为平行四边形,所以FE∥AG.又AG⊂平面PAD,FE⊄平面PAD,所以EF∥平面PAD.所以F即为所求的点.又PA⊥平面ABCD,所以PA⊥BC,又BC⊥AB,所以BC⊥平面PAB.所以PB⊥BC.所以PC2=BC2+PB2=BC2+AB2+PA2.设PA=x则PC=,由PB·BC=BE·PC得:a,所以x=a,即PA=a,所以PC= a.又CE=所以即GE=CD=a,所以AF= a.故点F是AB上靠近B点的一个三等分点.【题组通关】【变式巩固·练】1.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2 cm,DE=4 cm,EF=3 cm,则AC的长为______ cm.【解析】因为平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F,过D作直线平行于a交β于M,交γ于N.连接AD,BM,CN,ME, NF,所以AD∥BM∥CN,ME∥NF,所以因为AB=2 cm,DE=4 cm,EF=3 cm,所以解得BC=cm,所以AC=AB+BC=2+=(cm).答案:2.如图,在正方体ABCD-A B C D中,S是B D的中点,E,F,G分别是BC,DC,SC的中点,111111求证:(1)直线EG∥平面BDD1B 1 .(2)平面EFG∥平面BDD1B 1 .【证明】(1)如图,连接SB,因为E,G分别是BC,SC的中点,所以EG∥SB.又因为SB⊂平面BDD B,EG⊄平面BDD B,1111所以直线EG∥平面BDD1B 1 .(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD⊂平面BDD B,FG⊄平面BDD B,1111所以FG∥平面BDD1B 1 ,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B 1 .【综合创新·练】1.在四面体ABCD中,M,N分别是面△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________.【解析】如图,连接AM并延长交CD于E,连接BN并延长交CD于F,由重心性质可知, E,F重合为一点,且该点为CD的中点E,由,得MN∥AB,因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD。

2021版高考数学(北师大版理科)一轮复习攻略 八 2.5 对数与对数函数

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

核心素养测评八对数与对数函数(25分钟50分)一、选择题(每小题5分,共35分)1.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是( ) (参考数据:l g 3≈0.48)A.1033B.1053C.1073D.1093【解析】选D.设=x=,两边取对数,l g x=l g=l g 3361-l g1080=361×l g 3-80≈93.28,所以x=1093.28,即与最接近的是1093.2.(2020·上饶模拟)设函数f(x)=若f(a)>f(-a),则实数a 的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【解析】选C.由题意得或解得a>1或-1<a<0.3.(2020·吕梁模拟)函数y=l n sin x(0<x<π)的大致图像是( )【解析】选C.因为0<x<π,所以0<sin x≤1,所以ln sin x≤0,排除选项A,B,D.4.(2020·新乡模拟)若l og2(l og3a)=l og3(l og4b)=l og4(l og2c)=1,则a,b,c的大小关系是( )A.a>b>cB.b>a>cC.a>c>bD.b>c>a【解析】选D.由l og2(l og3a)=1,可得l og3a=2,故a=32=9;由l og3(l og4b)=1,可得l og4b=3,故b=43=64;由l og4(l og2c)=1,可得l og2c=4,故c=24=16.所以b>c>a.5.若函数y=a|x|(a>0且a≠1)的值域为{y|y≥1},则函数y=l og a|x|的图像大致是( )【解析】选B.由于y=a|x|的值域为{y|y≥1},所以a>1,则y=l og a|x|在(0,+∞)上是增函数,又函数y=l og a|x|的图像关于y轴对称.因此y=l og a|x|的图像应大致为选项B.6.已知f(x)=l g(10+x)+l g(10-x),则( )A.f(x)是奇函数,且在(0,10)上是增函数B.f(x)是偶函数,且在(0,10)上是增函数C.f(x)是奇函数,且在(0,10)上是减函数D.f(x)是偶函数,且在(0,10)上是减函数【解析】选D.由得x∈(-10,10),且f(x)=l g(100-x2).所以f(x)是偶函数,又t=100-x2在(0,10)上单调递减,y=lg t在(0,+∞)上单调递增,故函数f(x)在(0,10)上单调递减.7.(2020·宁德模拟)已知函数f(x)=l g(|x|+1),记a=f(50.2),b=f(l og0.23),c=f(1),则a,b,c的大小关系为世纪金榜导学号( )A.b<c<aB.a<b<cC.c<a<bD.c<b<a【解析】选A.f(x)是偶函数,在[0,+∞)上单调递增,所以b=f(log0.23)=f(-log0.23)=f.因为50.2>50=1,0<log0.2<log0.20.2=1,所以0<log0.2<1<50.2,所以f<f(1)<f(50.2),所以b<c<a.二、填空题(每小题5分,共15分)8.已知函数f(x)=,则f=____________.【解析】f=log3=-2,f=f(-2)=2-2=.答案:9.(2019·深圳模拟)函数f(x)=l n 的定义域为________________,值域为________________.【解析】使f(x)有意义,则>0.所以x>1或x<-1,所以定义域为{x|x>1或x<-1}.又因为ln =ln =ln ,因为1+>0且1+≠1,所以ln ≠0,所以f(x)的值域为∪.答案:{x|x>1或x<-1}∪【变式备选】函数f(x)=的定义域为________________.【解析】由题意得解得0<x≤,故函数f(x)的定义域为(0,].答案:(0,]10.已知函数f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是________________.世纪金榜导学号【解析】作出函数f(x)的大致图像如图.由图像知,要使f(a)=f(b)=f(c),不妨设0<a<b<c,则-lg a=lg b=-c+6.所以lg a+lg b=0,所以ab=1,所以abc=c.由图知10<c<12,所以abc∈(10,12).答案:(10,12)(15分钟35分)1.(5分)(2020·长春模拟)已知x=l n π,y=l og52,z=, 则( )A.x<y<zB.z<x<yC.z<y<xD.y<z<x【解析】选D.l n π>l n e=1,即x>1,0=l og51<l og52<l og55=1,即0<y<1,0<<<1,即0<z<1,=====log5,因为e<4,所以<4,所以log5<log54<1,所以y<z.综上所述:y<z<x,故选D.2.(5分)(2020·威海模拟)已知函数f(x)=l nx+l n(a-x)的图像关于直线x=1对称,则函数f(x)的值域为( )A.(0,2)B.[0,+∞)C.(-∞,2]D.(-∞,0]【解析】选D.因为函数f(x)=lnx+ln(a-x)的图像关于直线x=1对称,所以f(1-x)=f(1+x),即ln(1-x)+ln(a-1+x)=ln(1+x)+ln(a-1-x),所以(1-x)(a-1+x)=(1+x)(a-1-x),整理得(a-2)x=0恒成立,所以a=2,所以f(x)=lnx+ln(2-x),定义域为(0,2).又f(x)=lnx+ln(2-x)=ln(2x-x2),因为0<x<2时,0<2x-x2≤1,所以ln(2x-x2)≤0,所以函数f(x)的值域为(-∞,0].故选D.3.(5分)(2020·蚌埠模拟)若函数f(x)=l og a(x2-2x+a)(a>0,且a≠1)有最小值,则实数a的值等于________________.【解析】令g(x)=x2-2x+a,则f(x)=l og a[g(x)].①若a>1,由于函数f(x)有最小值,则g(x)应有最小值,而g(x)=x2-2x+a=(x-)2+a-6,当x=时,取最小值a-6,因此有解得a=9.②若0<a<1,由于函数f(x)有最小值,则g(x)应有最大值,而g(x)不存在最大值,不符合题意.综上,实数a=9.答案:94.(10分)设f(x)=l og a(1+x)+l og a(3-x)(a>0,a≠1),且f(1)=2. 世纪金榜导学号(1)求a的值及f(x)的定义域.(2)求f(x)在区间上的最大值.【解析】(1)因为f(1)=2,所以l og a4=2(a>0,a≠1),所以a=2.由得-1<x<3,所以函数f(x)的定义域为(-1,3).(2)f(x)=log2(1+x)+log2(3-x)=log2[(1+x)(3-x)]=log2[-(x-1)2+4],所以当x∈(-1,1]时,f(x)是增函数;当x∈(1,3)时,f(x)是减函数,故函数f(x)在上的最大值是f(1)=log24=2.5.(10分)已知函数f(x)=l og a(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围.(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.【解析】(1)因为a>0且a≠1,设t(x)=3-ax,则t(x)=3-ax为减函数,当x∈[0,2]时,t(x)的最小值为3-2a,当x∈[0,2]时,f(x)恒有意义,即当x∈[0,2]时,3-ax>0恒成立.所以3-2a>0.所以a<.又a>0且a≠1,所以a的取值范围是(0,1)∪.(2)t(x)=3-ax,因为a>0,且a≠1,所以函数t(x)为减函数.因为f(x)在区间[1,2]上为减函数,所以y=log a t为增函数,所以a>1,x∈[1,2]时,t(x)最小值为3-2a,f(x)最大值为f(1)=log a(3-a),所以即故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.关闭Word文档返回原板块快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

《世纪金榜》高考地理一轮复习 森林的开发和保护—以亚马孙热带雨林为例课件 新人教


答案:(1)土地利用方式不恰当。会导致水土流失问题严 重。 (2)从1985年到1997年植被覆盖情况从草灌木丛覆盖多 转变为常绿植被覆盖多。 (3)常绿植被覆盖高导致当地冬季林内气温比林外气温高, 夏季林内气温比林外气温低。 (4)调节气候
一、选择题(每小题5分,共55分)
1.森林的首要价值体现在( )
7.(2010·滁州模拟)亚马孙雨林对全球水循环和水平衡的 作用,主要表现在( ) A.通过光合作用,放出氧气 B.起着类似海绵的作用,滞蓄大量降水 C.亚马孙雨林所涵养的水量约占地表淡水总量的50% D.亚马孙雨林的降水量绝大部分是自身产生的 【解析】选B。 森林起着类似海绵的作用,能够吸纳和滞蓄 大量降水,亚马孙雨林所涵养的水量约占地表淡水总量的 23%,亚马孙雨林的降水量大约50%是自身产生的。通过光 合作用,放出氧气是保持大气中的碳氧平衡。
④保护本国资源与采伐亚马孙雨林相结合
A.①② B.①②③ C.②③④ D.①②③④
3.保护热带雨林是全人类的共同义务,体现了可持续发展的
()
A.公平性原则
B.持续性原则
C.共同性原则
D.参与性原则
【解析】1选D,2选B,3选C。第1题,亚马孙地区位于南 美洲,刚果盆地位于非洲。亚马孙地区地势西高东低,东南 风能深入大陆;受南赤道暖流的影响;从陆地轮廓可以看出, 南美洲亚马孙地区陆地面积比非洲刚果盆地宽广。因此,亚 马孙地区热带雨林分布面积比刚果盆地更大。第2题,保护 性开发即是不破坏雨林的一种开发模式。第3题,人类的共 同义务,全世界每一位公民都有责任保护热带雨林,这体现 了共同性原则。
(2008·海南地理·T8、9·6分)对黄土丘陵沟壑区某地, 相同面积、不同土地覆被水土流失的观测结果如下表。据此 完成3、4题。

2021版文科数学人教版一轮复习核心素养测评 三十八等比数列及其前n项和

2021版高考文科数学人教A版一轮复习核心素养测评三十八等比数列及其前n项和温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块.核心素养测评三十八等比数列及其前n项和(30分钟60分)一、选择题(每小题5分,共25分)1.已知数列a,a(1-a),a(1-a)2,…是等比数列,则实数a满足的条件是()A。

{a|a≠1} B。

{a|a≠0或a≠1}C。

{a|a≠0}D。

{a|a≠0且a≠1}【解析】选D.由等比数列定义可知a≠0且1-a≠0,即a≠0且a≠1。

【变式备选】数列{a n}满足:a n+1=λa n-1(n∈N*,λ∈R且λ≠0),若数列{a n—1}是等比数列,则λ的值等于()A.1B.-1C.D.2【解析】选D.由a n+1=λa n—1,得a n+1-1=λa n—2=λ(a n-).由于数列{a n—1}是等比数列,所以=1,得λ=2.2。

公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论.他提出让乌龟在阿基里斯前面1 000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然领先他10米;当阿基里斯跑完下一个10米时,乌龟仍然领先他1米……所以阿基里斯永远追不上乌龟。

按照这样的规律,若阿基里斯和乌龟的距离恰好为10-2米时,乌龟爬行的总距离(单位:米)为()A. B.C.D。

【解析】选B.由题意知,乌龟每次爬行的距离(单位:米)构成等比数列,且首项a1=100,公比q=,易知a5=10-2,则乌龟爬行的总距离(单位:米)为S5===。

3.已知各项不为0的等差数列{a n}满足a6-+a8=0,数列{b n}是等比数列,且b7=a7,则b2·b8·b11= ()A.1 B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档