45结构力学
结构力学-习题集(含答案)

《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。
《结构力学》名词解释大全

学习必备欢迎下载名词解释1.计算图形2.刚架3.平面刚架4.板架5.弹性支座6.梁的弯曲要素7.梁的复杂弯曲8.叠加原理9.静定结构10.超静定结构11.几何不变体系12.超静定次数13.力法14.位移法15.矩阵位移法16.三弯矩方程17.杆元18.平面刚架单元19.平面板架单元20.固端弯矩21.结构刚度矩阵22.单元刚度矩阵23.节点未知位移向量24.杆元定位向量25.节点外荷载向量26.节点自由度27.单元自由度28.对称阵29.正定阵30.方阵31.稀疏矩阵32.半带宽33.强迫位移34.乘大数法35.降阶法36.杆元内力37.支反力38.固端力向量39.梁的应变能40.几何非线性问题41.材料非线性问题42.外力功43.比能44.泛函45.余能46.虚位移原理47.结构总位能48.位能驻值原理49.应变能原理50.虚力原理51.余位能驻值原理52.应力能原理53.卡氏第二定理54.最小余能原理55.最小功原理56.形(状)函数57.李兹法58.位移边界条件59.应力边界条件60.平衡方程61.几何方程62.物理方程63.薄板64.薄板的筒形弯曲65.薄板的筒形横弯曲66.薄板的筒形复杂弯曲67.薄板的筒形大挠度弯曲68.刚性板69.柔性板70.薄板小挠度弯曲的基本假定71.屈曲72.稳定平衡73.中性平衡74.最小临界荷载75.中性平衡微分方程76.稳定性方程式77.欧拉(应)力78.临界(应)力79.压杆柔度80.板的极限荷载学习必备欢迎下载81.。
《结构力学习题》含答案解析

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a、b两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ。
8、图示桁架各杆E A相同,结点A和结点B的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。
二、计算题:10、求图示结构铰A两侧截面的相对转角ϕA,EI = 常数。
ql l l/211、求图示静定梁D端的竖向位移∆DV。
EI=常数,a= 2m 。
a a a10kN/m12、求图示结构E点的竖向位移。
EI=常数。
ll l l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D 点的竖向位移。
EI = 常数 。
l/217、求图示刚架横梁中D点的竖向位移。
EI = 常数。
18、求图示刚架中D点的竖向位移。
EI =常数。
qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I= 常数。
ll21、求图示结构B点的竖向位移,EI =常数。
l lﻩ22、图示结构充满水后,求A、B两点的相对水平位移。
结构力学知识点总结

1.关于∞点和∞线的下列四点结论:(1) 每个方向有一个∞点(即该方向各平行线的交点)。
(2) 不同方向上有不同的∞点。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。
3.W>0, 缺少足够约束,体系几何可变。
W=0, 具备成为几何不变体系所要求 的最少约束数目。
W<0, 体系具有多余约束。
4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。
两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。
两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。
三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。
5.二元体规律:在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。
6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。
7.w=s-n ,W=0,但布置不当几何可变。
自由度W >0 时,体系一定是可变的。
但W ≤0仅是体系几何不变的必要条件。
S=0,体系几何不变。
8..轴力FN --拉力为正;剪力FQ--绕隔离体顺时针方向转动者为正;弯矩M--使梁的下侧纤维受拉者为正。
弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。
9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。
10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。
()()Q dM x dF x dx=22()()()QdF x d M x q y dx dx==-FN+d FN F N FQ+dF QF QM M+d Md x dx ,,BAB A BAx NB NA x x x QB QA y x x B AQx F F q dx F F q dx M M F dx=-=-=+⎰⎰⎰11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。
结构力学练习题及答案

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。
( ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。
( )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。
( )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。
( )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( )A .2/M ;B .M ;C .0; D. )2/(EI M 。
2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj.F p /2M2a2a a aa aA F p /2F p /2 F p /2F p F pa a aa F PED3. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。
( )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。
( ) 5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI).三(本大题 5分)对图示体系进行几何组成分析。
A l /2l /2EI 2EIF Pa d c eb fgh iklF P =11j llM /4 3M /4M /43M /43M /4M /4M /8 M /2EIEIM四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。
结构力学思考题

结构⼒学思考题思考题第⼀章⼏何组成分析1-1 体系的⼏何不变性是如何定义的?它和弹性稳定性的区别是什么?1-2 试分析三个组成法则间的异同和内在联系。
1-3 在三刚⽚法则中,当有⼀个或两个或三个虚铰在⽆穷远处时,应如何进⾏体系的⼏何组成分析?1-4 如何对矩形或圆形闭合框架作⼏何组成分析?1-5 在体系的⼏何组成分析中,“多余约束”和“必须约束”的含义是什么?1-6 体系的计算⾃由度、⾃由度和体系的⼏何组成性质之间的关系是什么?1-7 在体系的⼏何组成分析中,约束是否可以重复利⽤?如果可以,其条件是什么?1-8 瞬变体系在静⼒和⼏何⽅⾯有何特点?如何区分瞬变和常变体系?1-9 进⾏平⾯杆件体系的⼏何组成分析时,下图中的体系可以互相替换吗?为什么?第⼆章静定结构内⼒计算2-1 试说明如何⽤叠加法作静定结构的弯矩图并由此作剪⼒图和轴⼒图。
2-2 如何根据内⼒的微分、积分关系作结构的内⼒图并进⾏校核?2-3 ⽐较下图所⽰各简⽀梁的内⼒图的异同。
2-4 何谓基本部分和附属部分?下图所⽰结构中AB杆是否都是基本部分?2-5 ⽐较理想桁架和实际桁架结构的区别?2-6 拱的合理拱轴线的定义是什么?有什么实际应⽤意义?2-7 三铰拱的特点是什么?其主要的参数是哪⼏个?带拉杆三铰拱中拉杆起什么作⽤?2-8 对于在均匀⽔压⼒或竖向雪荷载作⽤下拱的合理轴线能否⽤下式推导?为什么?2-9 总结静定结构的特性,并体会其重要意义。
2-10 如何利⽤零载法(即零荷载)确定体系的⼏何组成性质?2-11 如何从⼏何组成分析⼊⼿,求结构的反⼒和内⼒?2-12 图⽰桁架受荷载作⽤,分别根据结点A和B的平衡条件得AB杆的轴⼒为P和0,为什么会出现这样的⽭盾?2-13 试⽐较各种类型的静定结构的结构特点、受⼒特点和求解⽅法。
2-14 如何根据各类型结构的特点进⾏结构的选型设计?应注意哪些问题?第三章结构位移计算3-1 ⽐较单位位移法和单位荷载法的原理和步骤。
(完整)结构力学(知识点)
章节平面杆件结构按计算简图分类体系的几何组成与静力性的关系概述几何组成分析举例平面体系的几何组成分析几何组成分析中的几个概念平面体系的计算自由度静定梁和静定刚架静定平面刚架单跨静定梁多跨静定梁绪论几何不变体系和几何可变体系结构力学结构力学的研究对象和任务杆件结构的计算简图几何不变体系的简单组成规则静定结构的一般特性虚功原理和结构位移计算静定结构在荷载作用下的位移计算变形体系的虚功原理平面杆件结构位移计算的一般公式概述各种型式的结构受力特征 静定桁架和组合结构静定平面桁架三种简支桁架的比较概述三铰拱的内力计算三铰拱三铰拱的压力线和合理拱轴空间桁架静定组合结构静定结构在支座位移时的位移计算力法对称性的利用用弹性中心法计算无铰拱用力法计算超静定结构在荷载作用下的内力用力法计算超静定结构在支座位移和温度变化时的内力力法基本概念力法的典型方程超静定结构概述静定结构在温度变化时的位移计算算图乘法线性弹性结构的互等定理超静定结构的位移计算超静定结构内力图的校核超静定结构的一般特性概述截面直杆的转角位移方程位移法的基本概念位移法位移法的典型方程用位移法计算超静定结构在荷载作用下的内力用位移法计算超静定结构在支座位移和温度变化时的内力直接利用平衡条件建立位移法方程矩分配法的基本概念力矩分配法用力矩分配法计算连续梁和无结点线位移的刚架无剪力分配法影响线的概念静力法作静定粱的影响线结点荷载作用下粱的影响线静力法作静定桁架的影响线机动法作静定梁的影响线利用影响线求量值影响线移动荷载最不利位置的确定公路、铁路的标准荷载制及换算荷载简支梁的内力包络图和绝对最大弯矩机动法作连续梁的影响线连续梁的内力包络图知识点章编号节编号知识点编号结构及其分类31374结构力学研究对象31375结构力学的任务31376计算简图的定义31477选取计算简图的一般原则31478实际结构的简化31479平面杆件结构按计算简图分类31580几何不变体系和几何可变体系41681平面体系的几何组成分析41682自由度41783约束41784必要约束与多余约束41785实铰与虚铰41786几何组成分析41787体系的实际自由度S与体系的计算自由度W 41888平面体系的计算自由度算法一——刚片系的W 41889平面体系的计算自由度算法二——铰接链杆体系的W 41890体系的几何组成性质与计算自由度之间的关系41891几何不变体系的简单组成规则41992几何可变体系41993体系的几何组成分析及其步骤42094几何组成分析的方法及举例42095体系的几何组成与静力性的关系42196用截面法求指定截面的内力52297内力图的特征52298用区段叠加法作直杆段的弯矩图52299简支斜梁522100多跨静定梁的组成方式和特点523101多跨静定梁内力计算523102静定平面刚架的类型和特点524103求作静定平面刚架的内力图524104求作静定平面刚架的内力图的要点524105速绘静定平面刚架的弯矩图524106静定梁和静定刚架524107拱的分类625108三铰拱各部分名称625109带拉杆的拱625110三铰拱内力符号规定626111学三铰拱支反力的计算626112三铰拱的内力计算公式626113三铰拱的内力图绘制626114三铰拱的受力特点626115合力多边形627116三铰拱的压力线627117三铰拱的合理拱轴627118桁架的计算简图728119平面桁架的分类728120结点法729121结点平衡的特殊情况729122截面法729123结点法与截面法的联合应用729124对称桁架的受力计算729125静定平面桁架729126简支桁架的受力特点730127三种简支桁架的比较730128空间桁架的支座731129空间桁架的几何组成731130空间桁架的计算方法731131组合结构及其受力特点732132静定组合结构内力的计算方法732133静定组合结构732134各种型式的结构受力特征733135静定梁、刚架内力733136静定结构的一般特性734137位移835138计算位移的目的835139实功836140虚功836141刚体(系)的虚功原理836142变形体系的虚功原理836143虚功原理的两种形式836144实际状态837145虚拟状态837146结构位移计算的一般公式837147单位力设置法837148荷载引起的结构位移计算公式838149梁和刚架的位移计算838150桁架的位移计算838151组合结构的位移计算838152图乘法的适用条件839153图乘法原理839154图乘法的几点说明839155静定结构在支座位移时的位移计算840156温变引起的位移计算841157制造误差引起的位移计算841158功的互等定理842159位移互等定理842160反力互等定理842161反力与位移互等定理842162超静定结构和静定杆件结构分类943163超静定次数的确定943164超静定结构概述943165力法计算超静定结构的思路944166力法的基本未知量、基本结构及基本体944167系、典型方程力法的基本概念944168用力法计算一次超静定结构944169两次超静定结构的力法典型方程945170 n次超静定结构的力法典型方程945171力法典型方程中系数和自由项的计算945172结构的最后内力图945173力法解题步骤946174力法计算超静定梁946175力法计算超静定刚架946176力法计算超静定桁架946177力法计算超静定组合结构946178力法计算铰接排架946179力法计算两铰拱946180支座位移时超静定结构的计算947181温度变化时超静定结构的计算947182对称结构948183对称结构的受力特点948184利用对称性——选择对称的基本体系948185利用对称性——采用半结构948186弹性中心949187荷载作用时的计算949188温度变化时的计算949189支座位移时的计算949190超静定结构位移计算的思路950191荷载作用下超静定结构的位移计算950192支座位移时超静定结构的位移计算950193温度变化时超静定结构的位移计算950194平衡条件的校核951195位移条件的校核951196超静定结构的一般特性952197位移法的基本思路1053198杆端弯矩及杆端位移的正负号规定1054199单跨超静定梁的形常数和载常数1054200转角位移方程1054201位移法的基本未知量1055202位移法的基本结构1055203位移法方程1055204位移法典型方程的建立1056205位移法典型方程中系数及自由项的计算1056206方法位移法计算步骤1057207位移法算例1057208支座位移时位移法的计算1058209温度变化时位移法的计算1058210利用结点和截面平衡条件建立位移法方1059211程转动刚度1160212分配系数和传递系数1160213任意荷载作用时单结点结构的力矩分配1160214法力矩分配法1160215用力矩分配法计算连续梁1161216用力矩分配法计算无结点线位移的刚架1161217无剪力分配法的适用范围1162218无剪力分配法计算步骤和举例1162219移动荷载1263220影响线的定义1263221影响线1263222静力法作影响线的步骤1264223简支梁的影响线1264224影响线与内力图的区别1264225伸臂梁的影响线1264226结点荷载1265227结点荷载作用下影响线的作法1265228静力法作静定桁架的影响线1266229机动法及其原理1267230用机动法作影响线1267231集中荷载作用下的量值1268232分布荷载作用下的量值1268233最不利荷载位置1269234单个移动集中荷载的最不利位置1269235可任意布置的均布荷载的最不利位置1269236行列荷载的最不利位置1269237临界荷载位置的判定1269238铁路标准荷载1270239公路标准荷载1270240换算荷载12702411271242127124312722441272245连续梁的最不利荷载分布1273246连续梁的弯矩包络图1273247连续梁的剪力包络图1273248简支梁的内力包络图机动法作连续梁影响线的原理。
结构力学-习题集(含答案)
《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。
一、单选题1.弯矩图肯定发生突变的截面是()。
A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2.图示梁中C截面的弯矩是()。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,()。
A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4.图示桁架a杆的内力是()。
A.2P;B.-2P;C.3P;D.-3P。
5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。
A.四根;B.二根;C.一根;D.零根。
Pal = a P PP66. 图示梁A 点的竖向位移为(向下为正)( )。
A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。
PEI EI A l/l/2227. 静定结构的内力计算与( )。
A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。
8. 图示桁架,零杆的数目为:( )。
A.5;B.10;C.15;D.20。
9. 图示结构的零杆数目为( )。
A.5;B.6;C.7;D.8。
10. 图示两结构及其受力状态,它们的内力符合( )。
A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。
PPll11. 刚结点在结构发生变形时的主要特征是( )。
A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。
结构力学主要知识点归纳
结构力学主要知识点归纳Organized at 3pm on January 25, 2023Only by working hard can we be better结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构;通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点;C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构;B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定;②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定;二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系;B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置;常具体划分为常变体系和瞬变体系;2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目;3、联系:限制运动的装置成为联系或约束体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系;②一个单铰为两个联系;4、计算自由度:)W+-=,m为刚片数,h为单铰束,r为链杆数;h2(3rmA、W>0,表明缺少足够联系,结构为几何可变;B、W=0,没有多余联系;C、W<0,有多余联系,是否为几何不变仍不确定;5、几何不变体系的基本组成规则:A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系;B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系;C、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系;6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰;虚铰在无穷远处的体系分析可见结构力学P20,自行了解;7、静定结构的几何构造为特征为几何不变且无多余联系;三、静定梁与静定钢架1、内力图绘制:A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示内力的数值而绘出的;B 、弯矩图习惯绘在杆件受拉的一侧,而图上可不注明正负号;梁的剪力图和轴力图将正值的竖标绘在基线的上方,同时注明正负号;刚架的剪力图和轴力图将正值的竖标绘在杆件的任意一侧,但必须注明正负号;C 、轴力以拉为正,剪力以绕隔离体顺时针方向转动为正;弯矩以使梁的下侧纤维受拉为正;D 、一般先求出支反力再求内力;2、计算躲跨静定梁的顺序应该是先附属部分,后基本部分;3、静定结构的特征:A 、静力解答唯一性B 、在静定结构中,除荷载外,其他任何原因如温度改变、支座位移、材料收缩、制造误差等均不引起内力;C 、平衡力系的影响:当由平衡力系组成的荷载作用于静定结构的某一本身为几何不变的部分上时,则只有则只有此部分受力,其余部分的反力和内力为零;D 、荷载等效变换的影响:合力相同的各种荷载称为静力等效的荷载;当作用在静定结构的某一本身几何不变部分上的荷载在该部分范围内作等效变换时,则只有该部分的内力发生变化,而其余部分的内力保持不变;四、静定桁架1、桁架结构的特点:只受轴力2、桁架内力分析方法:A 、节点法:所取隔离体只包含一个节点;①L 形节点:当节点上无荷载时,两杆内力皆为0;②T 形节点:当节点无荷载时,第三杆又称单杆必为零,共线两杆内力相等且符号相同; ③X 形节点:当节点无荷载时,共线两杆内力相等且符号相同;④K 形荷载:当节点无荷载时,共线两杆内力相等且符号相同;B 、截面法:所取隔离体不只包括一个节点;①力矩法②投影法五、结构位移计算1、虚功原理:变形体系处于平衡的必要和充分条件是,对于任何虚位移,外力所作虚功总和等于各微段上的内力在其变形上所作的虚功总和,或者简单的说,外力虚功等于变形虚功;2、变形虚功方程:∑⎰∑⎰∑⎰++=ds F Md du F W s N v γϕ外力虚功:∑+∆=c F F W R K K3、单位荷载外力虚功∑+∆•=c F W R K _1单位荷载内力虚功∑⎰∑⎰∑⎰++=ds F d M du F W s N v γϕ______∑⎰∑⎰+=EI ds M M EA ds F F P NP N ____常不考虑剪切影响4、图乘法:一个弯矩图的面积w A 乘以其形心处所对应的另一个直线弯矩图上的竖标c y ,再除以EI;A 、使用条件:①杆件为直线;②EI=常数;③__M 和p M 两个弯矩图中至少有一个是直线图形;B 、注意点:①竖标取自直线图形②w A 和c y 在杆件的同侧乘积取正号,异侧则取负号;5、温度变化,静定结构位移计算tds du t α=,t 为杆件轴心温度变化值tds d t ∆=αϕ,t ∆为杆件两侧温度变化之差; 六、超静定结构计算——力法1、力法:解除超静定结构的多余联系而得到静定的基本结构,以多余未知力作为基本未知量,根据基本体系应与原结构变形相同而建立的位移条件,首先求出其多余未知力,然后由平衡条件即可计算其余反力、内力;2、超静定问题求解思路:A 、超静定问题需综合考虑以下三个方面:①平衡条件;②几何条件;③物理条件;B 、确定超静定次数;C 、确定基本结构及基本体系;3、力法的典型方程以三阶方程组为例方程意义:基本结构在全部多余未知力和荷载共同作用下,在去掉各多余联系处沿各多余未知力方向的位移,应与原结构相应的位移相等;4、力法解题步骤:①确定基本体系;②写出位移条件,力法方程;③作单位弯矩图,荷载弯矩图;④求出系数和自由项;⑤解力法方程;⑥叠加法作弯矩图;5、力法注意事项:A 、对于刚架通常可略去轴力和剪力的影响而只考虑弯矩一项;B 、在荷载作用下,超静定结构的内力只与各杆的刚度相对值有关,而与其刚度绝对值无关;C 、基本结构必须是几何不变的,而不能是几何可变或瞬变的,否则将无法求解;D 、对称性的利用:①对称结构在对称荷载作用下,轴力图和弯矩图是对称的,剪力图是反对称的;②对称结构在反对称荷载作用下,轴力图和弯矩图是反对称的,剪力图是对称的;七、位移法1、位移法以节点位移作为基本未知量,通常不考虑杆件轴向变形;每一根杆件可以看成一根单跨超静定梁;2、为计算方便,杆端弯矩是以对杆端顺时针方向为正对节点说支座则以反时针方向位移,转角以顺时针方向为正,位移以使杆件顺时针转动为正;八、影响线及其应用1、影响线:当一个指向不变的单位集中荷载通常是竖直向下的沿结构位移时,表示某一指定量值变化规律的图形,称为该量值的影响线;绘制影响线时,通常规定正值的竖标绘在基线的上方;2、绘制影响线有两种基本方法:静力法和机动法;静力法就是将荷载F=1放在任意位置,并选定一坐标系,以横坐标x 表示荷载作用点的位置,然后根据平衡条件求出所求量值与荷载位置x 之间的函数关系式,这种关系式称为影响线方程,再根据方程作出影响线图形;机动法作影响线的依据是理论力学的虚位移原理,即刚体体系在力系作用下处于平衡的必要和充分条件是:在任何微小的虚位移中,力系所作的虚功总和为零;欲作某一量值影响线,只需将与该量值相应的联系去掉,并使所得体系沿量值正方向发生单位位移,则由此得到的荷载作用点的竖向位移图即代表该量值的影响线;3、最不利荷载位置使量值S 成为极大的条件是:荷载自该位置无论向左或向右移动微小距离,S 均减小; 荷载左移,0tan >∑i Ri F α荷载右移,0tan <∑i Ri F α使量值S 成为极小的条件是:荷载自该位置无论向左或向右移动微小距离,S 均增大; 荷载左移,0tan <∑i Ri F α荷载右移,0tan >∑i Ri F α注:只有当某个集中荷载恰好作用在影响线的某一个顶点处时才可能出现极值;为减少试算次数,宜事先大致估计最不利荷载位置;为此,应将行列荷载中数值较大且较为密集的部分置于影响线的最大竖标附近,同时注意位于同符号影响线范围内的荷载应尽可能的多;4、简支梁的绝对最大弯矩A 、在移动荷载作用下,可以求出简支梁任一指定截面的最大弯矩;所有截面的最大弯矩中的最大的,称为绝对最大弯矩;B 、求解步骤:①确定使梁中点截面发生最大弯矩的临界荷载Fk 此时可顺便求出此截面的最大弯矩; ②移动荷载组使Fk 和FR 对称于梁的中点,此时应注意检查对梁上荷载是否与求合力时相符,如不符,则应重新计算合力,再行安排直至相符;③最后计算Fk 作用点截面的弯矩,通常即为绝对最大弯矩;。
结构力学试题及答案大题汇总
(a)
(b)
基本体系
M1(m)
6
x1
6
x1
(c)
(d)
36
MP(kN·m)
36
M(kN·m)
30.86
五、解:(1)确定基本体系和基本未知量,如图(a)
—42—
(2 )计算 k11,作 M1 图,如图(a)
结点 C:∑MC=0
k11=3iCA+3iCB+4iCD=3×4EI/8+3×EI/6+4×3EI/6=4EI
)
四、解、1、一次超静定,基本体系和基本未知量,如图(a)
2、列力法方程:δ11•x1+△1P=0 3、 作 M1 图,如图(b);作 MP 图,如图(c) 4、计算δ11、△1P δ11=1/2EI×1/2×6×6×4+1/EI×6×6×6=252/EI △1P=1/EI×6×36×6=1296/EI 5、解方程:X1=-△1P/δ11=-1296/252=-5.14kN 6、作 M 图,如图(d)
eiei2qei2eiei2qlll三图示体系为具有一个多余约束的几何不变体四求解过程如下所示20096mm1基本体系单位弯矩图最终弯矩图4mmx?1???1xx??11111c216????011ei1cx?100271m?mx11五因为结构对称荷载对称因此可取半结构如下计算过程及弯矩图如下图fpfl2fl2pfl16ppfl8fl8mpp000bb106六单位和荷载弯矩图为2060240用图乘可求得8022970???014mmbeipm七基本体系单位与荷载弯矩图如下所示1z1z?1q12iql8dcb4i3iam图m图位移法方程系数及求解结果如下12iprz?r?0r?8i22m?mz?mr??ql8z?ql64i1111p111p111p2ql6425ql6424ql64m图八
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学(一)试题 第 1 页 共 6 页
全国2011年7月高等教育自学考试
结构力学(一)试题
课程代码:02393
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.三个刚片用三个铰两两相联形成无多余约束的几何不变体系的条件是( ) A.三个铰在一条直线上 B.三个铰不在一条直线上 C.三个铰不重叠 D.任何一铰不在无穷远
2.图示体系为( ) A.无多余约束的几何不变体系 B.有多余约束的几何不变体系 C.常变体系 D.瞬变体系
3.图示结构中最大弯矩发生在( ) A.AC 杆的C 端 B.BC 杆的C 端 C.AC 杆的中点 D.BC 杆的中点
4.由于静定结构内力仅由平衡条件决定,故在支座移动作用下静定结构将( ) A.产生内力 B.不产生内力 C.产生内力和位移
D.不产生内力和位移 5.所谓合理拱轴,是指( ) A.抛物线的拱轴
B.悬链线的拱轴
C.各截面弯距恒为零的拱轴
D.各截面弯距较小的拱轴
结构力学(一)试题 第 2 页 共 6 页
6.图示桁架腹杆1的轴力为( ) A.F (压力) B.F (拉力) C.3F (压力) D.1.5F (压力)
7.图示结构用位移法计算时的未知量数目为( ) A.1 B.2 C.3 D.4
8.图示梁的剪力影响线Q k 在A 点的值为( ) A.0 B.0.25 C.-0.75 D.0.75
9.超静定结构在支座移动作用下的内力和位移计算中,各杆的刚度( ) A.均可用绝对值 B.均可用相对值 C.内力计算可用相对值
D.位移计算须用绝对值
10.欲求图示连续梁第②跨中间截面最大正弯矩时,均布活载应布置在( ) A.①跨和②跨 B.①跨和③跨 C.②跨和③跨 D.②跨和④跨
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.固定支座使杆端既不能移动也不能______。
12.图示体系的几何组成为______。
13.图示结构受一对平衡力作用,则其A、B两支座的反力为______。
14.图示三铰刚架D截面的弯矩为______(设内侧受拉为正)。
15.图示桁架中杆a的轴力为______。
结构力学(一)试题第3 页共6 页
16.力的实功是力在其本身引起的位移上所做功,位移与做功的力有关;虚功则表示位移与做功的力之间______。
17.图示结构的超静定次数为______。
18.力法根据______条件建立典型方程。
19.根据对称性,图示对称结构上与对称轴相交截面C的内力之一______为零。
20.图示结构用力矩分配法计算时B结点的不平衡力矩为______。
EI=常数。
三、基本计算题(本大题共3小题,每小题8分,共24分)
21.试绘制图示静定结构的弯矩图,并求C点的水平线位移。
各杆EI为常数。
结构力学(一)试题第4 页共6 页
22.试用位移法计算图示结构,绘制弯矩图。
已知三杆长均为6米,EI为常数。
23.试求图示吊车梁在移动荷载作用下k截面的最大弯距。
已知F1=30kN,F2=36kN。
四、分析计算题(本大题共3小题,每小题12分,共36分)
24.试画出图示静定连续梁的弯矩图。
结构力学(一)试题第5 页共6 页
25.试用力法计算图示结构,绘制弯矩图。
已知三杆长均为l=6m,q=1kN/m,EI为常数。
26.用力矩分配法计算图示结构的杆端弯矩。
EI=常数。
结构力学(一)试题第6 页共6 页。