高等数学第九章多元函数极值典型问题

高等数学第九章多元函数极值典型问题
高等数学第九章多元函数极值典型问题

1 设函数2

2(,)22f x y x

ax xy y =+++在(1,1)-处取得极值,

试求常数a ,并确定极值的类型.

2 求函数2

2z x

xy y =-+在区域1x y +≤上的最大值和最小

值.

3(04研) 设(,)z z x y =是由2

226102180x

xy y yz z -+--+=确定的

函数,求(,)z z x y =的极值点和极值.

4 求函数23

u xy z =在条件x y z a ++=(其中,,,a x y z R +

∈)下的条

件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型.

分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题.

解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1)

(1,1)

(1,1)(1,1)

40220f

x a y x f xy y ----??=++=??????=+=???,

因此有410a ++=,即5a =-. 因为

22

(1,1)

4f A x

-?==?,2(1,1)(1,1)22f B y x y --?===-??, 22

(1,1)(1,1)

22f

C x y

--?===?,

2242(2)40AC B ?=-=?--=>,40A =>,

所以,函数(,)f x y 在(1,1)-处取得极小值.

2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值.

分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可.

解 由

20z

x y x

?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上,

22()313(1)133z x y xy x x x x =+-=--=-+,

它在[0,1]上最大值和最小值分别为1和

1

4

; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上,

22()1(1)1z x y xy x x x x =-+=++=++,

在[0,1]上最大值和最小值为1和

34

同理,在边界1,0,0x y x y -=≥≤上有相同的结果.

综上所述,函数22z x xy y =-+在区域1x y +≤上的最大值和最小值分别为 max 13max 0,,,1144z ??==????, m i n 13min 0,,,1044z ??

==????

注 求多元连续函数在有界闭区域上的最大值和最小值时,求出可能的极值点后,并不需要判别它是否为极值点.另外,求函数在边界上的最大值和最小值时,一般是将问题化为一元函数的最值问题或用其他方法,比如用条件极值的方法或不等式的技巧.

3(04研) 设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.

分析 本题考查由方程确定的隐函数的极值问题,应先求出驻点.再求出二阶偏导数,利用充分条件判定是否为极值点.

解 因为2226102180x xy y yz z -+--+=,所以方程两边分别对x 与y 求偏导,得

26220(1)

6202220

(2)

z z

x y y

z x x

z z

x y z y z y y

??---=????-+---=?? 令 303100

z x y

x y z z x y z y

y z ?-?==??+???-+-?==??+?,解之得303100x y x y z -=??-+-=? 即

3x y

z y =??=?

. 将3x y =,z y =代入2226102180x xy y yz z -+--+=可得933x y z =??

=??=? 或

933x y z =-??

=-??=-?

, 即点(9,3)与点(9,3)--是可能的极值点,下面判定是否为极值点.

在(1)式两边对x 求偏导,得

2

222222220z z z y z x x x ?????

---= ??????

在(1)式两边对y 求偏导,得

22622220z z z z z

y z x x y y x x y

?????-----=???????,

在(2)式两边对y 求偏导,得

2

222220222220z z z z z

y z y y y y y ???????-----= ????????

所以

2222

2

(9,3,3)(9,3,3)(9,3,3)

115

,,623

z

z z

A B C x

x y

y

???====-==

????. 故21036AC B -=>,又1

06

A =>,从而点(9,3)是(,)z x y 的极小值点,且极小值为 (9,3)3z =.

类似地由

2222

2

(9,3,3)(9,3,3)(9,3,3)115

,,.623

z z z

A B C x

x y

y

---------???==-=

===-????.

故21036AC B -=

>,又1

06

A =-<,所以点(9,3)--是(,)z x y 的极大值点,且极大值为(9,3)3z --=-.

综上所述,点(9,3)是(,)z x y 的极小值点,且极小值为(9,3)3z =;点(9,3)--

是(,)z x y 的极大值点,且极大值为(9,3)3z --=-.

4 求函数23u xy z =在条件x y z a ++=(其中,,,a x y z R +∈)下的条件极值. 分析 条件极值问题可考虑将其转化为无条件极值,或用拉格朗日乘法来求. 解法1 将x a y z =--代入函数23u xy z =,得23()u a y z y z =--, 于是由

322(232)0(334)0u

yz a y z y

u y z a y z z

??=--=????

??=--=??? 解得32a y a z ?

=????=??,则

24

3

2

,32,322(3)8

a a a a u a A z a y z y

??

?????

???

?==--=-?,

24

2

,32,32(698)12

a a a a u

a B yz a y z y z ??

?????

???

?=

=--=-??, 24

2

2

,32,326(2)9

a a a a u

a C y z a y z z

??

?????

???

?==--=-?,

2

44482

0,

08912144a a a a AC B A ??????-=----=>< ??? ???????

所以,当,,32326a a a a a

y z x a ===--=时,函数取得极大值,且极大值为

2

3

6,,632632432

a a a a a a a u ??????

== ? ? ???????.

解法2 令23(,,)()(,,,)F x y z xy z x y z a x y z a R λ+=+++-∈,于是由

23322020

30

x y z F y z F xyz F xy z x y z a

λλλ?'=+=??'?=+=?

'?=+=?++=?? 解得632a x a y a z ?

=??

?

=??

?=??

,即(,,)632a a a 为可能的极值点,将x a y z =--代入函数23u xy z =,得

23()u a y z y z =--, 则(,)32

a a

为可能的极值点,余下解法同解法1,求出,,A B C .知

,6a x =,3a y =2a z =时,函数取得极大值6

432a u =

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

高等数学第九章多元函数极值典型问题

1 设函数2 2(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常 数a ,并确定极值的类型. 2 求函数2 2 z x xy y =-+在区域1x y +≤上的最大值和最小 值. 3(04研) 设(,)z z x y =是由2 226102180x xy y yz z -+--+=确定的函 数,求(,)z z x y =的极值点和极值. 4 求函数23 u xy z =在条件x y z a ++=(其中,,,a x y z R + ∈)下的条 件极值.

1 设函数22(,)22f x y x ax xy y =+++在(1,1)-处取得极值,试求常数a ,并确定极值的类型. 分析 这是二元函数求极值的反问题, 即知道(,)f x y 取得极值,只需要根据可导函数取得极值的必要条件和充分条件即可求解本题. 解 因为(,)f x y 在(,)x y 处的偏导数均存在,因此点(1,1)-必为驻点, 则有 2(1,1) (1,1) (1,1)(1,1) 40220f x a y x f xy y ----??=++=??????=+=???, 因此有410a ++=,即5a =-. 因为 22 (1,1) 4f A x -?==?,2(1,1) (1,1) 22f B y x y --?= ==-??, 22 (1,1)(1,1) 22f C x y --?===?, 2242(2)40AC B ?=-=?--=>,40A =>, 所以,函数(,)f x y 在(1,1)-处取得极小值. 2 求函数22z x xy y =-+在区域1x y +≤上的最大值和最小值. 分析 这是多元函数求最值的问题.只需要求出函数在区域内可能的极值点及在区域边界上的最大值和最小值点,比较其函数值即可. 解 由 20z x y x ?=-=?,20z y x y ?=-=?解得0x =,0y =,且(0,0)0z =. 在边界1,0,0x y x y +=≥≥上, 22()313(1)133z x y xy x x x x =+-=--=-+, 它在[0,1]上最大值和最小值分别为1和 1 4 ; 同理,在边界1,0,0x y x y +=-≤≤上有相同的结果. 在边界1,0,0x y x y -=-≤≥上, 22()1(1)1z x y xy x x x x =-+=++=++,

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

“图解法解二元函数的最值问题”

“图解法解二元函数的最值问题” 教学课例 昌平区第一中学 回春荣

“图解法解二元函数的最值问题”教学课例 一、设计意图: 在新课程背景下的教学中,课堂上我们应是以“问”的方式来启发学生深思,以“变”的方式诱导学生灵活善变,使整堂课有张有弛,真正突出了学生是教学活动的主体的原则。本节内容是在学习了不等式、直线的方程的基础上,利用不等式和直线的方程有关知识展开的,它是对二元函数的深化和再认识、再理解,是直线、圆和不等式的综合运用,同时它又对理解下一章“圆锥曲线”的相关内容有着很好的帮助作用,所以这一部分内容起到了一个巩固旧知识,熟练方法,理解新知识的承上启下的作用。图解法在解决函数求最值的问题上有着广泛的应用,这节课为学生提供了广阔的思维空间,对培养学生自主探索、合作研究、主动发现问题、分析问题,创造性地解决问题的能力有着丰富的素材。教学上通过设置问题情境、多媒体展示,学生动手操作,使学生在“做中学”,学生在实际操作中,既发展了学生的个性潜能,又培养了他们的合作精神。 二、本课教学目标 1、知识与技能:通过识图、画图,学会解决有约束条件的二元函数最值问题的处理方法——图解法。 2、过程与方法:经历约束条件为二元一次不等式组,目标函数为具有截距、斜率、距离等几何意义的二元函数的最值问题的探究过程,提炼出解决这类问题的方法——以图定位,以算定量。 3、情感态度与价值观:通过对有约束条件的二元函数的最值问题的探究,培养学生科学严谨的治学态度,勇于探索、敢于创新的学习精神,同时感受合作交流的快乐。 三、教学过程与教学资源设计 (一)、教学内容:图解法解二元函数的最值问题 (二)、教学设计流程图:

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

(整理)多元函数的极值及其求法

第六节 多元函数的极值及其求法 在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题. 内容分布图示 ★ 引例 ★ 二元函数极值的概念 例1-3 ★ 极值的必要条件 ★ 极值的充分条件 ★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5 ★ 求最值的一般步骤 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12 ★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16 *数学建模举例 ★ 最小二乘法 ★ 线性规划问题 ★ 内容小结 ★ 课堂练习 ★ 习题6-6 ★ 返回 内容提要: 一、二元函数极值的概念 定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果 ),,(),(00y x f y x f < 则称函数在),(00y x 有极大值;如果 ),,(),(00y x f y x f > 则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点. 定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即 .0),(,0),(0000==y x f y x f y x (6.1) 与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点. 定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

(完整版)求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y == . 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

二元函数极值问题

二元函数极值问题

2

3

4

5 0x >时, 1,z x ?=? 0x <时,1z x ?=-?. 因此在0x =时偏导数不存在. 由此可见,函数的极值点必为 f x ??及f y ??同时为零或至少有一个偏导数不存在的点. 3.2极值的充分条件 设函数),(y x f z =在点的某个邻域内连续且有二阶连续偏导数,又 0),(00'=y x f x 且0),(00'=y x fy ,记二阶连续偏导数为 A y x f xx =),(00', B y x f xy =),(00', C y x f yy =),(00', AC B -=?2,则函数),(y x f z =在),(00y x 点处是否取得极值的条件如下: (1) 当0A 时,函数),(y x f z =在点),(00y x 处取得极小值; (3) 当0>?时,函数),(y x f z =在点),(00y x 处不取得极值; (4) 当0=?时,函数),(y x f z =在点),(00y x 处可能取得极值,也可能不取得极值. 4. 求二元函数的极值的步骤 要求函数的极值,首先要求出所有使函数的偏导数等于零或偏导数不存在的点,然后讨论该点周围函数的变化情形,以进一步判断是否有极值,为此我们讨论f ?,若(,)f x y 的一切二阶导数连续,则由泰勒公式并注意到在极值点必须0x y f f ==,就有 222 000000200001(,)(,)((,)22(,)(,)) x xy y f f x x y y f x y f x x y y x f x x y y x y f x x y y y θθθθθθ?=+?+?-=+?+??++?+???++?+??. 由于(,)f x y 的一切二阶偏导数在00(,)x y 连续,记200(,)x A f x y =,00(,)xy B f x y =,200(,)y C f x y =,那就有

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

第七章多元函数微分高等数学

第七章 多元函数微分学 一、内容分析与教学建议 (一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。 在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。 (二) 多元函数、极限、连续 先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。 (三) 偏导数与全微分 1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。 2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[ ]ρ y y x z x y x z z y x y x ?+?-?→?→?),(),(lim 0 是 否为0。 3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy y z dx x z dz ??+??= 之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。 (四) 复合函数求偏导 1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ?=,)(x v ?=从中让学生理解口诀的含义。

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

相关文档
最新文档