2017高考数学一轮复习坐标系与参数方程第1讲坐标系习题选修4_4

合集下载

高三数学一轮总复习 专题十七 坐标系与参数方程含解析,选修4 4 试题

高三数学一轮总复习 专题十七 坐标系与参数方程含解析,选修4 4 试题

日期:2022年二月八日。

专题十七、选修4-4 坐标系与参数方程抓住1个高考重点重点1 坐标系与参数方程1.极坐标和直角坐标互化的前提条件是: 〔1〕极点与直角坐标系的原点重合; 〔2〕极轴与直角坐标系的x 轴正半轴重合;〔3〕两种坐标系取一样的长度单位.设点P 的直角坐标为(,)x y ,它的极坐标为(,)ρθ,那么互化公式是cos sin x y ρθρθ=⎧⎨=⎩或者222tan x y y x ρθ⎧=+⎪⎨=⎪⎩;假设把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限〔即角θ的终边的位置〕,以便正确地求出角θ,在转化过程中注意不要漏解,特别是在填空题和解答题中,那么更要谨防漏解.2.消去参数是参数方程化为普通方程的根本途径,常用方法有代入消元法〔包括集团代人法〕、加减消元法、参数转化法和三角代换法等,转化的过程中要注意参数方程中,x y 含有的限制条件,在普通方程中应加上这种限制条件才能保持其等价性. 3.参数方程的用处主要有以下几个方面:〔1〕求动点(,)x y 的轨迹,假如,x y 的关系不好找,我们引入参变量t 后,很容易找到x 与t 和y 与t 的等量关系式,消去参变量后即得动点轨迹方程.此时参数方程在求动点轨迹方程中起桥梁作用. 〔2〕可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.〔3〕有些曲线参数方程的参变量t 有几何意义.假设能利用参变量的几何意义解题,常会获得意想不到的效果.如利用直线HY 参数方程中t 的几何意义解题,会使难题化易、繁题化简.[高考常考角度]角度1 假设曲线的极坐标方程为θθρcos 4sin 2+=,以极点为原点,极轴为x 轴正半轴建立直角坐标系,那么该曲线的直角坐标方程为 .解析:关键是记住两点:1、cos ,sin x y ρθρθ==,2、222y x +=ρ即可.由22sin 4cos 2sin 4cos ρθθρρθρθ=+=>=+2224,x y y x =>+=+22420x y x y ∴+--=为所求.角度2在极坐标系中,点 (,)π23到圆2cos ρθ=的圆心的间隔 为〔 〕解析:极坐标(,)π23化为直角坐标为(2cos ,2sin )33ππ,即.圆的极坐标方程2cos ρθ=可化为22cos ρρθ=,化为直角坐标方程为222x y x +=,即22(1)1x y -+=,所以圆心坐标为〔1,0〕,那么由两点间间隔公式d ==应选D.角度 3两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪⎨=⎪⎩≤<和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为 .解:sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(0)y ≥,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x = 联立得222215450145x y x x x y x ⎧+=⎪⎪=>+-==>=⎨⎪=⎪⎩或者5x =-〔舍去〕, 又因为0y ≥,所以它们的交点坐标为(1,)5角度4 直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线1C :3cos 4sin x y θθ=+⎧⎨=+⎩〔θ为参数〕和曲线2C :1ρ=上,那么||AB 的最小值为 .点评:利用化归思想和数形结合法,把两条曲线转化为直角坐标系下的方程.解析:曲线1C 的方程是22(3)(4)1x y -+-=,曲线2C 的方程是221x y +=,两圆外离,所以||AB 的113-=.角度5 在平面直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos y x 〔ϕ为参数〕,曲线2C 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x 〔0>>b a ,ϕ为参数〕,在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θα=与1C ,2C 各有一个交点.当0α=时,这两个交点间的间隔 为2,当α=2π时,这两个交点重合. 〔Ⅰ〕分别说明12,C C 是什么曲线,并求出a 与b 的值; 〔Ⅱ〕设当α=4π时,l 与12,C C 的交点分别为11,A B ,当α=4π-时,l 与12,C C 的交点为22,A B ,求四边形1221A A B B 的面积.解析:〔Ⅰ〕12,C C 的普通方程分别为221x y +=和22221x y a b+=,故1C 是圆,2C 是椭圆.当0α=时,射线l 与12,C C 交点的直角坐标分别为(1,0),(,0)a ,因为这两点间的间隔 为2,所以3a =.当2πα=时,射线l 与12,C C 交点的直角坐标分别为(0,1),(0,)b ,因为这两点重合,所以1b =.〔Ⅱ〕12,C C 的普通方程分别为221x y +=和22 1.9x y +=当4πα=时,射线l 与1C 交点A 1的横坐标为2x =,与2C 交点B 1的横坐标为10x '= 当4πα=-时,射线l 与12,C C 的两个交点22,A B 分别与11,A B 关于x 轴对称,因此,四边形1221A A B B 为梯形.故四边形1221A A B B 的面积为(22)()2.25x x x x ''+-=躲避2个易失分点易失分点1 参数的几何意义不明典例 直线l的参数方程为1222x t y t ⎧=⎪⎪⎨⎪=+⎪⎩〔t 为参数〕,假设以平面直角坐标系xOy 中的O 点为极点,Ox 方向为极轴,选择一样的长度单位建立极坐标系,得曲线C 的极坐标方程为2cos().4πρθ=-〔1〕求直线l 的倾斜角;〔2〕假设直线l 与曲线C 交于,A B 两点,求||AB .易失分提示:对直线参数方程中参数的几何意义不明确导致错误.解析:〔1〕直线的参数方程可以化为cos 3sin 23x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩,根据直线参数方程的意义,直线l 经过点(0,)2,倾斜角为3π. 〔2〕l的直角坐标方程为2y =+,即20y -= 曲线C 2cos()4πρθ=-的直角坐标方程为22((1x y +-=,所以圆心到直线l 的间隔|24d == 所以||2AB ==易失分点2 极坐标表达不准典例 曲线12,C C 的极坐标方程分别为cos 3,4cos ,0,ρθρθρ==≥那么曲线1C 与2C 交点的极坐标为_________________易失分提示: 此题考察曲线交点的求法,易错解为:由方程组cos 34cos cos 662ρρρθππρθθθ⎧⎧===⎧⎪⎪=>=>⎨⎨⎨==-⎩=⎪⎪⎩⎩或即两曲线的交点为6π()或者6π-()正解解析:由方程组cos 34cos 2cos 62k ρρρθπρθθπθ⎧⎧===⎧⎪⎪=>=>⎨⎨⎨==-⎩=⎪⎪⎩⎩或者26k ρπθπ⎧=⎪⎨=+⎪⎩即两曲线的交点为)6k ππ-或者2),6k k Z ππ+∈在极坐标系中,有序实数对的集合{(,)|,}R ρθρθ∈(,)ρθ,在极坐标系中可以唯一确定一个点,但极坐标系中的一点,它的极坐标不是唯一的,假设点M 不是极点,(,)ρθ是它的一个掇坐标,那么M 有无穷多个极坐标(,2)k ρθπ+与(,(21)),k k Z ρθπ-++∈各类题型展现:1. 〔本小题满分是10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕϕϕ=⎧⎨=⎩为参数〕〔1〕求过椭圆的右焦点,且与直线42(3x tt y t=-⎧⎨=-⎩为参数〕平行的直线l 的普通方程.〔2〕求椭圆C 的内接矩形ABCD 面积的最大值。

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析(二)

高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。

高中数学选修44坐标系与参数方程练习题含详解1

高中数学选修44坐标系与参数方程练习题含详解1

数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。

y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。

y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。

x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。

y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。

三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。

高考数学一轮复习选修44坐标系与参数方程课件新人教A版理

高考数学一轮复习选修44坐标系与参数方程课件新人教A版理

3
cos +sin
(2)C3 是一条过原点且斜率为正值的直线,
C3 的极坐标方程为 θ=α,α∈ 0,
π
2
,
= 2cos,
联立 C1 与 C3 的极坐标方程
= ,
得 ρ=2cos α,即|OA|=2cos α.
3
= cos +sin ,
联立 C1 与 C2 的极坐标方程
= ,
-11知识梳理
1
双基自测
2
3
4
5
2.若原点与极点重合,x 轴正半轴与极轴重合,则点(-5,-5√3)的极
坐标是(
)
π
A. 10, 3

C. -10,- 3

B. 10, 3

D. 10, 3
关闭
设点(-5,-5√3)的极坐标为(ρ,θ),
-5 √3
则 tan θ=
-5
= √3.

因为 x<0,所以最小正角 θ= ,
由圆 C1 与圆 C2 的方程相减可得公共弦所在的直线方程为
4x-2y+1=0.
圆心(1,1)到直线 4x-2y+1=0 的距离 d=
故弦长|AB|=2 1-
3 2
√20
=
√55
5
.
|4-2+1|
42 +(-2)2
=
3
,
√20
-24考点1
考点2
考点3
考点4
考点5
(2)解 ①圆 O:ρ=cos θ+sin θ,即 ρ2=ρcos θ+ρsin θ,
3
3
得 ρ=cos +sin ,即|OB|=cos +sin ,

高考数学(理)一轮复习文档 选修4-4 坐标系与参数方程 第1讲 坐标系 Word版含答案

高考数学(理)一轮复习文档 选修4-4 坐标系与参数方程 第1讲 坐标系 Word版含答案

第1讲 坐标系1.坐标系 (1)伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点(λx ,μy ),称φ为平面直角坐标系中的伸缩变换. (2)极坐标系在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 3.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M (a ,0)且垂直于极轴:ρcos_θ=a ;(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴:ρsin_θ=b .4.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则该圆的方程为: ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程:(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a ,0),半径为a :ρ=2a cos_θ;(3)当圆心位于M ⎝⎛⎭⎪⎫a ,π2,半径为a :ρ=2a sin_θ.极坐标与直角坐标的互化(1)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,求点A 到直线l 的距离. (2)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程.【解】 (1)由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得2ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ=2,所以y -x =1.由点A 的极坐标为⎝ ⎛⎭⎪⎫22,7π4得点A 的直角坐标为(2,-2),所以d =|2+2+1|2=522.即点A 到直线l 的距离为522.(2)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2中,得ρ2cos 2θ+ρ2sin 2θ=r 2,即ρ2(cos 2θ+sin 2θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).极坐标与直角坐标互化的注意点(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性.(2016·高考北京卷改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.将ρcos θ-3ρsin θ-1=0化为直角坐标方程为x -3y -1=0,将ρ=2cos θ化为直角坐标方程为(x -1)2+y 2=1,圆心坐标为(1,0),半径r =1,又(1,0)在直线x -3y -1=0上,所以|AB |=2r =2.求曲线的极坐标方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1(0≤θ<2π),M ,N 分别为曲线C 与x 轴,y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 【解】 (1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得 ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1.从而曲线C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎪⎫233,π2. (2)M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233.所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33, 则P 点的极坐标为⎝⎛⎭⎪⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R ).求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中, 令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 如图所示,因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,所以圆C 的半径 |PC |=(2)2+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.曲线极坐标方程的应用(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.【解】 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.在已知极坐标方程求曲线交点、距离、线段长、面积等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程利用直角坐标方程的有关公式求解.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y后,曲线C :x 2+y 2=36变为何种曲线,并求曲线的焦点坐标.设圆x 2+y 2=36上任一点为P (x ,y ),伸缩变换后对应的点的坐标为P ′(x ′,y ′),则⎩⎪⎨⎪⎧x =2x ′,y =3y ′,所以4x ′2+9y ′2=36,即x ′29+y ′24=1.所以曲线C 在伸缩变换后得椭圆x 29+y 24=1,其焦点坐标为(±5,0).2.在极坐标系中,求直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标.ρ(3cos θ-sin θ)=2化为直角坐标方程为3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0, 解得x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.3.(2017·山西省第二次四校联考)已知曲线C 的参数方程为⎩⎨⎧x =3+10cos αy =1+10sin α(α为参数),以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为sin θ-cos θ=1ρ,求直线被曲线C 截得的弦长.(1)因为曲线C 的参数方程为⎩⎨⎧x =3+10cos αy =1+10sin α(α为参数),所以曲线C 的普通方程为(x -3)2+(y -1)2=10,① 曲线C 表示以(3,1)为圆心,10为半径的圆. 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ,即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)因为直线的直角坐标方程为y -x =1, 所以圆心C 到直线的距离为d =322,所以弦长为210-92=22.4.(2016·高考全国卷乙)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.5.(2017·山西省高三考前质量检测)已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φy =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.(1)C 1:ρsin ⎝ ⎛⎭⎪⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)因为M (3,0),N (0,1),所以P ⎝ ⎛⎭⎪⎫32,12, 所以OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=32得ρ1=1,P ⎝ ⎛⎭⎪⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝ ⎛⎭⎪⎫2,π6. 所以|PQ |=|ρ2-ρ1|=1,即P ,Q 两间点的距离为1.6.在极坐标系中,曲线C 1,C 2的极坐标方程分别为ρ=-2cos θ,ρcos ⎝ ⎛⎭⎪⎫θ+π3=1.(1)求曲线C 1和C 2的公共点的个数;(2)过极点作动直线与曲线C 2相交于点Q ,在OQ 上取一点P ,使|OP |·|OQ |=2,求点P 的轨迹方程,并指出轨迹是什么图形.(1)C 1的直角坐标方程为(x +1)2+y 2=1,它表示圆心为(-1,0),半径为1的圆,C 2的直角坐标方程为x -3y -2=0,所以曲线C 2为直线,由于圆心到直线的距离d =|-1-2|2=32>1, 所以直线与圆相离,即曲线C 1和C 2没有公共点,亦即曲线C 1和C 2的公共点的个数为0.(2)设Q (ρ0,θ0),P (ρ,θ),则⎩⎪⎨⎪⎧ρρ0=2,θ=θ0,即⎩⎪⎨⎪⎧ρ0=2ρ,θ0=θ.① 因为点Q (ρ0,θ0)在曲线C 2上, 所以ρ0cos ⎝ ⎛⎭⎪⎫θ0+π3=1,②将①代入②,得2ρcos ⎝⎛⎭⎪⎫θ+π3=1,即ρ=2cos ⎝ ⎛⎭⎪⎫θ+π3为点P 的轨迹方程,化为直角坐标方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +322=1,因此点P 的轨迹是以⎝ ⎛⎭⎪⎫12,-32为圆心,1为半径的圆.7.(2017·河南天一大联考)在极坐标系中,曲线C :ρ=4a cos θ(a >0),l :ρcos ⎝⎛⎭⎪⎫θ-π3=4,C 与l 有且只有一个公共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.(1)由题意,得曲线C 是以(2a ,0)为圆心,以2a 为半径的圆.l 的直角坐标方程为x +3y -8=0,由直线l 与圆C 相切可得|2a -8|2=2a ,解得a =43(舍负).(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=163cos θ+163cos ⎝ ⎛⎭⎪⎫θ+π3=8cos θ-833sin θ=1633cos ⎝⎛⎭⎪⎫θ+π6,所以当θ=-π6时,|OA |+|OB |取得最大值1633.8.在平面直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2(1+3sin 2θ)=4.曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎪⎫2,π3.(1)求曲线C 1、C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝ ⎛⎭⎪⎫ρ2,θ0+π2,若A 、B 都在曲线C 1上,求1ρ21+1ρ22的值. (1)因为C 1的极坐标方程为ρ2(1+3sin 2θ)=4,所以ρ2(cos 2θ+4sin 2θ)=4,即(ρcos θ)2+4(ρsin θ)2=4,即x 2+4y 2=4,所以该曲线C 1的直角坐标方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a ·cos θ(a 为半径),将D ⎝⎛⎭⎪⎫2,π3代入,得2=2a ×12,所以a =2,所以圆C 2的圆心的直角坐标为(2,0),半径为2, 所以C 2的直角坐标方程为(x -2)2+y 2=4.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,即ρ2=44sin 2θ+cos 2θ.所以ρ21=44sin 2θ0+cos 2θ0, ρ22=44sin 2⎝ ⎛⎭⎪⎫θ0+π2+cos 2⎝ ⎛⎭⎪⎫θ0+π2=4sin 2θ0+4cos 2θ0. 所以1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54.。

一轮复习理数通用版:选修4—4 坐标系与参数方程

一轮复习理数通用版:选修4—4  坐标系与参数方程

. . .选修4—4 坐标系与参数方程第1课坐标系[过双基]1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0). 4.常见曲线的极坐标方程圆心在极点,半径为r 的圆的极坐标方程 ρ=r (0≤θ<2π) 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆的极坐标方程 ρ=2r sin θ(0≤θ<π) 过极点,倾斜角为α的直线的极坐标方程 θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线的极坐标方程ρcos θ=a ⎝⎛⎭⎫-π2<θ<π2过点⎝⎛⎭⎫a ,π2,与极轴平行的直线的极坐标方程 ρsin θ=a (0<θ<π)[小题速通]1.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 2.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为________.解析:把圆ρ=2cos θ的方程化为(x -1)2+y 2=1知,圆的垂直于极轴的两条切线方程分别为x =0和x =2,从而得这两条切线的极坐标方程为θ=π2(ρ∈R)和ρcos θ=2.答案:θ=π2(ρ∈R)和ρcos θ=23.(2017·北京高考)在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.解析:将圆的极坐标方程化为直角坐标方程为x 2+y 2-2x -4y +4=0,即(x -1)2+(y -2)2=1,圆心为(1,2),半径r =1.因为点P (1,0)到圆心的距离d =(1-1)2+(0-2)2=2>1,所以点P 在圆外,所以|AP |的最小值为d -r =2-1=1.答案:14.(2017·天津高考)在极坐标系中,直线4ρcos ⎝⎛⎭⎫θ-π6+1=0与圆ρ=2sin θ 的公共点的个数为________.解析:依题意,得4ρ⎝⎛⎭⎫32cos θ+12sin θ+1=0,即23ρcos θ+2ρsin θ+1=0,所以直线的直角坐标方程为23x +2y +1=0. 由ρ=2sin θ,得ρ2=2ρsin θ, 所以圆的直角坐标方程为x 2+y 2=2y , 即x 2+(y -1)2=1,其圆心(0,1)到直线23x +2y +1=0的距离 d =|2×1+1|(23)2+22=34<1,则直线与圆相交,故直线与圆的公共点的个数是2. 答案:25.在极坐标系中,过点A ⎝⎛⎭⎫1,-π2引圆ρ=8sin θ的一条切线,则切线长为________.解析:点A ⎝⎛⎭⎫1,-π2的极坐标化为直角坐标为A (0,-1), 圆ρ=8sin θ的直角坐标方程为x 2+y 2-8y =0, 圆的标准方程为x 2+(y -4)2=16, 点A 与圆心C (0,4)的距离为|AC |=5, 所以切线长为|AC |2-r 2=3. 答案:3[清易错]1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π)(k ∈Z),(-ρ,π+θ+2k π)(k ∈Z)表示同一点的坐标. 1.若圆C 的极坐标方程为ρ2-4ρcos ⎝⎛⎭⎫θ-π3-1=0,若以极点为原点,以极轴为x 轴的正半轴建立相应的平面直角坐标系xOy ,则在直角坐标系中,圆心C 的直角坐标是________.解析:因为ρ2-4ρcos ⎝⎛⎭⎫θ-π3-1=0,所以ρ2-2ρcos θ-23ρsin θ-1=0,即x 2+y 2-2x -23y -1=0,因此圆心坐标为(1,3).答案:(1,3)2.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ得: ρ2=5ρcos θ-53ρsin θ,化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心的坐标为⎝⎛⎭⎫52,-532,化成极坐标为⎝⎛⎭⎫5,5π3. 答案:⎝⎛⎭⎫5,5π3(答案不唯一)平面直角坐标系下图形的伸缩变换[典例] (1)在同一平面直角坐标系中,已知伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y .求点A ⎝⎛⎭⎫13,-2经过φ变换所得的点A ′的坐标.(2)求直线l :y =6x 经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得到的直线l ′的方程.[解] (1)设A ′(x ′,y ′),由伸缩变换φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,得到⎩⎪⎨⎪⎧x ′=3x ,y ′=12y ,由于点A 的坐标为⎝⎛⎭⎫13,-2, 于是x ′=3×13=1,y ′=12×(-2)=-1,∴A ′(1,-1)为所求.(2)设直线l ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入y =6x 得2y ′=6×⎝⎛⎭⎫13x ′,∴y ′=x ′,即y =x 为所求. [方法技巧]伸缩变换的解题方法平面上的曲线y =f (x )在变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下得到的方程的求法是将⎩⎨⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝⎛⎭⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程. [即时演练]1.求椭圆x 24+y 2=1,经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y 后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.2.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入曲线y ′=3sin ⎝⎛⎭⎫x ′+π6得3y =3sin ⎝⎛⎭⎫2x +π6, 整理得y =sin ⎝⎛⎭⎫2x +π6,故f (x )=sin ⎝⎛⎭⎫2x +π6. 所以y =f (x )的最小正周期为2π2=π.极坐标与直角坐标的互化[典例] 在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π4-θ=22,直线与曲线C :ρsin 2θ=8cos θ相交于不同的两点A ,B ,求|AB |的值.[解] l :ρsin ⎝⎛⎭⎫π4-θ=22⇒22ρcos θ-22ρsin θ=22⇒x -y -1=0,C 的直角坐标方程是y 2=8x .由⎩⎪⎨⎪⎧y 2=8x ,x -y -1=0, 可得x 2-10x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=10,x 1x 2=1, 所以AB 的长为1+1·102-4=8 3. [方法技巧]1.极坐标与直角坐标互化公式的3个前提条件 (1)取直角坐标系的原点为极点. (2)以x 轴的非负半轴为极轴. (3)两种坐标系规定相同的长度单位. 2.直角坐标化为极坐标的注意点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.[即时演练]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1(0≤θ<2π),M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解:(1)由ρcos ⎝⎛⎭⎫θ-π3=1,得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y -2=0.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N⎝⎛⎭⎫233,π2.(2)M 点的直角坐标为(2,0).N 点的直角坐标为⎝⎛⎭⎫0,233. 所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6. 所以直线OP 的极坐标方程为θ=π6(ρ∈R).极坐标方程的应用[典例] 已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x轴的正半轴为极轴建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.[解] (1)C 1:ρsin ⎝⎛⎭⎫θ+π6=32,C 2:ρ2=61+2sin 2θ. (2)∵M (3,0),N (0,1), ∴P⎝⎛⎭⎫32,12,∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32得ρ1=1,P ⎝⎛⎭⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝⎛⎭⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1. [方法技巧]曲线的极坐标方程的求解策略在已知极坐标方程求曲线交点、距离、线段长等几何问题时,如果不能直接用极坐标解决,或用极坐标解决较麻烦,可将极坐标方程转化为直角坐标方程解决.[即时演练]在直角坐标系xOy 中,圆C 的普通方程为(x -1)2+y 2=1.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+3cos θ)=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)因为圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程是ρ=2cos θ. (2)设(ρ1,θ1)为点P 的极坐标, 则有⎩⎪⎨⎪⎧ ρ1=2cos θ1,θ1=π3,解得⎩⎪⎨⎪⎧ρ1=1,θ1=π3. 设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧ ρ2(sin θ2+3cos θ2)=33,θ2=π3,解得⎩⎪⎨⎪⎧ρ2=3,θ2=π3. 由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2,即线段PQ 的长为2.1.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.2.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2016·北京高考改编)在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,求|AB |.解:∵x =ρcos θ,y =ρsin θ,∴直线的直角坐标方程为x -3y -1=0. ∵ρ=2cos θ,∴ρ2(sin 2θ+cos 2θ)=2ρcos θ, ∴x 2+y 2=2x .∴圆的直角坐标方程为(x -1)2+y 2=1. ∵圆心(1,0)在直线x -3y -1=0上, ∴AB 为圆的直径,∴|AB |=2.4.(2015·安徽高考改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)距离的最大值.解:圆ρ=8sin θ即ρ2=8ρsin θ, 化为直角坐标方程为x 2+(y -4)2=16, 直线 θ=π3即tan θ=3,化为直角坐标方程为3x -y =0, 圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.5.(2015·北京高考改编)在极坐标系中,求点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离. 解:点⎝⎛⎭⎫2,π3的直角坐标为()1,3, 直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0. 所以点(1,3)到直线的距离d =|1+3×3-6|12+(3)2=22=1.1.在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,求实数a 的值.解:直线的极坐标方程化为直角坐标方程为x -y +a =0, 曲线的极坐标方程化为直角坐标方程为(x -1)2+(y +2)2=5, 所以圆心C 的坐标为(1,-2),半径r =5, 所以圆心C 到直线的距离为 |1+2+a |2= r 2-⎝⎛⎭⎫|AB |22=2,解得a =-5或a =-1. 故实数a 的值为-5或-1.2.在极坐标系中,求直线ρcos ⎝⎛⎭⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝⎛⎭⎫θ+π6=1化为直角坐标方程为3x -y =2, 即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y , 把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即x 2-23x +3=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1), 化为极坐标为⎝⎛⎭⎫2,π6. 3.(2018·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2,所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22. 4.已知曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设l 1:θ=π6,l 2:θ=π3,若l 1,l 2与曲线C 相交于异于原点的两点 A ,B ,求△AOB 的面积.解:(1)∵曲线C 的参数方程为⎩⎨⎧x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,代入并化简得ρ=4cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=4cos θ+2sin θ. (2)在极坐标系中,C :ρ=4cos θ+2sin θ, ∴由⎩⎪⎨⎪⎧θ=π6,ρ=4cos θ+2sin θ,得|OA |=23+1,同理:|OB |=2+ 3. 又∵∠AOB =π6,∴S △AOB =12|OA |·|OB |sin ∠AOB =8+534,即△AOB 的面积为8+534.5.在坐标系中,曲线C :ρ=2a cos θ(a >0),直线l :ρcos θ-π3=32,C 与l 有且只有一个公共点.(1)求a 的值;(2)若原点O 为极点,A ,B 为曲线C 上两点,且∠AOB =π3,求|OA |+|OB |的最大值.解:(1)由已知在直角坐标系中,C :x 2+y 2-2ax =0⇒(x -a )2+y 2=a 2(a >0);l :x +3y -3=0.因为C 与l 只有一个公共点,所以l 与C 相切, 即|a -3|2=a ,则a =1.(2)设A (ρ1,θ),则B ⎝⎛⎭⎫ρ2,θ+π3, ∴|OA |+|OB |=ρ1+ρ2=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6. 所以,当θ=-π6时,(|OA |+|OB |)max =2 3.6.在平面直角坐标系xOy 中,直线C 1:3x +y -4=0,曲线C 2:x 2+(y -1)2=1,以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若曲线C 3的极坐标方程为θ=α⎝⎛⎭⎫ρ>0,0<α<π2,且曲线C 3分别交C 1,C 2于点A ,B ,求|OB ||OA |的最大值.解:(1)∵x =ρcos θ,y =ρsin θ,∴C 1:3ρcos θ+ρsin θ-4=0,C 2:ρ=2sin θ. (2)曲线C 3为θ=α⎝⎛⎭⎫ρ>0,0<α<π2, 设A (ρ1,α),B (ρ2,α),ρ1=43cos α+sin α,ρ2=2sin α,则|OB ||OA |=ρ2ρ1=14×2sin α(3cos α+sin α) =142sin2α-π6+1, ∴当α=π3时,⎝⎛⎭⎫|OB | |OA |max =34. 7.平面直角坐标系xOy 中,曲线C 1的方程为x 23+y 2=1,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ+π3,射线OM 的极坐标方程为θ=α0(ρ≥0).(1)写出曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线OM 平分曲线C 2,且与曲线C 1交于点A ,曲线C 1上的点满足∠AOB =π2,求|AB |.解:(1)曲线C 1的极坐标方程为ρ2=31+2sin 2θ,曲线C 2的直角坐标方程为(x -3)2+(y -1)2=4. (2)曲线C 2是圆心为(3,1),半径为2的圆,∴射线OM的极坐标方程为θ=π6(ρ≥0),代入ρ2=31+2sin2θ,可得ρ2A=2.又∠AOB=π2,∴ρ2B=65,∴|AB|=|OA|2+|OB|2=ρ2A+ρ2B=455.8.已知在一个极坐标系中点C的极坐标为⎝⎛⎭⎫2,π3.(1)求出以C为圆心,半径长为2的圆的极坐标方程(写出解题过程)并画出图形;(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-3),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.解:(1)作出图形如图所示,设圆C上任意一点A(ρ,θ),则∠AOC=θ-π3或π3-θ.由余弦定理得,4+ρ2-4ρcosθ-π3=4,∴圆C的极坐标方程为ρ=4cos⎝⎛⎭⎫θ-π3.(2)在直角坐标系中,点C的坐标为(1,3),可设圆C上任意一点P(1+2cos α,3+2sin α),设M(x,y),由Q(5,-3),M是线段PQ的中点,得点M的轨迹的参数方程为⎩⎨⎧x=6+2cos α2,y=2sin α2(α为参数),即⎩⎪⎨⎪⎧x=3+cos α,y=sin α(α为参数),∴点M的轨迹的普通方程为(x-3)2+y2=1.第2课参数方程[过双基]1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C上任意一点P的坐标x,y是某个变数t的函数:⎩⎪⎨⎪⎧x=f(t),y=g(t),并且对于t的每一个允许值,由函数式⎩⎪⎨⎪⎧x=f(t),y=g(t)所确定的点P(x,y)都在曲线C上,那么方程⎩⎪⎨⎪⎧x=f(t),y=g(t)叫做这条曲线的参数方程,变数t叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).[小题速通]1.参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t (t 为参数)与极坐标方程ρ=sin θ所表示的图形分别是________.解析:将参数方程⎩⎪⎨⎪⎧x =2-t ,y =-1-2t 消去参数t ,得2x -y -5=0,对应图形为直线.由ρ=sin θ,得ρ2=ρsin θ,即x 2+y 2=y , 即x 2+⎝⎛⎭⎫y -122=14,对应图形为圆. 答案:直线、圆2.曲线⎩⎪⎨⎪⎧x =sin θ,y =sin 2θ(θ为参数)与直线y =x +2的交点坐标为________.解析:曲线的直角坐标方程为y =x 2.将其与直线方程联立得⎩⎪⎨⎪⎧y =x 2,y =x +2,∴x 2-x -2=0,∴x=-1或x =2.由x =sin θ知,x =2不合题意.∴x =-1,y =1,∴交点坐标为(-1,1).答案:(-1,1)3.设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为________.解析:∵曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),∴(x -2)2+(y +1)2=9, ∴圆心(2,-1)到直线l 的距离 d =|2+3+2|1+9=710=71010.又∵71010<3,141010>3,∴有2个点. 答案:24.参数方程⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数)化为普通方程为________.解析:∵x =2t 21+t 2,y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x .又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2), ∴x ∈[0,2),∴所求的普通方程为3x +y -4=0(x ∈[0,2)). 答案:3x +y -4=0(x ∈[0,2))[清易错]1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.1.直线y =x -1上的点到曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =1+sin θ上的点的最近距离是________.解析:由⎩⎪⎨⎪⎧ x =-2+cos θ,y =1+sin θ得⎩⎪⎨⎪⎧cos θ=x +2,sin θ=y -1,∴(x +2)2+(y -1)2=1,∴圆心坐标为(-2,1), 故圆心到直线x -y -1=0的距离d =42=22, ∴直线上的点到圆上的点的最近距离是d -r =22-1. 答案:22-12.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,则切线的倾斜角为________.解析:直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,因为直线与圆相切,则圆心(2,0)到直线的距离为3,从而有 3=|2b -a ·0-4b |a 2+b 2,即3a2+3b 2=4b 2,所以b =±3a ,而直线的倾斜角α的正切值tan α=b a ,所以tan α=±3,因此切线的倾斜角π3或2π3.答案:π3或2π3参数方程与普通方程的互化[典例] 已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t ,(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.[解] (1)椭圆C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l :x -3y +9=0.(2)设P (2cos θ,3sin θ), 则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,点P 到直线l 的距离 d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ=35,cos θ=-45.故P ⎝⎛⎭⎫-85,335.[方法技巧]将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解. [即时演练]将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k21+k2(k 为参数);(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ(θ为参数). 解:(1)两式相除,得k =y 2x ,将其代入x =3k1+k 2,得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2, 化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6).(2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ), 得y 2=2-x .又x =1-sin 2θ∈[0,2], 故所求的普通方程为y 2=2-x ,x ∈[0,2].参数方程[典例] 在平面直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为⎩⎨⎧x =-2+2t ,y =-4+2t(t 为参数),直线l 与曲线C 分别交于M ,N ,若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] 曲线C 的直角坐标方程为y 2=2ax (a >0),将直线l 的参数方程化为⎩⎨⎧x =-2+22t ′,y =-4+22t ′(t ′为参数),代入曲线C 的方程得:12t ′2-(42+2a )t ′+16+4a =0, 则Δ>0,即a >0或a <-4.设交点M ,N 对应的参数分别为t 1′,t 2′, 则t 1′+t 2′=2(42+2a ),t 1′t 2′=2(16+4a ), 若|PM |,|MN |,|PN |成等比数列, 则|t 1′-t 2′|2=|t 1′t 2′|, 解得a =1或a =-4(舍去), 所以满足条件的a =1. [方法技巧](1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数).当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. [即时演练]已知直线l :x +y -1=0与抛物线y =x 2相交于A ,B 两点,求线段AB 的长度和点M (-1,2)到A ,B 两点的距离之积.解:因为直线l 过定点M ,且l 的倾斜角为3π4,所以它的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =2+t sin 3π4(t 为参数),即⎩⎨⎧x =-1-22t ,y =2+22t (t 为参数),把它代入抛物线的方程,得t 2+2t -2=0, 由根与系数的关系得t 1+t 2=-2,t 1·t 2=-2, 由参数t 的几何意义可知|AB |=|t 1-t 2|=10, |MA |·|MB |=|t 1t 2|=2.极坐标、参数方程的综合应用[典例] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 消去参数m 得l 2的普通方程l 2:y =1k (x +2). 设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.[方法技巧]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[即时演练]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρ=4cos θ1-cos 2θ,直线的参数方程是⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α.(α为参数,0≤α<π).(1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于两点A ,B ,且线段AB 的中点为M (2,2),求α. 解:(1)曲线C :ρ=4cos θ1-cos 2θ,即ρsin 2θ=4cos θ,于是有ρ2sin 2θ=4ρcos θ,化为直角坐标方程为y 2=4x .(2)法一: 把x =2+t cos α,y =2+t sin α代入y 2=4x , 得(2+t sin α)2=4(2+t cos α), 即t 2sin 2α+(4sin α-4cos α)t -4=0.由AB 的中点为M (2,2)得t 1+t 2=0,有4sin α-4cos α=0,所以k =tan α=1. 由0≤α<π,得α=π4.法二:设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2⇒(y 1+y 2)(y 1-y 2)=4(x 1-x 2). ∵y 1+y 2=4,∴k 1=tan α=y 1-y 2x 1-x 2=1, 由0≤α<π,得α=π4.1.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为 d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.2.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为 ρ2+12ρcos θ+11=0.(2)法一:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R). 设A ,B 所对应的极径分别为ρ1,ρ2, 将l 的极坐标方程代入C 的极坐标方程得 ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以直线l 的斜率为153或-153. 法二:由直线l 的参数方程⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k , 则直线l 的方程为kx -y =0. 由圆C 的方程(x +6)2+y 2=25知, 圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得 |-6k |1+k 2=25-⎝⎛⎭⎫1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即直线l 的斜率为±153. 3.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0), 其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆. 因为G 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎭⎫32,32.1.(2017·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离 d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45.当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值455.2.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值.解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M -2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0, M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855. 3.在平面直角坐标系xOy 中,C 1的参数方程为⎩⎨⎧x =1-22t ,y =1+22t (t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,C 2的极坐标方程ρ2-2ρcos θ-3=0.(1)说明C 2是哪种曲线,并将C 2的方程化为普通方程;(2)C 1与C 2有两个公共点A ,B ,点P 的极坐标⎝⎛⎭⎫2,π4,求线段AB 的长及定点P 到A ,B 两点的距离之积.解:(1)C 2是圆,C 2的极坐标方程ρ2-2ρcos θ-3=0, 化为普通方程为x 2+y 2-2x -3=0,即(x -1)2+y 2=4. (2)点P 的直角坐标为(1,1),且在直线C 1上,将C 1的参数方程⎩⎨⎧x =1-22t ,y =1+22t (t 为参数)代入x 2+y 2-2x -3=0,得⎝⎛⎭⎫1-22t 2+⎝⎛⎭⎫1+22t 2-2⎝⎛⎭⎫1-22t -3=0,化简得t 2+2t -3=0. 设A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1·t 2=-3, 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =2+12=14,定点P 到A ,B 两点的距离之积|PA |·|PB |=|t 1t 2|=3.4.在平面直角坐标系xOy 中,已知圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数),直线l的参数方程为⎩⎪⎨⎪⎧x =5-2t ,y =3-t (t 为参数),定点P (1,1).(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于A ,B 两点,求||PA |-|PB ||的值. 解:(1)依题意得圆C 的一般方程为(x -1)2+y 2=4, 将x =ρcos θ,y =ρsin θ代入上式得ρ2-2ρcos θ-3=0, 所以圆C 的极坐标方程为ρ2-2ρcos θ-3=0.(2)因为定点P (1,1)在直线l 上,所以直线l 的参数方程可表示为⎩⎨⎧x =1-255t ,y =1-55t (t 为参数).代入(x -1)2+y 2=4,得t 2-255t -3=0. 设点A ,B 分别对应的参数为t 1,t 2, 则t 1+t 2=255,t 1t 2=-3. 所以t 1,t 2异号,不妨设t 1>0,t 2<0, 所以|PA |=t 1,|PB |=-t 2, 所以||PA |-|PB ||=|t 1+t 2|=255.5.已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设l 与C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的32倍,得到曲线C 2,设点P 是曲线C 2上的一个动点,求它到直线l 距离的最小值.解:(1)由已知得l 的普通方程为y =3(x -1),C 1的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1解得l 与C 1的交点为A (1,0),B ⎝⎛⎭⎫12,-32,则|AB |=1.(2)由题意,得C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),故点P 的坐标为⎝⎛⎭⎫12cos θ,32sin θ, 从而点P 到直线l 的距离是d =⎪⎪⎪⎪32cos θ-32sin θ-32=342sin ⎝⎛⎭⎫θ-π4+2, 当sin ⎝⎛⎭⎫θ-π4=-1时,d 取得最小值,且最小值为23-64. 6.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t -1,y =t +2(t 为参数).在以原点O 为极点,x轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=31+2cos 2θ.(1)直接写出直线l 的普通方程、曲线C 的直角坐标方程;(2)设曲线C 上的点到直线l 的距离为d ,求d 的取值范围. 解:(1)直线l 的普通方程为x -y +3=0, 曲线C 的直角坐标方程为3x 2+y 2=3. (2)∵曲线C 的直角坐标方程为3x 2+y 2=3, 即x 2+y 23=1, ∴曲线C 上的点的坐标可表示为(cos α,3sin α), ∴d =|cos α-3sin α+3|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫π6-α+32=2sin ⎝⎛⎭⎫π6-α+32.∴d 的最小值为12=22,d 的最大值为52=522.∴22≤d ≤522,即d 的取值范围为⎣⎡⎦⎤22,522.7.平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m,0),且倾斜角为π6,以O 为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 的极坐标方程与直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解:(1)曲线C 的直角坐标方程为:(x -1)2+y 2=1,即x 2+y 2=2x ,即ρ2=2ρcos θ, 所以曲线C 的极坐标方程为ρ=2cos θ.直线l 的参数方程为⎩⎨⎧x =m +32t ,y =12t(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(3m -3)t +m 2-2m =0,所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,解得m =1或m =1+2或m =1- 2.8.已知直线的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 是参数),圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ+π4. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解:(1)∵ρ=4cos ⎝⎛⎭⎫θ+π4=22cos θ-22sin θ, ∴ρ2=22ρcos θ-22ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-22x +22y =0, 即(x -2)2+(y +2)2=4, ∴圆心的直角坐标为(2,-2). (2)直线l 上的点向圆C 引切线,则切线长为⎝⎛⎭⎫22t -22+⎝⎛⎭⎫22t +42+22-4=t 2+8t +48=(t +4)2+32≥42,∴直线l 上的点向圆C 引的切线长的最小值为4 2.。

2017届高三数学(文)一轮复习课件:选4-4-2 参数方程


解析:曲线 C1 的直角坐标方程为 x+y=-2,曲线 C2 的普通方程为 y2=
x+y=-2 x=2 8x,由 2 得 ,所以 C1 与 C2 交点的直角坐标为(2,-4)。 y =8x y=-4
答案:(2,-4)
2.(2016· 榆林模拟)在平面直角坐标系中,已知直线 l 与曲线 C 的参数方程
x=2+1t, 2 解析:(2)把直线 l 的参数方程 y=2+ 3t 2

代入圆 C:x2+y2=16 中,得
1 3 2 2 =16,t2+2( 3+1)t-8=0,设 A,B 两点对应的参数分别为 2+2t + 2 + t 2
t1,t2, 则 t1t2=-8,即|PA|· |PB|=8。
x=acosθ, y=bsinθ θ∈[0,2π)。
二、小题查验 1. 思维辨析(在括号内打“√”或“×”)
x=t+1, (1)参数方程 (t≥1)表示的曲线为直线。( ×) y = 2 - t x=cosθ+m, (2)参数方程 当 m 为参数时表示直线,当 θ 为参数时 y = sin θ - m ,
表示的曲线为圆。(×)
x=-2+tcos30° , (3)直线 (t 为参数)的倾斜角 α 为 30° 。(√ ) y = 1 + t sin150°
x=2cosθ, π (4)参数方程 (θ 为参数且 θ∈0,2 )表示的曲线为椭圆。 y = 5sin θ
(× )
[规律方法]
x=x0+tcosα, 经过点 P(x0,y0),倾斜角为 α 的直线 l 的参数方程为 (t 为 y=y0+tsinα
参数)。若 A,B 为直线 l 上两点,其对应的参数分别为 t1,t2。线段 AB 的中点 t1+t2 为 M, 点 M 所对应的参数为 t0。 注意以下几个常用的结论: (1)t0= 2 ; (2)|PM| |t1+t2| =|t0|= 2 ;(3)|AB|=|t2-t1|;(4)|PA|· |PB|=|t1t2|。

高考数学总复习第一轮复习课件:选修4-4(2)参数方程ppt课件(含答案)

为参数)过椭圆 C:y=2sin φ (φ 为参数)的右顶点,则 a=________. 3 [直线 l 的普通方程为 x-y-a=0,椭圆 C 的普通方程为x92+
y42=1,∴椭圆 C 的右顶点坐标为(3,0),若直线 l 过(3,0),则 3-a=0, ∴a=3.]
解析答案
栏目导航
14
课堂 题型全突破
答案 栏目导航
6
2.常见曲线的参数方程和普通方程
点的轨迹
普通方程
参数方程
直线
y-y0=tan α(x-x0)
xy= =xy00+ +ttcsions
α, α
(t 为参数)

x2+y2=r2
x=_r_c_o_s_θ___, y=__rs_i_n_θ___
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
栏目导航
11
3.直线 l 的参数方程为xy= =12+ -t3,t (t 为参数),则直线 l 的斜率 为________.
-3 [将直线 l 的参数方程化为普通方程为 y-2=-3(x-1),因 此直线 l 的斜率为-3.]
解析答案
栏目导航
12
4.曲线
C
的参数方程为xy= =scions
栏目导航
参数方程与普通方程的互化
1.将下列参数方程化为普通方程.
x=1t , (1)y=1t t2-1
(t 为参数);
x=2+sin2θ, (2)y=-1+cos 2θ (θ 为参数).
15
栏目导航
[解]
(1)∵1t 2+1t
t2-12=1,∴x2+y2=1.
∵t2-1≥0,∴t≥1 或 t≤-1.
又 x=1t ,∴x≠0.

2017届高三数学人教版A版数学(理)高考一轮复习教案:选修4-4 坐标系与参数方程 Word版含答案

选修4-4 坐标系与参数方程 1.坐标系与极坐标 (1)理解坐标系的作用.(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示图形时选择坐标系的意义.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知识点一 极坐标系 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫作极点,自极点O 引一条射线Ox ,Ox 叫作极轴;再选定一个长度单位、一个角度单位及其正方向,这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫作点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 2.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).易误提醒1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标.[自测练习]1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y=sin x 的方程变为________.解析:由⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y .知⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 中得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 3.(2015·高考北京卷)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析:点⎝⎛⎭⎫2,π3的直角坐标为(1,3),直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0,所以点(1,3)到直线的距离d =|1+3×3-6|1+3=1.答案:1知识点二 参数方程 参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫作这条曲线的参数方程,变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程.易误提醒1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价. 2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义,且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.[自测练习]4.在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t ,(t 为参数)的普通方程为________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0.答案:x -y -1=05.在平面直角坐标系xOy 中,过椭圆⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线截椭圆所得的弦长为________. 解析:椭圆的普通方程为x 24+y 23=1,则右焦点的坐标为(1,0).直线的普通方程为x -2y+2=0,过点(1,0)与直线x -2y +2=0平行的直线方程为x -2y -1=0,由⎩⎪⎨⎪⎧x 24+y 23=1,x -2y -1=0,得4x 2-2x -11=0,所以所求的弦长为1+⎝⎛⎭⎫122×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-114=154.答案:154考点一 曲线的极坐标方程|1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.(2016·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2.(1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22.直角坐标化为极坐标的关注点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.考点二 曲线的参数方程|1.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t ,(t 为参数)曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ.(θ为参数)(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值. 解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.2.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ.(θ为参数)直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|.则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.参数方程化为普通方程,主要用“消元法”消参,常用代入法、加减消元法、利用三角恒等式消元等.在参数方程化为普通方程时,要注意保持同解变形.考点三 极坐标方程、参数方程的综合应用|(2015·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎪⎨⎪⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2016·昆明模拟)在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O为极点,以x轴正半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cos θ.(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(2)若曲线C与直线l相交于不同的两点M、N,求|PM|+|PN|的取值范围.解:(1)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴C:x2+y2=4x.(2)直线l的参数方程:⎩⎪⎨⎪⎧x=4+t cos αy=2+t sin α(t为参数),代入x2+y2=4x,得t2+4(sin α+cos α)t+4=0,⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t1+t2=-4(sin α+cos α),t1t2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t1<0,t2<0.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4(sin α+cos α)=42sin⎝⎛⎭⎫α+π4,由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4,∴22<sin⎝⎛⎭⎫α+π4≤1,故|PM|+|PN|的取值范围是(4,4 2 ].33.直线参数方程中参数t几何意义的应用【典例】 已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值.[思维点拨] (1)根据条件写出l 的参数方程及化曲线C 为标准方程. (2)利用t 的几何意义求解|P A |·|PB |的值. [解] (1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0, 设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.[方法点评] 过定点M 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t为参数)该参数t 经常用在直线截圆锥曲线的距离问题中,解题时通常过某定点作一直线与圆锥曲线相交于A ,B 两点,所求问题与定点到A ,B 两点的距离有关.解题时主要应用定点在直线AB 上,利用参数t 的几何意义,结合根与系数的关系进行处理,巧妙求出问题的解.[跟踪练习] (2016·大庆模拟)在平面直角坐标系xOy 中,已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6.在极坐标系(与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的极坐标方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求|P A |+|PB |的值.解:(1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6,y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t ,y =1+12t ,(t 为参数).由ρ=22cos ⎝⎛⎭⎫θ-π4得:ρ=2cos θ+2sin θ, ∴ρ2=2ρcos θ+2ρsin θ,∴x 2+y 2=2x +2y , 故圆C 的直角坐标方程为(x -1)2+(y -1)2=2. (2)把⎩⎨⎧x =12+32t y =1+12t (t 为参数)代入(x -1)2+(y -1)2=2得t 2-32t -74=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=32,t 1t 2=-74, ∴|P A |+|PB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=312.A 组 考点能力演练1.(1)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程; (2)化曲线的极坐标方程ρ=8sin θ为直角坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2,得ρ2cos 2 θ+ρ2sin 2 θ=r 2,ρ2(cos 2 θ+sin 2 θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).(2)法一:把ρ=x 2+y 2,sin θ=yρ代入ρ=8sin θ,得x 2+y 2=8·y x 2+y 2,即x 2+y 2-8y =0.法二:方程两边同时乘以ρ,得ρ2=8ρsin θ,即x 2+y 2-8y =0.2.(2016·济宁模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2kρcos θ-2kρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0,即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝⎛⎭⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4,∴直线l 的直角坐标方程为x -y +42=0,∴⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |,两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3, 解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 3.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2 θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值及此时P 点的直角坐标.解:(1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin (θ+60°), 当θ=30°时,|PQ |+|QR |取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.4.(2016·长春模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点C 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆C 的半径为4.(1)求直线l 的参数方程和圆C 的极坐标方程.(2)试判断直线l 与圆C 的位置关系.解:(1)直线l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-5+t sin π3,(t 为参数),即⎩⎨⎧x =1+12t ,y =-5+32t ,(t为参数).由题知C 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 方程为x 2+(y -4)2=16,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入得,圆C 的极坐标方程为ρ=8sin θ. (2)由题意得,直线l 的普通方程为3x -y -5-3=0,圆心C 到l 的距离为d =|-4-5-3|2=9+32>4,∴直线l 与圆C 相离.5.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ,(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α,(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2 α+cos 2 α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2 α+cos 2 α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2 α∈⎝⎛⎦⎤1289,64. B 组 高考题型专练1.(2015·高考广东卷改编)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ-π4=2得2ρ⎝⎛⎭⎫22sin θ-22cos θ=2,所以y -x =1,故直线l 的直角坐标方程为x -y +1=0,而点A ⎝⎛⎭⎫22,7π4对应的直角坐标为A (2,-2),所以点A (2,-2)到直线l :x -y +1=0的距离为|2+2+1|2=522.2.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2015·高考湖南卷)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t ,(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t ,代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.4.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t ,(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).。

2017年高中数学 第1讲 坐标系 第2节 极坐标系 第2课时 极坐标和直角坐标的互化 北师大版选修4-4


2x-2 2x+2
2y-12=0, 2y-12=0,
① ②
②-①,得y=-x,

把③代入①化简得x2=6,∴x=± 6,
解得xy= =-6,6, 或xy= =-6,6,
∴点C的直角坐标为( 6,- 6)或(- 6, 6).
∴ρ=
6+6=2
3,tan
- θ=
66=-1,
∴θ=74π或θ=34π.
tan θ=-1,θ∈[0,2π),
由于点(-1,1)在第二象限,所以θ=34π,

∴直角坐标(-1,1)化为极坐标为

2,34π.
(2)ρ= - 32+-12=2,tan θ=--13= 33,
由于点(- 3,-1)在第四象限,所以θ=76π,
∴直角坐标(- 3,-1)化为极坐标为2,76π.
化直角坐标为极坐标
分别将下列点的直角坐标化为极坐标(ρ>0, 0≤θ<2π).
(1)(-1,1);(2)(- 3,-1). [思路点拨] 利用互化公式即可,但需注意点所在的象 限. 直角坐标 taρn=θ―=―yxx2→x+≠y02 极坐标
[解题过程] (1)∵ρ= -12+12= 2,
[变式训练] 1.分别把点的极坐标(1,0),(1,-2π), 2,32π,π2,π2化为直角坐标.
解析: 根据点的极坐标化为直角坐标的公式x=ρcos θ, y=ρsin θ计算,得到点(1,0),(1,-2π),2,32π,π2,π2的直 角坐标分别为(1,0),(1,0),(0,-2),0,π2.
坐标平移变换
在直角坐标系中,以点(x0,y0) 为极点,以x轴的正方向为极轴方向建立极坐标系,如图所 示,写出平面上点的直角坐标和极坐标的变换公式(假设极坐 标系和直角坐标系中的长度单位相同).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高考数学一轮复习 坐标系与参数方程 第1讲 坐标系习题 选修4-4A 组 基础巩固一、选择题1.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+y ′2=1,则曲线C 的方程为导学号 25402822( )A .25x 2+9y 2=1 B .9x 2+25y 2=1 C .25x +9y =1 D .x 225+y 29=1 [答案] A2.极坐标方程ρ=cos θ化为直角坐标方程为导学号 25402823( ) A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14[答案] D[解析] 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D.3.极坐标方程ρcos θ=2sin2θ表示的曲线为导学号 25402824( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆[答案] C4.设点M 的直角坐标为(-1,-3),则它的极坐标为导学号 25402825( ) A .(2,π3)B .(2,2π3)C .(2,4π3)D .(2,5π3)[答案] C5.(2015·北京西城一模)在极坐标系中,过点(2,π2)且与极轴平行的直线方程是导学号 25402826( )A .ρ=0B .θ=π2C .ρcos θ=2D .ρsin θ=2[答案] D[解析] 极坐标为(2,π2)的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y =2,其极坐标方程为ρsin θ=2,故选D.6.(2015·北京海淀期末练习)下列极坐标方程表示圆的是导学号 25402827( ) A .ρ=1 B .θ=π2C .ρsin θ=1D .ρ(sin θ+cos θ)=1[答案] A[解析] ρ=1化为直角坐标方程为x 2+y 2=1,表示圆心在原点,半径为1的圆,故A 正确;θ=π2化为直角坐标方程为x =0(y ≥0),表示射线,故B 不正确;ρsin θ=1化为直角坐标方程为y =1,表示直线,故C 不正确;ρ(sin θ+cos θ)=1化为直角坐标方程为x +y =1,表示直线,故D 不正确.二、填空题7.(2015·湖南)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.导学号 25402828[答案] x 2+y 2-2y =0[解析] 两边同乘以ρ,得ρ2=2ρsin θ,即x 2+y 2=2y ,故曲线C 的直角坐标方程为x 2+y 2-2y =0.8.(2015·北京)在极坐标系中,点(2,π3)到直线ρ(cos θ+3sin θ)=6的距离为________.导学号 25402829[答案] 1[解析] 点(2,π3)的直角坐标为(1,3),直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0,所以点(1,3)到直线的距离d =|1+3×3-6|1+3=1.9.(2015·安徽)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.导学号 25402830[答案] 6[解析] 圆ρ=8sin θ即ρ2=8ρsin θ,化为直角坐标方程为x 2+(y -4)2=16,直线θ=π3,则tan θ=3,化为直角坐标方程为3x -y =0,圆心(0,4)到直线的距离为|-4|4=2,所以圆上的点到直线距离的最大值为2+4=6.三、解答题10.(2015·江苏)已知圆C 的极坐标方程为ρ2+22ρsin(θ-π4)-4=0,求圆C 的半径.导学号 25402831[答案]6[解析] 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ(22sin θ-22cos θ)-4=0, 化简,得ρ2+2ρsin θ-2ρcos θ-4=0. 则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6, 所以圆C 的半径为 6.11.(2015·海南中学5月月考)已知曲线C :x 2+y 2=1,将曲线C 上的点按坐标变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得到曲线C ′;以直角坐标系中原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程是ρ(2cos θ+sin θ)=10.导学号 25402832(1)写出曲线C ′和直线l 的普通方程;(2)求曲线C ′上的点M 到直线l 的距离的最大值及此时点M 的坐标. [答案] (1)x 24+y 29=1,2x +y -10=0(2)3 5 M (-85,-95)[解析] (1)C ′:x 24+y 29=1,l :2x +y -10=0.(2)设曲线C ′上的点M (2cos φ,3sin φ),则d =|4cos φ+3sin φ-10|5=φ+φ-10|5.当sin(φ+φ0)=-1时,d 取最大值35,即距离的最大值为35,此时点M 的坐标为(-85,-95).12.(2015·济宁模拟)已知直线l :ρsin(θ-π4)=4和圆C :ρ=2k cos(θ+π4)(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于 2.求实数k 的值并求圆心C 的直角坐标.导学号 25402833[答案] k =-1,C (-22,22) [解析] ∵ρ=2k cos θ-2k sin θ, ∴ρ2=2k ρcos θ-2k ρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0, 即(x -22k )2+(y +22k )2=k 2, ∴圆心的直角坐标为(22k ,-22k ). ∵ρsin θ·22-ρcos θ·22=4, ∴直线l 的直角坐标方程为x -y +42=0, ∴|22k +22k +42|2-|k |=2.即|k +4|=2+|k |, 两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为(-22,22). B 组 能力提升1.(2015·皖北协作区联考)在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为导学号 25402834( )A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)[答案] A[解析] ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2. ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6),故选A. 2.(2015·广东)已知直线l 的极坐标方程为2ρsin(θ-π4)=2,点A 的极坐标为A (22,7π4),则点A 到直线l 的距离为________.导学号 25402835 [答案]522[解析] 由2ρsin(θ-π4)=2得2ρ(22sin θ-22cos θ)=2,所以y -x =1,故直线l 的直角坐标方程为x -y +1=0,而点A (22,7π4)对应的直角坐标为A (2,-2),所以点A (2,-2)到直线l :x -y +1=0的距离为|2+2+1|2=522.3.已知圆C 的极坐标方程为ρ=6cos(θ-π6),若点Q 在圆C 上运动,点P 在OQ 的延长线上,且|OQ |∶|QP |=3∶2,则动点P 的轨迹方程为________.导学号 25402836[答案] ρ=10cos(θ-π6)[解析] 设点P 的极坐标为(ρ,θ).因为点P 在OQ 的延长线上,且|OQ |∶|QP |=3∶2,所以点Q 的坐标为(35ρ,θ),由于点Q 在圆C 上,所以35ρ=6cos(θ-π6),故点P 的轨迹方程为ρ=10cos(θ-π6).4.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.导学号 25402837(1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. [答案] (1)x 2+y 2=4,x 2+y 2-2x -2y -2=0 (2)ρsin(θ+π4)=22[解析] (1)由ρ=2知ρ2=4,所以x 2+y 2=4. 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θsin π4)=2.所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.5.(2015·河北唐山第一中学上学期期中)在直角坐标系xOy 中,直线l 经过点P (-1,0),其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线C 的极坐标方程为ρ2-6ρcos θ+5=0.导学号 25402838(1)若直线l 与曲线C 有公共点,求α的取值范围; (2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围. [答案] (1)[0,π6]∪[5π6,π) (2)[3-22,3+22][解析] (1)将曲线C 的极坐标方程ρ2-6ρcos θ+5=0化为直角坐标方程为x 2+y 2-6x +5=0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数).将⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α代入x 2+y 2-6x +5=0,整理得t 2-8t cos α+12=0.∵直线l 与曲线C 有公共点,∴Δ=64cos 2α-48≥0. ∴cos α≥32或cos α≤-32. ∵α∈[0,π),∴α的取值范围是[0,π6]∪[5π6,π).(2)曲线C 的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,其参数方程为⎩⎪⎨⎪⎧x =3+2cos θ,y =2sin θ(θ为参数).∵M (x ,y )为曲线上任意一点,∴x +y =3+2cos θ+2sin θ=3+22sin(θ+π4),∴x +y 的取值范围为[3-22,3+22].。

相关文档
最新文档