四年级(新课标)数学怎样找等量关系(教学)PPT课件

合集下载

北师大版四年级数学下册第五单元 认识方程第3课时 等量关系

北师大版四年级数学下册第五单元  认识方程第3课时  等量关系

请你表示出妹妹的身高与姚明、笑笑身高的关系。
画图表示:
妹妹
姚明
妹妹
笑笑
妹妹 妹妹
20厘米
妹妹
请你表示出妹妹的身高与姚明、笑笑身高的关系。
用式子表示:
妹妹身高×2=姚明身高 妹妹身高+20厘米=笑笑身高
妹妹
你还能找出其他的等量关系吗?
笑笑和淘气还找出了这样的等量关系,你能看懂吗?
妹妹
找等量关系时,要注意题目中数学信 息间的一一对应关系和相互之间的联系。
义务教育北师大版四年级下册
第五单元 认识方程
第 3 课时 等量关系
情境导入
你知道这是什么吗?
天平平衡,说明天平两边质量相等。
天平不平衡,说明天平两边质量不相等。
探究新知
说一只1只鸭鸭鸡 这就是等量关系。
1只鹅的 质量相当 于2只鸭 和1只鸡 的质量。
小女孩的年龄×4=36岁
4.结合下列情境说说数量间的等量关系。 科技书的本数+500本=1200本
(课本第65页第5题)
5.生活中有很多等量关系,找一找,说一说。
课堂总结
通过这节课的学习活动,你有什么收获?
等量关系是指数量之间具有的相等关系。 寻找等量关系的方法有很多,画图是最有效、 最直观的方法。
2.请你表示下列数量间的等量关系。
15.6元 1本数学故事的价格×3=15.6元
(课本第65页第3题)
3.长方形的长、宽、周长、面积分别用a, b, C, S 表示,你能写出哪些等量关系?
C=(a+b)×2 S= a×b
(答案不唯一)
(课本第65页第4题)
4.结合下列情境说说数量间的等量关系。
练一练
(课本第65页第1题)

数学方程找等量关系式的几种方法

数学方程找等量关系式的几种方法

找等量关系式的几种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?根据题意画出线段图:780×5 3XX6420公顷从图中我们可以看出等量关系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这种方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后根据公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225。

3.抓住关键字词,根据字词的提示找等量关系。

怎样找等量关系

怎样找等量关系

怎样找等量关系列方程1. 根据常见的数量关系找等量关系。

同学们,在解决有关整数或小数的实际问题时,已经掌握了一些常见的数量关系,如速度X时间=路程,单价X数量=总价等,根据这些数量关系就可直接写出等量关系式。

例 1. 一辆汽车每小时行驶56 千米,几小时可行驶336 千米?分析与解:根据“速度X时间=路程”可得等量关系:每小时行驶的路程X所需要的时间=行驶的路程,或行驶的路程十所需要的时间=每小时行驶的路程。

设汽车x小时可行驶336千米,可列万程56x= 336,或336—x= 56,解得x = 6。

2. 根据图形的计算公式找等量关系。

我们知道平面图形的周长和面积计算公式,如长方形的面积=长乂宽,正方形的周长=边长X 4,平行四边形的面积=底乂高等。

这些图形的计算公式为我们提供了等量关系,需要注意的是列方程时。

一般要把含有未知数的量放在等式的左边。

例 2. 一个平行四边形的面积是100平方厘米,它的底是25厘米,高是多少厘米?分析与解:平行四边形面积的计算公式:“平行四边形的面积=底乂高”是题中的等量关系。

设高是x 厘米,可列方程25x= 100,解得x= 4。

3. 根据关键词语找等量关系。

在实际问题的叙述中经常会出现“一共”“比……多” “比……少” “几倍”以及“和、差、积、商”等词语,我们可以抓住这些关键的词语来找等量关系。

例 3. 学校开展植树活动, 五年级植树80 棵,比四年级多植树26棵,四年级植树多少棵?分析与解:根据五年级比四年级多植树26棵,可以找出这样的等量关系:四年级植树的棵数+ 26=五年级植树的棵数。

设四年级植树x棵,可列方程x+ 26= 80。

解得x= 54。

4. 根据事情发展的经过找等量关系。

实际问题都有个发展顺序,我们可以根据事情发展的经过来找等量关系。

例 4. 学校食堂原来有一堆煤,用去3.6 吨后,还剩 4.8 吨。

这堆煤原来有多少吨?分析与解:根据事情发展的经过可以找出等量关系:食堂原来的煤-用去的煤=还剩的煤。

怎样找等量关系

怎样找等量关系

怎样找等量关系同学们在列方程解应用题时,总感觉方程比较难列.其实列方程解应用题的关键是找出等量关系,找出等量关系,方程也就可以列出来了.那么怎么找等量关系呢?(1)抓住数学术语找等量关系应用题中的数量关系:一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程,例如:“学校开展植树活动,五年级植树50棵,比四年级植树棵数的2倍少4棵,四年级植树多少棵?”这道题的关键词是“比……少”,从这里可以找出这样的等量关系:四年级植树棵数的2倍减去4等于五年级植树的棵数,由此列出方程2X-4=50.(2)根据常见的数量关系找等量关系常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程……,在解题时,可以根据这些数量关系去找等量关系.例如:“某款式的服装,零售价为36元1套,现有216元,问一共可以买多少套衣服?”根据“单价×数量=总价”的数量关系,可以列出方程36X=216.(3)根据常用的计算公式找等量关系常用的计算公式有:长方形面积=长×宽;可以根据计算公式找等量关系.例如:“一个长方形的面积是19平方米,它的长是4米,那么宽是多少米?”根据长方形面积的计算公式“长×宽=面积”,可列出方程4X=19.(4)根据文字关系式找等量关系例如:“学校五年级一班有36人,二班有37人;一、二、三班共有108人,那么三班有多少人?”此题用文字表示等量关系是:一班+二班+三班=总数一班+二班=总数-三班一班+三班=总数-二班二班+三班=总数-一班根据这些文字等量关系式,可列出以下方程,如:36+37+X=10836+37=108-X36+X=108-3737+X=108-36(5)根据图形找等量关系例如:“某农场有400公顷小麦,前三天每天收割70公顷小麦,剩下的要在2天内收割完,平均每天要收割小麦多少公顷?”先根据题意画出线段图.从线段图上可以直观地看出:割麦总数=前3天割麦数+后2天割麦数.根据这个关系式,可列出方程70×3+2X=400.。

北师大版四年级数学下册《等量关系(找等量关系)》教案

北师大版四年级数学下册《等量关系(找等量关系)》教案

北师大版四年级数学下册《等量关系(找等量关系)》教案一、教学目标:1.培养学生寻找等量关系的能力。

2.能够正确解决问题,找出等量关系。

3.加深学生对于等量关系的理解。

二、教学重难点:1.学生对于等量关系的理解。

2.学生寻找等量关系的能力。

三、教学过程:1. 导入:教师可以通过举例子的方式,让学生理解什么是等量关系,例如让学生分别取一元、两元和三元的清茶和奶茶,看看用不用的纸杯数量相同,这是什么关系。

让学生感受到有些物品之间的关系是等量关系。

2. 输入:教师在课件上呈现若干组等量关系的情境,鼓励学生理解其中的规律和特点。

例如:1.雨伞和雨衣的关系;2.书包和书本的关系;3.杯子和水的关系。

3. 积累:教师可以设计一些问题,让学生去寻找其中的等量关系。

例如:1.母鸡和小鸡之间有什么等量关系?2.蝴蝶的翅膀和人的手之间有什么等量关系?3.盾牌和刀剑之间有什么等量关系?4. 练习:让学生通过解决练习题来巩固等量关系的概念和寻找等量关系的能力。

例如:1.一枝钢笔可以换五支铅笔,那么五支铅笔和一枝钢笔之间有什么等量关系?2.一支笔芯可以写满十页,那么十页和一支笔芯之间有什么等量关系?3.三个苹果可以换一个香蕉,那么一个香蕉和多少个苹果之间有什么等量关系?5. 互动:让学生自己寻找身边的物品之间的等量关系,并且可以给出自己的答案,互相交流讨论,从而深化对等量关系的理解。

四、教学扩展:1.让学生设计自己的寻找等量关系的情境,培养学生创造性思维。

2.教师可以让学生写出无法寻找等量关系的物品组合,并探讨可能的改变方法。

五、教学反思:学生很容易理解等量关系的概念,但在找出等量关系时,需要耐心且仔细地分析。

教师需要在教学中引导学生多加思考,并鼓励学生探究未知,不断追求完善。

四年级下册数学等量关系

四年级下册数学等量关系

四年级下册数学等量关系一、等量关系的概念。

1. 定义。

- 在数学中,等量关系就是表示两个量或者表达式之间具有相等关系的语句。

例如在等式3 + 2=5中,3 + 2和5之间就存在等量关系。

- 在四年级下册的数学学习中,等量关系更多地体现在解决实际问题当中。

比如在购物场景中,如果一个笔记本3元,买了5个笔记本,总共花费15元,那么就有等量关系“笔记本的单价×数量 = 总价”,即3×5 = 15。

2. 作用。

- 等量关系是解决数学问题,特别是列方程解应用题的关键。

通过找出题目中的等量关系,我们可以将实际问题转化为数学方程,从而求解未知量。

例如在行程问题中,已知速度和时间求路程,根据等量关系“速度×时间=路程”,如果速度是每小时60千米,时间是3小时,设路程为x千米,就可以列出方程60×3 = x。

二、常见的等量关系类型(人教版四年级下册)1. 四则运算中的等量关系。

- 加法等量关系。

- 加数+加数 = 和。

例如a + b=c,那么a=c - b,b=c - a。

在实际问题中,如小明有3颗糖,小红有2颗糖,他们一共有5颗糖,这里3+2 = 5,如果知道总数5和其中一个加数3,就可以用5 - 3求出另一个加数2。

- 减法等量关系。

- 被减数 - 减数=差。

由此可以得到被减数 = 差+减数,减数 = 被减数 - 差。

例如在一个减法算式8 - 3 = 5中,8是被减数,3是减数,5是差,如果知道差5和减数3,就可以用5+3求出被减数8。

- 乘法等量关系。

- 因数×因数 = 积。

如果a×b = c,那么a = c÷b,b = c÷a。

例如,每排有4个座位,一共有5排,总座位数就是4×5 = 20个。

如果知道总座位数20和排数5,就可以用20÷5求出每排的座位数4。

- 除法等量关系。

- 被除数÷除数 = 商。

数学方程找等量关系式的几种方法

数学方程找等量关系式的几种方法找等量关系式的几种方法1、根据题目中的关键句找等量关系。

应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。

在列方程解应用题时,同学们可以根据关键句来找等量关系。

2、用常见数量关系式作等量关系。

我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。

3、把公式作为等量关系。

在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。

4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。

比方:东乡农场计划耕6420公顷耕地,曾经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕几何公顷?根据题意画出线段图:780×5.3XX6420公顷从图中我们可以看出等量干系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。

1.牢记计算公式,根据公式来找等量关系。

这类方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后按照公式来解决问题。

2.熟记数量关系,根据数量关系找等量关系。

这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。

如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225.3.抓住关键字词,根据字词的提示找等量关系。

找等量关系的几种方法

找等量关系的几种方法等量关系是一个很重要的数学概念,也是解题中经常用到的方法之一。

在数学中,等于号是非常重要的符号,因为它表示两个数或两个表达式是相等的。

所以,当我们需要找到等量关系的时候,我们需要找到两个或多个数、变量或式子之间的相等关系。

下面,我们将介绍几种方法来找到等量关系。

方法一:代数法代数法是通过代数式子来找到等量关系的方法。

我们可以在等式的两边加上或减去同一个数或变量,这样等式不会改变,但是等式的形式会有所变化。

举个例子,我们可以用代数法来找到下面这个等量关系:7 + 3 = 5 + 5我们可以从左边和右边同时减去3,这时等式还是相等的,但是它的形式变成了这样:7 = 2 + 5这两个式子就是等量关系,因为它们表示的是同一个数。

方法二:图形法图形法是通过图形来找到等量关系的方法。

这种方法适用于直接使用图形来表示问题的情况。

我们可以利用图形的性质来找到等量关系,比如平行线的性质、相似三角形的性质以及正方形、长方形等图形的面积关系。

我们可以用图形法来找到下面这个等量关系:7 + 3 = 5 + 5我们可以画出两个等腰三角形,它们的底边分别为5和3,而它们的高都是4。

如下图所示:/\/ \/ \/______\5/\/ \/ \/______\3我们可以计算出每个三角形的面积:第一个三角形的面积为(5 x 4) / 2 = 10,第二个三角形的面积为(3 x 4) / 2 = 6。

所以,两个三角形的面积之和就等于7 + 3 = 5 + 5 = 12。

我们可以得出等式:10 + 6 = 12这个等式就是等量关系,因为它表示的是同一个数。

方法三:问题法问题法是通过问题来找到等量关系的方法。

这种方法适用于问题与问题之间有相同的因素或变量,或者问题之间存在一定的规律的情况。

我们可以通过分析不同问题中相同的部分或规律来找到等量关系。

举个例子,我们可以用问题法来找到下面这个等量关系:7 + 3 = 5 + 5问题1:共有7个苹果,其中有3个是红色的。

找等量关系式列方程市公开课获奖课件省名师示范课获奖课件

解:设原来两位数十位上旳数字为x,则个位上旳数字为(9-x)。
10×(9-x)+x-[10x+(9-x)] =9
90-10x+x-10x-9+x=9
81-18x=9
x=4 ……十位
9-4=5 ……个位
答:这个两位数原来是45。
怎样找等量关系式、列方程
• 等量关系式:数量之间旳相等旳关系式叫 做等量关系式。
• 找等量关系式旳原则:一般来说,等量关 系式能列成加法旳,就不列成减法旳;能 列成乘法旳就不列成除法旳。
• 列方程:相应着等量关系式,把数量一种 一种代进去列出方程,把未知数用“X”替 代(一般情况可将问题设为未知数)。
10X+6×6.5=59……………………….( × )
2、妈妈今年39岁,比女儿旳年龄旳3倍大3岁, 女儿今年Y岁。
39=3Y+3……………………………..( √ )
3、小亚看一本240页旳书,平均每天看33页,看了 X天还剩余42页没看。
33X=(240-42)÷X …………………( × )
考考你:你会找题中旳等量关系 列方程吗?请你写下来,看谁写旳多。
小亚用30元买了5支圆珠笔,找回旳钱 恰好能够买3本单价为5.5元旳笔记本, 圆珠笔旳单价为X元。
幼稚园老师买了某些糖分给X个小朋 友,若每人5粒则多17粒,若每人7粒, 则少11粒。
1、图书室有科技书320本,科技书比故事书旳2倍 少 16本,故事书有多少本?
分析:首先根据“科技书比故事书旳2倍少16本”看出故事书 旳本数是1份,所以设故事书为x本,再根据“科技书比故事 书旳2倍少16本”找出等量关系式是:故事课本数×2-16= 科技课本数,所以列方程为:2x-16=320。
(2)小巧买了14支铅笔,是小丁丁买旳铅笔旳 2倍,小丁丁买了X支。

找等量关系的八种方法

找等量关系的八种方法引言在数学中,等量关系是指两个或多个物体或量之间存在着某种数量上的相等关系。

找到等量关系是解决数学问题和应用数学知识的重要步骤。

本文将介绍八种常见的方法来找到等量关系,帮助读者在解决问题时更加灵活和高效。

一、观察法观察法是最基本、最直接的一种找等量关系的方法。

通过观察题目中给出的数据或已知条件,发现其中存在着某些物体或量之间的相等关系。

例如,题目中给出了一组数字序列:2, 4, 6, 8, 10,我们可以观察到这是一个递增的序列,并且每个数字都是前一个数字加上2得到的。

因此我们可以推断出这个序列中任意两个相邻数字之间都存在着相差2个单位的等量关系。

二、代入法代入法是利用已知条件将未知变量替换为已知值,通过计算验证是否满足等量关系。

这种方法常用于解方程或求函数值时。

例如,题目中给出了一个方程:3x + 5 = 14,我们可以使用代入法来验证x的值是否满足等量关系。

将x替换为2,计算得到3 * 2 + 5 = 11,不等于14;将x替换为3,计算得到3 * 3 + 5 = 14,等于14。

所以x=3是满足等量关系的解。

三、画图法画图法是通过绘制图形来找到等量关系的方法。

可以根据题目中给出的条件或已知数据,在纸上画出相应的图形,并观察其中存在的几何关系。

例如,题目中给出了一个直角三角形ABC,已知AB=3、AC=4,要求求BC的长度。

我们可以在纸上画出一个直角三角形,并标记出已知边长和未知边长。

通过观察可以发现这是一个勾股定理的应用问题,根据勾股定理可得BC=√(AB²+AC²)=√(3²+4²)=√(9+16)=√25=5。

四、列举法列举法是通过列举可能的数值组合来找到等量关系的方法。

可以尝试不同的数值组合并计算结果,观察结果之间是否存在某种规律或相等关系。

例如,题目中给出了一个数列:1, 4, 9, 16, … 要求找到数列中的等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档