刚体转动惯量的测定
刚体转动惯量的测定

1mm 实验2 扭摆法测定物体的转动惯量【实验目的】1.熟悉转动惯量测试仪的使用方法。
2.掌握测试仪常数(弹簧的扭转常数)K 的测定。
3.用扭摆法测定几种不同形状物体的转动惯量,并与理论值进行比较。
【实验仪器】转动惯量测试仪,空心金属圆柱体、实心塑料圆柱体、塑料圆球、细金属杆。
【实验原理】将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即M =-K θ (2-1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2-2)令 LK=2ω 忽略轴承的磨擦阻力矩,由(2-1)、(2-2)得 θωθθβ222-=-==IKdt d 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:2θ=Acos(ωt +φ)式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为 KIT πωπ22==(2-3) 由(2-3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。
若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2-3)即可算出该物体绕转动轴的转动惯量。
理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I O 时,当转轴平行移动距离X 时,则此物体对新轴线的转动惯量变为I O +mx 2。
称为转动惯量的平行轴定理。
【实验内容】1. 测定弹簧的扭转常数,调整测试仪座底脚螺丝,使水平仪的气泡位于中心。
由于弹簧的扭转常数K 值不是固定常数,它与摆动角度略有关系,摆角在90º左右基本相同,在小角度时变小。
刚体转动惯量的测定(共10张PPT)

3、学习用曲线改直的数据处理方法处理数据。 3、学习用曲线改直的数据处理方法处理数据。
00g,h= cm 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 3、学习用曲线改直的数据处理方法处理数据。 保持h、r、x不变改变m(分别取m=10g,15g,20g,25g,30g)重复上述操作,分别测出相同半径下,不同质量的重物下落相同高度所需的时间t,每一 条件下,重复测量三次,将测量数据记入表一。 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。 1、了解转动惯量的物理意义;
00g,h= cm 2、掌握转动惯量的测定方法; 1、了解转动惯量的物理意义; 3、学习用曲线改直的数据处理方法处理数据。
实验内容及操作
• 保持h、r、x不变改变m(分别取 m=10g,15g,20g,25g,30g)重复上述操作,分 别测出相同半径下,不同质量的重物下 落相同高度所需的时间t,每一条件下, 重复测量三次,将测量数据记入表一。
刚体转动惯量的测定
• 实验目的 • 实验仪器 • 实验原理 • 实验内容及操作 • 数据记录与处理
实验目的
1、了解转动惯量的物理意义; 2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数
据。
实验原理
设由塔轮、游码、横杆等组成的转动系统的转动惯量为J,系统受拉
3、学习用曲线改力直的作数据用处理力方矩法处为理数M据T。,阻力矩为Mμ,则有
2、掌握转动惯量的测定方法; 3、学习用曲线改直的数据处理方法处理数据。
1.00 1.50 2.00 2.50 3.00 t(s) r(cm) 3、学习用曲线改直的数据处理方法处理数据。
刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它与刚体的质量、形状大小和转轴的位置有关。
形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。
下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。
实验目的:1、理解并掌握根据转动定律测转动惯量的方法;2、熟悉电子毫秒计的使用。
实验仪器:刚体转动惯量实验仪、通用电脑式毫秒计。
仪器描述:刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。
遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。
塔轮上有五个不同半径(r)的绕线轮。
砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。
实验原理:空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J 表示,则试样的转动惯量J 1 :J 1 = J –J o (1) 由刚体的转动定律可知:T r – M r = J α (2) 其中M r 为摩擦力矩。
而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力1. 测量承物台的转动惯量J o未加试件,未加外力(m=0 , T=0)令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得J o =212212mr mgrααααα--- (6)测出α1 , α2,由(6)式即可得J o 。
2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。
加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8)∴ J =234434mr mgr ααααα--- (9)注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。
刚体转动惯量的测定

刚体转动惯量的测定【实验目的】1. 测定刚体的转动惯量。
2. 验证转动定律及平行移轴定理。
【实验仪器】1.JM-3 智能转动惯量实验仪。
2. 电脑毫秒计。
【实验原理】转动惯量是反映刚体转动惯性大小的物理量,它与刚体的质量及质量对轴的分布有关。
对于几何形状规则,质量分布均匀的物体,可以计算出转动惯量。
但对于几何形状不规则的物体,以及质量分布不均匀的物体,只能用实验方法来测量。
本实验是用转动惯量实验仪和通用电脑式毫秒计来测量几种刚体的转动惯量,并与计算结果加以比较。
转动惯量实验仪,是一架绕竖直轴转动的圆盘支架。
如图一和图二所示。
待测物体可以放 5 6 1. 承物台 2. 遮光细棒 3. 绕线塔轮4. 光电门5. 滑轮6. 砝码图一 刚体转动惯量实验仪 图二 承物台俯视图设转动惯量仪空载(不加任何试件)时的转动惯量为J 0。
我们称它为该系统的本底转动惯量,加试件后该系统的转动惯量用J 1表示,根据转动惯量的叠加原理,该试件的转动惯量J 2为:J 2=J 1-J 0 (1)如何测量J 0、J 1让我们从刚体动力学的理论来加以推导。
一、如果不给该系统加外力矩(即不加重力砝码),该系统在某一个初角速度的启动下转动,此时系统只受摩擦力矩的作用,根据转动定律则有。
-L 2= J 0β1 (2)(2)式中J 0为本底转动惯量,L 2为摩擦力矩,负号是因L 的方向与外力矩的方向相反,β1为角加速度,计算出β1值应为负值。
(即加适当的重力砝码),则该系统的受力分析如图三所示。
mg -T=ma (3) T ·r -L= J 0β2 (4)a=r β2 (5) 图三 示意图 β2是在外力矩与摩擦力矩的共同作用下,系统的角加速度,r 是 塔轮的半径, ⑵、⑶、⑷、⑸、式联立求解得:由于β1本身是负值所以计算时β2-(-β1)=β2+β1,则(6)应该为:同理加试件后,也可用同样的方法测出J 1……,然后代入(1)式减去本底转动惯量J 0即可得到试件的转动惯量。
刚体转动惯量测定实验

四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期
7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
刚体转动惯量测定实验刚体转动惯量的测定刚体转动惯量实验报告刚体转动惯量实验仪刚体转动惯量刚体的转动惯量三线摆测刚体转动惯量刚体转动惯量数据处理测量刚体的转动惯量刚体转动惯量误差分析
工程中常见非均质物体
一.实验目的
1.了解并掌握用“三线摆”测取物体转
动惯量的原理与方法 2.掌握用“等效法”简化并解决实际工
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
r B’
R
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
A
C
B
r l , r max l max
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
d max sin n t , n max dt max
四.实验方法和步骤
(二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量
刚体转动惯量测定

θ=ω0t+1/2βt2
同一次转动过程中,时间分别为t1、t2的角位移可以表示为:
θ1=ω0t1+1/2βt12
(5)
θ2=ω0t2+1/2βt22
(6)
取θ1 =2π, θ2=6π并消去ω0,可以得到:
2 (6t1 2t2 )
t1t2 (t2 t1)
(7)
(二)验证平行轴定理
J=JC+md2
(2)
Mμ—阻力矩
Mμ =Jβμ
(3)
3、将(2)和(3)代入(1)式中,可得:
mfgr+Jβμ=J β 由此可得转动惯量的表达式:
J mf gr (4)
1. 承物台 2. 遮光细棒 3.
4、本实验的刚体转动可认为是匀变速转动,角位移公式:
图二 承物台俯视图
刚体转动惯量测定
1. 学习使用刚体转动惯量实验仪,测定规则物体的转动惯量,
2. 用实验方法验证平行轴定理。
二、实验原理
(一)转动惯量的测定
1、由转动定律可知: M=Jβ
其中: M—合外力矩 J—转动惯量 β—角加速度
2、本仪器转动时受到两个力矩的作用即:
M′+Mμ=Jβ
(1)
其中:M′—动力矩 M′ =Fr ≈mfgr
三、实验内容 (一)测圆环的转动惯量Jx 1. 测承物台的转动惯量J0 2. 测承物台加圆环的转动惯量J 3. 求圆环的转动惯量Jx=J-J0,并
与J理比较求相对误差 (二)验证平行轴定理
1.先将小圆柱放在孔(2,2′)位置, 测J1
2.后将小圆柱放在孔(1,3 ′ )位置, 测J2
3.验证:J2-J1=2mzd2
刚体转动惯量的测定
用扭摆法测定物体转动惯量刚体定轴转动时,具有以下特征:首先是轴上各点始终静止不动。
其次是轴外刚体上的各个质点,尽管到轴的距离(即转动半径)不同,相同的时间内转过的线位移也不同,但转过的角位移却相同,因此只要在刚体上任意选定一点,研究该点绕定轴的转动并以此来描述刚体的定轴转动。
转动惯量是刚体转动时惯量大小的度量,是表明刚体特性的一个物理量。
刚体转动惯量除了与物体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度分布)有关。
如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。
对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定。
一、目的1. 用扭摆测定弹簧的扭转常数和几种不同形状物体的转动惯量和弹簧劲度系数,并与理论值进行比较。
2. 验证转动惯量平行轴定理。
二、原理扭摆的构造见图1所示,在其垂直轴1上装有一根薄 片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装 上各种待测物体。
垂直轴与支座间装有轴承,使摩擦力矩尽 可能降低。
将物体在水平面内转过一角度θ后,在弹簧的恢复力矩 作用下,物体就开始绕垂直轴作往返扭转运动。
根据虎克定 律,弹簧受扭转而产生的恢复力矩M 与所转过的角度成正 比,即θK M -= (1) 式中,K 为弹簧的扭转常数。
根据转动定律 βI M =式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 图 1 IM=β (2) 令IK=2ω,且忽略轴承的摩擦阻力矩,由式(1)与式(2)得 θωθθβ222-=-==I Kdtd上述方程表示扭摆运动具有角简谐振动的特性,即角加速度与角位移成正比,且方向相反。
此方程的解为)cos(ϕωθ+=t A式中,A 为谐振动的角振幅,ϕ为初相位角,ω为角速度。
此谐振动的周期为KIT πωπ22==(3) 利用公式(3)测得扭摆的摆动周期后,在I 和K 中任意一个量已知时即可计算出另一个量。
本实验用一个几何形状有规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到。
刚体转动惯量的测量
刚体转动惯量的测量1. 引言刚体转动惯量是描述刚体绕某一轴旋转时所表现出的惯性特性,它反映了刚体对旋转运动的抵抗能力。
测量刚体转动惯量对于研究物体的旋转运动和确定物体的物理特性具有重要意义。
本文将介绍刚体转动惯量的定义、测量方法以及实验步骤。
2. 刚体转动惯量的定义刚体转动惯量(或称为“转动惯性矩”)是描述刚体绕某一轴旋转时所表现出的抵抗力矩大小的物理量。
它与刚体质量分布和轴线位置相关,可以用数学公式表示为:I=∫r2⋅dm其中,I为刚体相对于旋转轴的转动惯量,r为质点到旋转轴的距离,dm为质点的微小质量。
3. 测量方法3.1 转动定律法利用牛顿第二定律和角加速度与力矩之间的关系,可以通过测定加速度和力矩来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在水平轴上,并使其能够绕该轴自由旋转。
2.在刚体上施加一个垂直于旋转轴的力矩,使刚体产生角加速度。
3.测量施加力矩前后刚体的角加速度,并计算力矩大小。
4.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
3.2 定滑轮法利用滑轮原理,可以通过测量绕定滑轮旋转的物体的线速度、重物块质量以及滑轮半径来计算刚体的转动惯量。
具体步骤如下:1.将待测刚体固定在定滑轮上,并使其能够自由旋转。
2.在滑轮上挂一重物块,将其与刚体通过一根绳子相连。
3.调整重物块的高度,使得刚体开始自由旋转。
4.测量重物块下降的高度和旋转时间,并记录滑轮半径和重物块质量。
5.根据滑轮原理和动能定理,计算出刚体的转动惯量。
4. 实验步骤4.1 转动定律法实验步骤1.准备实验装置:水平轴、刚体、力矩测量仪器等。
2.将刚体固定在水平轴上,并保证其能够自由旋转。
3.在刚体上施加一个垂直于旋转轴的力矩,使其产生角加速度。
4.使用力矩测量仪器测量施加力矩前后的角加速度,并记录下来。
5.根据牛顿第二定律和角加速度与力矩之间的关系,计算出刚体的转动惯量。
4.2 定滑轮法实验步骤1.准备实验装置:定滑轮、刚体、重物块、绳子等。
实验一刚体转动惯量的测量
第二单元实验1 用扭摆法测刚体转动惯量转动惯量是刚体转动时惯性大小的量度。
刚体的转动惯量与刚体的总质量、形状大小和转轴的位置有关。
对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。
但是对于形状较复杂的刚体,应用数学方法计算它的转动惯量非常困难,故大都用实验方法测定。
刚体的转动惯量在机械动平衡方面有着广泛的应用,凡是涉及往复式直线运动与旋转运动的相互转换,都必须借助具有较大转动惯量的“飞轮”才能实现,其中典型的例子是蒸汽机和内燃机。
此外,为了让机械转动更平稳,最简单的方法就是在其转动轴上加上一个形状规则、质量分布均匀,且具有一定转动惯量的飞轮。
因此,学会刚体转动惯量的测定方法,具有重要的实际意义。
【实验目的】1. 了解ZG-2型转动惯量测定仪测刚体转动惯量的原理和方法。
2. 测定弹簧的扭转常数及几种不同形状刚体的转动惯量。
3. 验证刚体转动的平行轴定理。
【实验原理】1. 弹簧的扭转常数及刚体的转动惯量图1 ZG-2转动惯量测定仪将待测物体在水平面内转过一定角度θ后,在弹簧恢复力矩的作用下,物体就开始绕垂直轴作往返扭转运动。
忽略轴承的摩擦阻力矩,根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -=(1)式中K 为弹簧的扭转常数。
根据转动定律βI M =式中I 为物体绕转轴的转动惯量,β为角加速度,由此可得θβIK -= (2)令ω2=IK,由(2)式得 -=-==θθβI Kdtd 22ω2θ上述微分方程表示转动惯量仪运动具有角谐振动的特性,即角加速度β与角位移θ成正比,并且方向相反。
此微分方程的解为:)cos(ϕωθ+=t A式中θ为角位移,A为谐振动的角振幅, ϕ为初相位角,ω为圆频率。
此谐振动的周期为KI T πωπ22==则 224T I K π= (3)根据(3)式,只要测得转动惯量仪的摆动周期T ,在I 和K 中任何一个量已知时就可计算出另一个量。
刚体转动惯量的测定 一、实验目的
一、实验目的:
1.学习测量刚体转动惯量的方法 2.学习用作图法处理数据 3.观测刚体转动惯量与质量分布的关系
二、实验仪器:
刚体转动惯量实验仪,通用电脑式毫秒计,铝环,铝 盘,牵引砝码等。
三、实验原理:
1. 基本概念 1)刚体 在任何情况下形状和大小都不 发生变化的物体称为刚体。
2)刚体的定轴转动 刚体的各质元在运动中都绕一 固定轴作圆周运动,称刚体作 定轴转动。 3)刚体的对某转轴的转动惯量(J)
2
上两式联立,得系统匀加速转动时的角加速度:
2 [( K1 1)t 2 ( K 2 1)t 2 ) 2 2 t1 t 2 t 2 t1
当绳子一端的砝码m1落地,转台在摩擦力矩作用下, 做匀减速转动。同理:可以求出匀减速转动的角加速 度
( K 2 1)t1 ] 2 [( K1 1)t 2 2 2 t1 t 2 t 2 t1
z O θ x
2. 刚体定轴转动定律 : M z J z
1 2 J mr 2
3 转动惯量对同轴叠加原理:
空实验台的转动体系对转轴的转动惯量记为J0 。本实 验的待测物体为圆环环、圆盘,要测其对中心轴的转 动惯量Jx,可以将其放在载物台上。这时转动体系的 转动惯量记为J,J =J 0 + Jx , Jx = J - J0
rj
z
mj
o O
ri
mi
rij
θ
x
刚体的对某转轴的转动惯量是刚体对该转轴保持 静止或匀速转动状态的量度。 刚体受到的对某转轴的力矩是改变刚体对该转轴 转动状态原因。
4)决定刚体转动惯量(J)大小的因素 A. 刚体的质量,B. 转轴的位置,C. 刚体质量的分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
三 线 摆
水准仪
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
光电门
数显计时计数毫秒仪
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
小圆柱
圆环
安徽三联学院基础实验教学中心
3、验证转动惯量的平行轴定理。
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
r
B
O1
以初始静止平衡状态为重力势能零点,当下
圆盘绕轴扭转最大角位移为 时,0 圆盘重心位 置升高 。h此时有重力势能
EP m0gh
h
A A
C O2
0
C O2
R
当下圆盘重新回到平衡位置,重心降到最低
O1
0 cos
2
T0
t
角速度为
d
dt
20
T0
sin
2
T0
t
h
A A
C O2
0
C O2
R
则经过平衡位置时的最大角速度为
0
2
T0
0,(2)
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
r
B
O1
h
惯量为
I盘+圆柱 =
m0
2m2
12 2H
gab
Tx
2
=I
0
2I x,(7)
根据平行轴定理,距离中心为x的2个对称小圆柱对中心
转轴的转动惯量为
Ix
1 8
m2 D22
m2 x 2,(8)
由式(7)、(8),可
得
m0
2m2
12 2H
gab
Tx2 =I0
1 8
m2 D22
实验原理及仪器
大学物理实验
刚体转动惯量的测定
r 由式(1)、(2)、(3),可得
B
O1
h
A A
C O2
0
C O2
R
m0 gh
1 2
h Rr02
2H
I
2
00
m0 g
Rr02
2H
=
1 2
I0
2
T0
0
2
0
2
T0
0
I0=
2、下圆盘水平调节。调整悬线长 度,使下圆盘处于水平状态。
大学物理实验
刚体转动惯量的测定
悬线调 节螺丝
底座水平调节螺丝
安徽三联学院基础实验教学中心
实验内容
大学物理实验
刚体转动惯量的测定
3、光电门调节。
(1)首先使下圆盘静止,然后轻 轻扭动上圆盘,带动下圆盘摆动。 注意使摆动角度小于5度,不允许锥 形摆。
2m2 x 2,(9)
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
由式(9),可以看出Tx2和 之x2 间存在线性关系。
因此,我们可以通过验证这种线性关系是否存在,来验证 平行轴定理是否成立。
引入参数
=
Tx 2 x2
理论
=
24m2 2 H
m0 2m2 g
大学物理实验
刚体转动惯量的测定
安徽三联学院基础实验教学中心
实验内容
大学物理实验
刚体转动惯量的测定
1、三线摆调节 2、转动惯量的测定
安徽三联学院基础实验教学中心
实验内容
一、三线摆调节
水准仪
1、上圆盘水平调节。将水准仪置 于上圆盘上靠近中心位置,调整底 座上的三个水平调节螺丝,使上圆 盘处于水平状态。
R2 r2 2Rr cos0
2
h
2Rr
1
cos0
4Rr
sin2
0 2
BC BC BC BC
0很小时,有
sin
0 2
0 。 2
h
Rr02 2H
,(3)
l很长时,有BC BC 2H
安徽三联学院基础实验教学中心
A A
C O2
0
C O2
R
如图,有
h BC BC BC 2 BC2
BC BC
BC 2 AB2 AC 2 l2 R r2
BC2 AB2 AC2 l2
点,此时有最大角速度 ,重0 力势能被全部转化为动能,有EK1 2I
2
00
根据机械能守恒,则有
EP
EK
m0 gh
1 2
I002,(1)
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
r
由于扭转角 很0小,摆动可以看作是简谐振
动,则圆盘的角位移与时间的关系是
B
安徽三联学院基础实验教学中心
目录
大学物理实验
刚体转动惯量的测定
实验目的 实验原理及仪器 实验内容 数据处理 思考题 注意事项
安徽三联学院基础实验教学中心
实验目的
大学物理实验
刚体转动惯量的测定
1、了解转动惯量的定义和性质。 2、掌握用三线摆测量圆盘和圆环绕中心对称轴
的转动惯量。
m0 gRr
4 2H
T02
m0 gab
12 2H
T02,(4)
其中,r 3 a ,R 3 b 。
3
3
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
下圆盘对中心转轴的转动惯量为
I0=
m0 gRr
4 2H
T02
m0gab
12 2H
T02,(4)
下圆盘加圆环对中心转轴的转动惯量为
大学物理实验
刚体转动惯量的测定
刚体转动惯量的测定
主讲教师: 陶灵平
安徽三联学院基础实验教学中心
引言
大学物理实验
刚体转动惯量的测定
转动惯量是表征刚体转动特性的物理量,是刚体转动惯性大小的量 度,它与刚体质量的大小、转轴的位置和质量对于转轴的分布等有关。
对于形状简单的刚体,可以通过数学方法计算出它绕特定转轴的转 动惯量。但对于形状复杂的刚体,用数学方法计算它的转动惯量就非 常困难,有时甚至不可能,所以常用实验方法测定。因此,学会测定 刚体转动惯量的方法,具有实用意义。
I盘+环 =
m0
m1 gRr
4 2H
T12
m0 m1 gab
12 2H
T12,(5)
圆环对中心转轴的转动惯量为
I1
=
gab
12 2H
m0
m1 T12
m0T02 ,(6)
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
距离中心为x的2个对称小圆柱加圆盘对中心转轴的转动
实验原理及仪器
游标卡尺
量爪
固定螺丝
主尺
大学物理实验
刚体转动惯量的测定
量尺
量刃
游标
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
游标卡尺读数=主尺读数+游标读数
安徽三联学院基础实验教学中心
实验原理及仪器
大学物理实验
刚体转动惯量的测定
安徽三联学院基础实验教学中心
实验原理及仪器