刚体转动惯量的测定

合集下载

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理

实验讲义补充:1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不变的物体;2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度;它取决于刚体的总质量,质量分布、形状大小和转轴位置3.转动定律:合外力矩=转动惯量×角加速度4.转动惯量叠加:空盘:1阻力矩2阻力矩+砝码外力→J1空盘+被测物体:1阻力矩2阻力矩+砝码外力→J2被测物体:J3=J2-J15.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12)6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮半径,3组砝码质量7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值;8.泡沫垫板9.重力加速度:s^210.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体;11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径求平均值12.实验目的:测量值与理论值对比实验计算补充说明:1.有效数字:质量,故有效数字为3位2.游标卡尺:,读数最后一位肯定为偶数;3.误差&不确定度:(1)理论公式计算的误差:圆盘:J=0.5mR2注意:直接测量的是直径质量m=±;保留4位有效数字um=100%=%半径R=±若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值,取n=6时的,我们处理为0C=,仪器允差,δB=总误差:,ux= m,u rx==%R=±urx=%计算转动惯量的结果表示:J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上.(2)实验测量计算的误差:J=mR(g−Rβ2)β2−β1根据,,对R塔轮半径,m砝码质量,β2和β1求导,J m=R(g−Rβ2)β2−β1J R=mg−2Rβ2β2−β1J β2=−mR2(β2−β1)−mR(g−Rβ2)(β2−β1)^2Jβ1=mR(g−Rβ2)(β2−β1)^2。

转动惯量的测定

转动惯量的测定

转动惯量的测定转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。

刚体转动惯量除了与刚体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。

如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定转轴的转动惯量。

但在工程实践中,我们常碰到大量形状复杂且质量分布不均匀的刚体,理论计算将极为复杂,通常采用实验方法来测定。

转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。

本实验使物体作扭转摆动,由摆动周期及其参数的测定算出物体的转动惯量,利用刚体转动惯量实验仪测定物体的转动惯量。

[实验目的]1、用扭摆测定弹簧的扭摆常数K。

2、用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较。

3、验证平行轴定律。

[实验仪器]转动惯量实验仪、米尺、游标卡尺[实验原理]一、扭摆的简谐运动扭摆的构造如图10-1所示,在垂直轴“1”上装有一根薄片状的螺旋弹簧“2”,用以产生恢复力矩。

在轴上方可以装上各种待测刚体。

垂直轴与支座间装有轴承,摩擦力矩尽可能降低。

为了使垂直轴“1”与水平面垂直,可通过底脚螺丝钉“7”来调节,水平仪“8”用来指示系统调整水平。

将刚体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即=-(1)M Kθ式中,K 为弹簧的扭转常数。

根据转动定律有M I β= (2)式中,I 为刚体绕转轴的转动惯量,β为角加速度。

由(1)与(2)得θβIK -=其中2K I ω=。

忽略轴承的摩擦阻力矩,则有2K Iω= θωθθβ222-=-==I Kdtd此方程表明忽略轴承摩擦阻力的扭摆运动是角简谐振动;角加速度与角位移成正比,且方向相反。

此方程的解为cos()A t θωϕ=+式中,A 为简谐振动的角振幅,ϕ 为初位相,ω为角速度。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告
未来可以进一步研究非均质刚体(如内部质 量分布不均的物体)的转动惯量,探讨其测 量方法和影响因素。
拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法

刚体转动惯量的测定

刚体转动惯量的测定

用扭摆法测定物体转动惯量刚体定轴转动时,具有以下特征:首先是轴上各点始终静止不动。

其次是轴外刚体上的各个质点,尽管到轴的距离(即转动半径)不同,相同的时间内转过的线位移也不同,但转过的角位移却相同,因此只要在刚体上任意选定一点,研究该点绕定轴的转动并以此来描述刚体的定轴转动。

转动惯量是刚体转动时惯量大小的度量,是表明刚体特性的一个物理量。

刚体转动惯量除了与物体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。

如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。

对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定。

一、目的1. 用扭摆测定弹簧的扭转常数和几种不同形状物体的转动惯量和弹簧劲度系数,并与理论值进行比较。

2. 验证转动惯量平行轴定理。

二、原理扭摆的构造见图1所示,在其垂直轴1上装有一根薄 片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装 上各种待测物体。

垂直轴与支座间装有轴承,使摩擦力矩尽 可能降低。

将物体在水平面内转过一角度θ后,在弹簧的恢复力矩 作用下,物体就开始绕垂直轴作往返扭转运动。

根据虎克定 律,弹簧受扭转而产生的恢复力矩M 与所转过的角度成正 比,即θK M -= (1) 式中,K 为弹簧的扭转常数。

根据转动定律 βI M =式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 图 1 IM=β (2) 令IK=2ω,且忽略轴承的摩擦阻力矩,由式(1)与式(2)得 θωθθβ222-=-==I Kdtd上述方程表示扭摆运动具有角简谐振动的特性,即角加速度与角位移成正比,且方向相反。

此方程的解为)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,ϕ为初相位角,ω为角速度。

此谐振动的周期为KIT πωπ22==(3) 利用公式(3)测得扭摆的摆动周期后,在I 和K 中任意一个量已知时即可计算出另一个量。

本实验用一个几何形状有规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到。

大学物理实验实验3 刚体转动惯量的测量

大学物理实验实验3 刚体转动惯量的测量
6
注意事项
① 转动三线摆仪上盘时角度应小于5°,且不可使圆盘晃动。 ② 连续测量摆动50次所需时间共5次,每次之值相差应小于1s。 ③ 放置圆环时,应使环心与下盘中心复合。
思考题
① 若被测物体质心不在OO'轴线上,将产生什么现象?
② 实验中忽略了哪些次要影响因素?理由是什么?
③ 怎么判断刚体作匀减速或加速运动?
星的外形设计上,精确地测定转动惯量,都是十分必要的。
实验目的
① 加深对刚体转动惯量及其物理意义的理解。② 掌握三线摆测转Fra bibliotek惯量的原理和方法。
③ 学习使用转动惯量实验仪测定刚体的转动惯量。
④ 熟练长度、质量和时间测量仪器的使用方法及仪器装置的水平调整技 术。
实验仪器
三线摆仪、钢卷尺、游标卡尺、秒表、气泡水平仪、待测圆环
实验原理
m0 gRr 2 I0 T0 2 4π H
(m m0 ) gRr 2 I T -I 0 2 4π H
三线摆原理
实验内容与步骤
① 调节上盘绕线螺丝使三根线等长(50cm左右);调节底脚螺丝,使上 下盘处于水平状态(水平仪位于下圆盘中心)。 ② 等待三线摆仪静止后,用手轻轻扭转上盘5°左右随即退回原位,使 下盘绕仪器中心轴作小角度扭转摆动(不应伴有晃动)。用秒表测出50 次完全振动的时间t0,重复测量5次求平均值t0,计算出下盘空载时的振 动周期T0。 ③ 将待测圆环放在下盘上,使它们的中心轴重合。再用秒表测出50次完 全振动的时间t,重复测量5次求平均值,算出此时的振动周期T。 ④ 测出圆环质量(m)、内外直径(d、D)及仪器有关参量(m0、R、r 和H等)。因下盘对称悬挂,使三悬点正好连成一个等边三角形。若测得 两悬点间的距离为L,则圆盘的有效半径R(圆心到悬点的距离)等于L/ 。同理,上盘的有效半径r也可测得。 ⑤ 将实验数据填入表2.6。先由式(2.8)推出I0的相对不确定度公式, 算出I0的相对不确定度、绝对不确定度,并写出I0的测量结果。再算出圆 环对中心轴的转动惯量I并与理论值比较,计算出绝对不确定度、相对不 确定度,写出I的测量结果。

刚体转动惯量

实验二刚体转动惯量测量一、实验目的(1)、学习用三线摆测量刚体的转动惯量。

(2)、进一步熟悉基本量具的正确使用。

(3)、验证转动惯量的平行轴定理。

二、实验原理1.转动惯量的测量对于质量分布均匀、形状规则的刚体,其转动惯量可以通过数学方法求出。

例如,均质圆环形刚体通过其轴心的转动惯量为I1=1/8m1(D12+D22)(3-10)式中,m1为圆环的质量;D1、D2分别为圆环的内、外直径。

均质圆柱形刚体通过其轴心的转动惯量为I2=1/8m2D2(3-11)式中,m2为圆柱体的质量;D为圆柱体的直径。

对于形状复杂或质量分布不均匀的刚体,其转动惯量不易用数学方法计算,通常用实验的方法进行测量。

三线摆是通过扭转运动测量转动惯量的一种方法。

如图3.7所示是一个三线摆的机械原理。

将上、下两个圆盘用3条等长的线连接起来,将上圆盘吊起,下圆盘面调节到水平状态,两圆心O1、O2在铅垂线上,3条线的张力相等。

如果给上圆盘一个初始策动角位移,则下圆盘在细线张力和自身重力的作用下将在水平面内做扭转摆动(同时也有垂直升降运动),在转角很小的情况下,下圆盘在水平面内的扭转摆动可以看作是简谐振动。

图3.7机械原理根据机械能守恒定律或转动定律均可推出,下圆盘作周期性扭转运动的周期与其对O1O2轴的转动惯量满足下列关系:I=mgRrT2/42π2H(3-12)式中,I是振动系统(下圆盘和盘上物体)的总转动惯量;m是振动系统的总质量;r、R为上、下线孔到各自圆盘中心的距离;H是上圆盘与下圆盘的中心距离。

由式(3-12)可看出,若保持R、r、H不变,即保持整个系统的几何关系不变,转轴O1O2也不变,而改变振动系统的质量m,则转动惯量也随之改变(相应的振动周期也不同),但它们都满足式(3-12)。

这样,可以先测出下圆盘是空盘时的转动惯量:I0=m0gRrT02/4π2H(3-13)式中,m0、T0表示空盘时下盘的质量和周期,0表示空盘。

恒力矩转动法测刚体转动惯量

恒力矩转动法测刚体转动惯量
恒力矩转动法是用来测量刚体转动惯量的一种常用方法。

在测量过程中,用一个外加
的恒大的力矩(常为电机的电流值与特定的变阻器代替)来使被测物体保持一定的角加速度。

该原理的实现需要有力学环境和电子传感器的支持。

这一测量法的核心原理是把刚体的角动量定义为外加角矩想其轴上的想积,即角速度
与外力矩之比,由此经由合适的测试装置可以近似得到惯量值。

第一步:调整刚体对应的动力装置,提供外力矩的恒定值;
第二步:测量被外加矩所引起的角速度变化;
第三步:用外力矩和测量出的角速度计算出刚体转动惯量。

恒力矩转动法在刚体转动测量中提高了比较精度和测量效率,但是存在一些局限条件,例如刚体只能在恒定的力矩下进行转动,不能够在多种力矩之间切换,因此被测物体不能
太大,而且只是单次转动测量,不适合进行高频或者低频测量。

刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。

二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。

三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。

四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。

五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。

六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。

刚体转动惯量的测定 实验报告

刚体转动惯量的测定实验报告刚体转动惯量的测定实验报告引言:刚体转动惯量是描述刚体旋转惯性的物理量,它是刚体旋转运动中的重要参数。

本实验旨在通过测量不同物体的转动惯量,探究转动惯量与物体形状、质量分布等因素之间的关系。

实验装置与方法:本次实验使用了旋转台、刚体转动惯量测量仪以及一系列不同形状的物体。

首先,将待测物体放置在旋转台上,并使其与旋转轴保持垂直。

然后,通过测量旋转台上的角度变化以及所施加的扭矩,可以确定物体的转动惯量。

实验过程中,我们选择了不同形状的物体,如圆盘、长方体和球体,以便进行比较分析。

实验结果与讨论:在实验中,我们通过测量不同物体的转动惯量,得到了一系列数据。

在进行数据处理时,我们发现转动惯量与物体的形状有着密切的关系。

以圆盘为例,我们可以通过公式I = 1/2 * m * r^2计算其转动惯量,其中m为圆盘的质量,r为半径。

通过实验测量,我们发现计算结果与实际测量值相符合,验证了转动惯量的计算公式的准确性。

此外,我们还发现物体的质量分布对转动惯量的影响。

以长方体为例,我们可以通过公式I = 1/12 * m * (a^2 + b^2)计算其转动惯量,其中m为长方体的质量,a和b为长方体的边长。

通过实验测量,我们发现当长方体的质量分布不均匀时,其转动惯量会发生变化。

这表明物体的质量分布对转动惯量的测量具有重要影响,需要在实验中予以考虑。

此外,我们还对球体进行了转动惯量的测量。

球体的转动惯量可以通过公式I = 2/5 * m * r^2计算,其中m为球体的质量,r为球体的半径。

通过实验测量,我们发现球体的转动惯量与其质量和半径的平方成正比。

这一结果与理论计算相符合,进一步验证了转动惯量的计算公式的准确性。

结论:通过本次实验,我们成功测量了不同物体的转动惯量,并探究了转动惯量与物体形状、质量分布等因素之间的关系。

实验结果表明,转动惯量与物体的形状、质量分布以及质量和半径的平方成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档