初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)

合集下载

八年级数学 一次函数动点问题

八年级数学   一次函数动点问题

八年级数学 一次函数动点问题1、如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线OAB 向B 点以3单位/秒的速度向B 点运动,点Q 从O 点出发以2单位/秒的速度沿折线OBA 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止.① 点A 坐标为________,P 、Q 两点相遇时交点的坐标为________; ② 当t =2时,S =△OPQ ____________;当t =3时,OPQ S =△____________; ③ 设△OPQ 的面积为S ,试求S 关于t 的函数关系式;④ 当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。

2、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式; (2) 当t 为何值时,△APQ的面积为524个平方单位?xyOAB x yOAB x yOABAFEoyx3、如图,在Rt △AOB 中,∠AOB=90°,OA=3cm ,OB=4cm ,以点O 为坐标原点建立坐标系,设P 、Q 分别为AB 、OB 边上的动点它们同时分别从点A 、O 向B 点匀速运动,速度均为1cm/秒,设P 、Q 移动时间为t (0≤t ≤4)。

(1)过点P 做PM ⊥OA 于M ,求证:AM :AO=PM :BO=AP :AB ,并求出P 点的坐标(用t 表示) (2)求△OPQ 面积S (cm 2),与运动时间t (秒)之间的函数关系式,当t 为何值时,S 有最大值?最大是多少?(3)当t 为何值时,△OPQ 为直角三角形?(4)证明无论t 为何值时,△OPQ 都不可能为正三角形。

数学动点问题及练习题附答案

数学动点问题及练习题附答案

初中数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数提醒了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于*一个点或*图形的有条件地运动变化,引起未知量与量间的一种变化关系,这种变化关系就是动点问题中的函数关系.则,我们怎样建立这种函数解析式呢"下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考察问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置。

〕动点问题一直是中考热点,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

〔一〕点动问题。

〔二〕线动问题。

〔三〕面动问题。

二、解决动态几何问题的常见方法有:1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三、专题二总结,本大类习题的共性:1.代数、几何的高度综合〔数形结合〕;着力于数学本质及核心容的考察;四大数学思想:数学结合、分类讨论、方程、函数.2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考察学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1 以双动点为载体,探求函数图象问题。

(完整版)一次函数动点问题

(完整版)一次函数动点问题

一次函数动点问题1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去 A 营,再到河边饮马,之后再去 B 营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴ CB= ,C′B=∴ AC+CB=AC+CB′=.在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B 在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB 的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与 D 关于直线AC对称,连结ED 交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是如图⑥,一次函数y=﹣2x+4 的图象与x,y 轴分别交于A,B两点,点O 为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P 点坐标.2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求 a 的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△ POC的面积是S,试求S关于m 的函数关系式.3.已知函数y=kx+b 的图象经过点A(4,3)且与一次函数y=x+1 的图象平行,点B(2,m)在一次函数y=kx+b 的图象上(1)求此一次函数的表达式和m 的值?(2)若在x 轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P 的横坐标为多少时,PA+PB的值最小.4.已知:一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x 轴的交点,若S△OAP=2,求点P 的坐标.5.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线给出它们平行的定义:设一次函数y=k1x+b1(k1≠ 0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1 与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x 的图象为直线l1,求过点P(1,3)且与已知直线l1 平行的直线l2 的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为.(4)在x轴上找一点M,使△ BMP为等腰三角形,求M 的坐标.(直接写出答案)6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠ 0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1?k2=﹣1,我们就称直线l1 与直线l2 相互垂直,现请解答下面的问题:已知直线l 与直线y=﹣x﹣1 互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l 的函数表达式;(2)若点 C 是线段AB 上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△ BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.一次函数动点问题参考答案与试题解析一.解答题(共 6 小题)1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去 A 营,再到河边饮马,之后再去 B 营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴CB= CB' ,C′B= C'B'∴ AC+CB=AC+CB′=AB' .在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B 在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB 的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与 D 关于直线AC 对称,连结ED交AC于F,则EF+FB 的最小值就是线段DE 的长度,EF+FB的最小值是.如图⑤,已知⊙ O的直径CD为4,∠ AOD的度数为60°,点B是的中点,在直径CD 上找一点P,使BP+AP 的值最小,则BP+AP 的最小值是 2 ;如图⑥,一次函数y=﹣2x+4 的图象与x,y 轴分别交于A,B两点,点O 为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P 点坐标.【解答】解:(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴ CB=CB,' C′B=C'B'∴AC+CB=AC+CB′=A.B'在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小故答案为:CB',C'B',AB';(2)模型应用①解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D 关于直线AC对称,连结ED交AC于F则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是.在正方形ABCD中,AB=AD=2,∠BAD=9°0 ∵点E是AB 中点,∴AE=1,根据勾股定理得,DE= ,即:EF+FB的最小值,故答案为:DE,;②如图⑤,由圆的对称性可知,A与A'关于直径CD对称,连结A'B交CD于F,则AE+EB 的最小值就是线A'BE的长度,∴∠ AOD=∠A'OD=60°∵点 B 是的中点,∴∠ AOB=∠BOD= ∠AOD=3°0,∴∠ A'OB=90°∵⊙ O的直径为4,∴OA=OA'=OB=2,在Rt△A'OB中,A'B=2 ,∴ BP+AP的最小值是 2 .故答案为 2 ,③如图⑥,由平面坐标系中的对称性可知,C与C'关于直径y轴对称,连结C'D交y轴于P,则PC+PD的最小值就是线C'D 的长度,∵一次函数y=﹣2x+4的图象与x,y 轴分别交于A,B两点,∴A(2,0),B (0,4),∴C(1,0),D(1,2),∵C与C'关于直径y 轴对称,∴C'(﹣1,0),∴ C'D= =2 ,∴ PC+PD的最小值为 2 ,∵C'(﹣1,0),D(1,2),∴直线C'D 的解析式为y=x+1,∴P(0,1).2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求 a 的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△ POC的面积是S,试求S关于m 的函数关系式.解答】解:①设一次函数解析式为y=kx+b,依题意,得解得,次函数解析式为y=2x﹣1;②将点(a,2)代入y=2x﹣1 中,得2a﹣1=2,③由 y=2x ﹣1,令 y=0得 x= , ∴C ( 又∵点 P(m ,n )在直线 y=2x ﹣1 上, ∴ n=2m ﹣1,3.已知函数 y=kx+b 的图象经过点A 43 y=x+1 的图象平行,点 B ( 2, m )在一次函数 y=kx+b 的图象上1)求此一次函数的表达式和 m 的值?2)若在 x 轴上有一动点 P (x ,0),到定点 A (4,3)、B (2,m )的距离分别 为 PA 和 PB ,当点 P 的横坐标为多少时, PA+PB 的值最小.解答】 解:(1)∵函数 y=kx+b 的图象经过点 A (4,3)且与一次函数 y=x+1 的图象平行,,解得:∴一次函数的表达式为 y=x ﹣1. 当 x=2 时, m=x ﹣1=2﹣ 1=1, ∴m 的值为1.(2)作点 B 关于x 轴的对称点 B ′,连接 AB ′交x 轴于点 P ,此时PA+PB 取最小值, 如图所示. ∵点 B 的坐标为( 2,1), ∴点 B ′的坐标为( 2,﹣ 1). 设直线 AB ′的表达式为 y=ax+c , 将( 2,﹣1)、(4,3)代入 y=ax+c ,,解得:∴直线 AB ′的表达式为 y=2x ﹣5. 当 y=0 时, 2x ﹣ 5=0,,0),∴S= × ×|n|= | (2m ﹣1)|=|m﹣4.已知:一次函数图象如图: 1)求一次函数的解析式;2)若点 P 为该一次函数图象上一动点,且点 A 为该函数图象与 x 轴的交点,若 S △OAP =2,求点 P 的坐标.解答】 解:(1)设一次函数解析式为 y=kx+b ,所以一次函数解析式为 y=﹣x+1;(2)当 y=0时,﹣ x+1=0,解得 x=1,则 A ( 1, 0), 设 P (t ,﹣ t+1), 因为 S △OAP =2,所以 ×1×|﹣t+1|=2,解得 t=﹣3或t=5, 所以 P 点坐标为(﹣ 3,4)或( 5,﹣ 4).5.阅读下面的材料:在平面几何中, 我们学过两条直线平行的定义. 下面就两个一次函数的图象所确 定的两条直线给出它们平行的定义:设一次函数 y=k 1x+b 1(k 1≠ 0)的图象为把(﹣ 2,3)、(2, 分别代入得,解得PA+PB 的值最小.P 的横坐标为 ﹣1)直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1 与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x 的图象为直线l1,求过点P(1,3)且与已知直线l1 平行的直线l2 的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为Q(0,).(4)在x轴上找一点M,使△ BMP为等腰三角形,求M 的坐标.(直接写出答案)【解答】解:(1)根据正比例函数y=﹣x的图象为直线l1,设直线l2的函数表达式为y=﹣x+b,把P(1,3)代入得:3=﹣1+b,即b=4,则过点P(1,3)且与已知直线l1 平行的直线l2的函数表达式为y=﹣x+4;(2)过O作ON⊥AB,如图1所示,ON为l1和l2两平行线之间的距离,对于直线y=﹣x+4,令x=0,得到y=4;令y=0,得到x=4,∴ A(0,4),B(4,0),即OA=OB=4,∵△ ABC为等腰直角三角形,∴AB= =4 ,且ON 为斜边上的中线,∴ ON= AB=2 ,则l1 和l2 两平行线之间的距离为 2 ;(3)找出B关于y轴的对称点B′(﹣4,0),连接PB′,与y轴交于点Q,连接PQ,此时QP+QB 最小,设直线B′P的解析式为y=mx+n,把B′和P 坐标代入得:,解得:m= ,n= ,∴直线B′P的解析式为y= x+ ,令x=0,得到y= ,即Q(0,);故答案为:Q(0,);(4)如图 2 所示,分三种情况考虑:当PM1=PB时,由对称性得到M1(﹣2,0);当PM2=BM2时,M2 为线段PB垂直平分线与x轴的交点,∵直线PB的解析式为y=﹣x+4,且线段PB中点坐标为( 2.5, 1.5),∴线段PB垂直平分线解析式为y﹣1.5=x﹣2.5,即y=x﹣1,令y=0,得到x=1,即M 2(1,0);当PB=M3B= =3 时,OM3=OB+BM3=4+3 ,此时M 3(4﹣3 ,0),M 3(4+3 ,0).综上,M的坐标为(﹣2,0)或(1,0)或(4﹣ 3 ,0)或(4+3 ,0).6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠ 0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1?k2=﹣1,我们就称直线l1 与直线l2 相互垂直,现请解答下面的问题:已知直线l 与直线y=﹣x﹣1 互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l 的函数表达式;(2)若点 C 是线段AB 上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△ BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.【解答】解:(1)设直线l 的解析式为y=kx+b,∵直线l 与直线y=﹣x﹣1 互相垂直,∴﹣k=﹣1,解得k=2,∵直线l 的图象过点P(﹣1,4),∴﹣k+b=4,即﹣2+b=4,解得b=6,∴直线l 的解析式为y=2x+6;(2)如图1,过O作OC⊥AB 于点C,在y=2x+6 中,令x=0 可得y=6,令y=0 可求得x=﹣3,∴A(0,6),B(﹣3,0),∴OA=6,OB=3∴ AB= =3 ,∵ AB?OC= OA?OB,∴ 3 OC=3×6,∴ OC= ,即线段OC长度的最小值为;(3)如图2,作点P关于y轴的对称点P″,连接BP″交y轴于点Q,过P″作P″G⊥x 轴于点G,则PQ=P″Q,∴PQ+BQ=BQ+QP″,∵点B、Q、P″三点在一条线上,∴ BQ+PQ最小,∵P(﹣1,4),∴P″(1,4),∴ P″G=,4 OG=1,∴BG=BO+OG=4=″P G,∴∠ OBQ=4°5,BP″=4 ,∴ OQ=BO=3,∴ Q点坐标为(0,3),又BP= =2 ,此时△ BPQ的周长=BP+BP″=4 +2 ;(4)由(3)可知∠ OBQ=∠OQB=4°5,∴∠PQA=∠P″QA=45°,∴PQ⊥BQ,如图3,延长PQ到点P′,使PQ=P′Q,则P′即为点P 关于BQ的对称点,过P′作由(3)可知PQ=Q′P = ,∴QH=H′P =1,∴OH=OQ﹣QH=3﹣1=2,∴ S四边形ABO′P=S△AOB+S△AOP′= ×6×3+ × 6× 1=12,四边形△ △即四边形ABOP′的面积为12.。

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。

二、应用比例式建立函数解析式。

三、应用求图形面积的方法建立函数关系式。

专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、以动态几何为主线的压轴题。

(一)点动问题。

(二)线动问题。

(三)面动问题。

二、解决动态几何问题的常见方法有:2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值。

专题三:双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏.1以双动点为载体,探求函数图象问题。

2以双动点为载体,探求结论开放性问题。

3以双动点为载体,探求存在性问题。

4以双动点为载体,探求函数最值问题。

双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。

专题09 一次函数中的动点问题与实际问题(解析版)

专题09 一次函数中的动点问题与实际问题(解析版)

专题09一次函数中的动点问题与实际问题【例题精讲】题型一、角度问题例1. 【2019·莆田市期末】如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足√m−6+(n-12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,-2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.【答案】见解析.【解析】解:(1)∵√m−6+(n-12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则:b=12,6k+b=0,解得:k=-2,b=12,∴直线AB解析式为y=-2x+12,∵直线AB点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图所示,设直线CD解析式为y=12x+n,边点C(4,4)代入得到n=2,即直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图,过点C作CF⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C 作x 轴垂线l ,分别过F 、E 作FM ⊥l ,EN ⊥l , 则△FMC ≌△CNE , 则FM =CN =6,CM =EN =4, 即F 点坐标为(-2,8),由E (0,-2),得直线EF 的解析式为:52y x =-- 联立52y x =--,y =-2x +12,得: x =143-,y =643-, 即点P 坐标为:(143-,643-). 题型二、面积问题例1. 【2019·高密市期末】如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)请直接写出不等式kx +b ﹣3x >0的解集.(3)若点D 在y 轴上,且满足S ⊥BCD =2S ⊥BOC ,求点D 的坐标.【答案】见解析.【解析】解:(1)当x =1时,y =3x =3, ⊥点C 的坐标为(1,3).将A (﹣2,6)、C (1,3)代入y =kx +b ,得:263k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩;(2)由kx+b﹣3x>0,得:kx+b>3x,⊥点C的横坐标为1,⊥x<1;(3)在y=﹣x+4中,当y=0时,x=4;x=0时,y=4,⊥点B的坐标为(4,0),直线AB与y轴交点为:F(0,4).过点C作CE⊥y轴于E,则E(0,3),⊥S⊥BCD=2S⊥BOC,⊥S⊥BDF-S⊥CDF=2S⊥BOC,即12×DF×OB-12×DF×CE=2×12×OE×OB,1 2×DF×4-12×DF×1=2×12×3×4,解得:DF=8,⊥F(0,4),⊥D(0,﹣4)或D(0,12).例2. 【2019·成都市期末】如图,已知直线y=kx+4(k≠0)经过点(-1,3),交x轴于点A,y轴于点B,F 为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.(1)当0<t<4时,求证:FC=FD;(2)连接CD,若⊥FDC的面积为S,求出S与t的函数关系式;(3)在运动过程中,直线CF交x轴的负半轴于点G,11OC OG是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】见解析.【解析】解:(1)证明:连接OF,⊥直线y=kx+4经过点(-1,3),⊥-k+4=3,解得:k=1,即直线AB的解析式为:y=x+4,当y=0时,x=-4;当x=0时,y=4;⊥A(-4,0),B(0,4),⊥OA=OB=4,⊥⊥AOB=90°,⊥⊥AOB是等腰直角三角形,⊥CBF=45°,⊥F为线段AB的中点,⊥OF=12AB=BF,OF⊥AB,⊥DOF=12⊥AOB=45°=⊥CBF,⊥⊥OFB=90°,⊥DF ⊥CF , ⊥⊥DFC =90°, ⊥⊥OFD =⊥BFC , ⊥⊥BCF ⊥⊥ODF (ASA ), ⊥FC =FD ;(2)解:⊥当0<t <4时,连接OF ,由题意得:OC =t ,BC =4-t , 由(1)得:⊥BCF ⊥⊥ODF , ⊥BC =OD =4-t , ⊥CD 2=OD 2+OC 2=(4-t )2+t 2 =2t 2-8t +16, ⊥FC =FD ,⊥DFC =90°, ⊥⊥FDC 是等腰直角三角形,⊥FC 2=12CD 2,⊥S =12FC 2=12×12CD 2 =21242t t -+; ⊥当t ≥4时,连接OF ,由题意得:OC =t ,BC =t -4, 由(1)得:⊥BCF ⊥⊥ODF , ⊥BC =OD =t -4, ⊥CD 2=OD 2+OC 2=(t -4)2+t 2 =2t 2-8t +16,⊥S =21242t t -+;综上所述,S 与t 的函数关系式为S =21242t t -+;(3)解:11OC OG+为定值12;理由如下: ⊥当0<t <4时,当设直线CF 的解析式为:y =mx +t ,⊥A (-4,0),B (0,4),F 为线段AB 的中点, ⊥F (-2,2),把点F (-2,2)代入y =mx +t 得:-2m +t =2,解得:m =12(t -2),⊥直线CF的解析式为:y=12(t-2)x+t,当y=0时,x=22tt-,即G(22tt-,0),⊥OG=22tt-,⊥11OC OG+=122tt t-+=12;⊥当t≥4时,同⊥得:11OC OG+=122tt t-+=12;综上所述,11OC OG+为定值12.题型三、复杂实际问题例1. 【2019·泉州市晋江区期中】某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【答案】(1)40;(2)(3)见解析.【解析】解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=()() 606001 606013t tt t-+≤<⎧⎨-≤≤⎩;(3)d2=40t,⊥当0≤t<1时,d2+d1>10,即:﹣60t+60+40t>10,解得:0≤t<2.5,⊥当0≤t<1时,两遥控车的信号不会产生相互干扰;⊥当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰;综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【刻意练习】1. 【2019·乐亭县期末】如图1,四边形ABCD中,AB⊥CD,⊥B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,⊥BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.5B.√34C.8D.2√3【答案】B.【解析】解:当t=3时,点P到达A处,即AB=3;过点A 作AE ⊥CD 交CD 于点E ,则四边形ABCE 为矩形, ⊥AC =AD ,⊥DE =CE =12CD ,当S =15时,点P 到达点D 处,则15=12CD •BC ,15=12(2AB )•BC3×BC =15, 则BC =5,由勾股定理得AD =AC =√34, 故答案为:B .2. 【2019·卢龙县期末】如图,直线y 1=2x -2的图象与y 轴交于点A ,直线y 2=-2x +6的图象与y 轴交于点B ,两者相交于点C .(1)方程组{2x −y =2,2x +y =6的解是______;(2)当y 1>0与y 2>0同时成立时,x 的取值范围为______; (3)求⊥ABC 的面积;(4)在直线y 1=2x -2的图象上存在异于点C 的另一点P ,使得⊥ABC 与⊥ABP 的面积相等,请求出点P 的坐标.【答案】(1){x =2y =2 ;(2)1<x <3;(3)(4)见解析.【解析】解:(1)如图所示:方程组{2x −y =2,2x +y =6的解为:{x =2y =2;故答案为:{x =2y =2;(2)如图所示:当y 1>0与y 2>0同时成立时, x 取何值范围是:1<x <3; 故答案为:1<x <3;(3)令x =0,则y 1=-2,y 2=6, ⊥A (0,-2),B (0,6). ⊥AB =8. ⊥S ⊥ABC =12×8×2=8; (4)令P (x 0,2x 0-2),则S ⊥ABP =12×8×|x 0|=8, ⊥x 0=±2. ⊥点P 异于点C , ⊥x 0=-2,2x 0-2=-6. ⊥P (-2,-6).3. 【2019·莆田市期末】某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.【答案】见解析.【解析】解:(1)⊥8x+6y+5(20-x-y)=120,⊥y=20-3x,⊥y与x之间的函数关系式为y=20-3x.(2)由x≥3,y=20-3x≥3,即20-3x≥3,可得3≤x≤253,⊥x为正整数,⊥x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(3)设此次销售利润为W百元,W=8x×12+6(20-3x)×16+5[20-x-(20-3x)] ×10=-92x+1920,⊥W随x的增大而减小,x=3,4,5,当x=3时,W最大=1644 百元.4. 【问题情境】已知矩形的面积为一定值1,当该矩形的一组邻边分别为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的一边长为x,周长为L,则L与x的函数表达式为.【探索研究】小彬借鉴以前研究函数的经验,先探索函数y=x+1x的图象性质.(1)结合问题情境,函数y=x+1x的自变量x的取值范围是,如表是y与x的几组对应值.x (1)41312123m…y (1)443132122212313144…⊥直接写出m的值;⊥画出该函数图象,结合图象,得出当x=时,y有最小值,y的最小值为;【解决问题】(2)直接写出“问题情境”中问题的结论.【答案】见解析.【解析】解:【数学模型】L与x的函数表达式为:L=2(x+1x );【探索研究】(1)自变量x的取值范围是:x>0;⊥当y=144时,x=4,⊥m的值为4;⊥当0<x<1时,y随x增大而减小;当x>1时,y随x增大而增大;当x=1时函数y=x+1x(x>0)的最小值为2;故答案为:L=2(x+1x);x>0;1,2;(2)当邻边分别为1和1时,它的周长最小,最小值是4.5. 【2018·辽阳市期末】为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?【答案】见解析.【解析】解:(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解得x>20,即当x>20时,到乙店合算;y甲<y乙时,1050+15x<13.5x+1080,x≥4,解得10≤x<20,即当10≤x<20时,到甲店合算.6. 【2019·乐亭县期末】小明骑电动车从甲地去乙地,而小刚骑自行车从乙地去甲地,两人同时出发走相同的路线;设小刚行驶的时间为x(h),两人之间的距离为y(km),图中的折线表示y与x之间的函数关系,,0).根据图象进行探究:点B的坐标为(13(1)两地之间的距离为______km;(2)请解释图中点B的实际意义;(3)求两人的速度分别是每小时多少km?(4)直接写出点C的坐标______.【答案】见解析.【解析】解:(1)实际距离是9千米,故答案为:9;(2)点B表示两人相遇.(3)两人的速度和为:9÷13=27 千米/小时=0.45千米/分钟,小刚的速度为:9÷1=9千米/小时=0.15千米/分钟,小明的速度=0.45-0.15=0.3千米/分钟;(4)两人相遇时用时:9÷(9+18)=13,即B(13,0)BC段用时为:9÷18-13=16,此时两人相距:(9+18)×16=4.5,所以C(12,4.5).故答案为:(12,4.5).7. 【2019·宜城市期末】某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)【答案】见解析. 【解析】解:(1)当1≤x ≤10时,设AB 的解析式为:y =kx +b , 把A (1,300),B (10,120)代入得: {k +b =30010k +b =120, 解得:{k =−20b =320,即:y =-20x +320(1≤x ≤10),当10<x ≤30时,同理可得:y =14x -20, 综上所述,y 与x 之间的函数表达式为:()()2032011014201030x x y x x -+≤≤⎧=⎨-<≤⎩ (2)当1≤x ≤10时,w =(10-6)(-20x +320)=-80x +1280, -80x +1280≤1040,解得:x ≥3, 即3≤x ≤10,日销售利润不超过1040元的天数一共8天; 当10<x ≤30时,w =(10-6)(14x -20)=56x -80, 56x -80≤1040, 即10<x ≤20,⊥日销售利润不超过1040元的天数共10天;综上所述,日销售利润不超过1040元的天数共有18天;(3)由(2)知,当5≤x ≤10时,w =-80x +1280,当x =5时,w 取最大值,-80×5+1280=880, 当10<x ≤17时,w =56x -80,当x =17时,w 取最大值,56×17-80=872, ⊥880>872,⊥第5天的日销售利润最大,最大日销售利润是880元.8. 【2019·成都月考】一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价和预售价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 与x 之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.⊥求出预估利润P (元)与x (部)的函数关系式;(注:预估利润P =预售总额-购机款-各种费用) ⊥求出预估利润的最大值,并写出此时购进三款手机各多少部.【答案】见解析. 【解析】 解:(1)60-x -y ;(2)由题意,得:900x +1200y+1100(60-x -y )=61000, 即,y =2x -50. (3)⊥由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500, 即,P =500x +500.⊥购进C 型手机部数为:60-x -y =110-3x ,根据题意,得:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得:29≤x≤34,⊥x为整数,k=500>0,⊥P随x的增大而增大,⊥当x=34时,P有最大值,最大值为17500元,此时购进A型手机34部,B型手机18部,C型手机8部.9. 【2018·北师大附中期中】已知:如图,⊥MON=90°,在⊥ABC中,⊥C=90°,AC=3cm,BC=4cm,将⊥ABC 的两个顶点A、B放在射线OM和ON上移动,作CD⊥ON于点D,记OA=x(当点O与A重合时,x的值为0),CD=y,小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)通过取点、画图、计算、测量等方法,得到了x与y的几组值,如下表(补全表格)(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象。

一次函数中的动点问题

一次函数中的动点问题

一次函数中的动点问题一次函数是学生在初中阶段学习的第一个函数,它是最基础的函数,是初中数学中的重要内容之一.本文例析一次函数中的动点问题,供同学们学习时参考.一、动点与函数问题例1 正方形ABCD的边长为4,P为正方形边上一动点,点P自点D出发沿D→C→B的路径匀速移动(到点B后就停止).设P点经过的路径长为x,△APD的面积是y,求y与x的函数关系式.解析由于点P的位置有两种可能,可能在DC边上,也可能在边BC上,故应该分两种情况讨论:如图1,当点P在DC边上(0≤x≤4)时,y=12.AD.DP=12×4x=2x;如图2,当点P在BC边上(当4<x≤8)时,y=12.AD.PQ=14×4×4=8.所以y=() () 2,04 8,48 x xx⎧≤≤⎪⎨<≤⎪⎩二、动点与距离问题例2 如图3,在平面直角坐标系中,点A为直线y=2x+3上的一个动点.问当点A运动到何处时,点A到y轴的距离为1,求出点A的坐标.解析根据点A到y轴的距离为1,可以得到点A的横坐标的绝对值等于1.故点A的横坐标等于1或者-1,即x A=±1.当x A=1时,代入y=2x+3,得到y=2x1+3=5,故点A的坐标为(1,5);当x A=-1时,代入y=2x+3,得到y=2×(-1)+-3=1,故点A的坐标为(-1,1).所以点A的坐标为(1,5)或者(-1,1).三、动点与最值问题例3 如图4,在平面直角坐标系中,A(-3,2),B(2,3),点M为x轴上的一个动点,当点M运动到x轴上何处时,MA与MB的和最短.解析点A和点B在x轴的同侧,在x轴上的确定点M的位置,根据最短路径问题的思路,想到利用轴对称知识解决问题,作点A(-3,2)关于x轴的对称点A'(-3,-2),连结A'B交x轴于点M,则有MA+MB=MA'+MB=A'B,根据两点之间线段最短,可以得到此时的MA与MB的和最短.设经过点A'(-3,-2)、B(2,3)的一次函数的关系式为y=kx+b.根据题意,得方程组32 23k bk b-+=-⎧⎨+=⎩解得11kb=⎧⎨=⎩,∴y=x+1.把y=0代入y=x+1,得x=-1,所以点M的坐标为(-1,0).所以,当点M运动到(-1,0)时,MA与MB的和最短.四、动点与面积问题例4 如图5,在平面直角坐标系中,一次函数y=-2x+4的图象交y轴于点A,交x轴于点B,点N是直线y=-2x+4上的一动点.若AON的面积等于△AOB面积的二分之一,求点N的坐标.所以点N的坐标为(1,2),(-1,6).五、动点与不等式问题例5(2013年河北中考题)如图6,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.t=2时,落在x轴上.六、动点与等腰三角形问题例6(2013龙岩中考题)如图7,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,求符合条件的点C的个数.解析如图8,AB的垂直平分线与直线y=x相交于点C1.∵A(0,2),B(0,6),∴AB=6-2=4.以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3.∵OB=6.∴点B到直线y=x的距离为6=∵,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.。

最新一次函数动点问题专题练习(含答案)资料

最新一次函数动点问题专题练习(含答案)资料

动点问题专题练习
1、如图,已知在平面直角坐标系中,直线l:+2分别交两坐标轴于A、B
两点,M是线段AB上一个动点,设M的横坐标为x,三角形OMB的面积为S;
(1)写出S与x的函数关系式,并画出函数图象;
(2)若△OMB的面积为3,求点M的坐标;
(3)当△OMB是以OB为底的等腰三角形时,求它的面积。

2、在边长为2的正方形ABCD的边BC上,点P从B点运动到C点,设PB=x,四
边形APCD的面积为 y,
(1)写出y与自变量x的函数关系式,并画出它的图象。

(2)当x为何值时,四边形APCD
3、如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停
止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,
(1)求△ABC的面积。

(2)求Y关于x的函数解析式。

4、如图①在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P 从开始移动到停止移动一共用了多少秒(结果保留根号)
5、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.
(1)求△COP的面积
(2)求点A的坐标及P的值
(3)若S△AOP=S△BOP,求直线BD的函数解析式。

一次函数之动点问题(综合测试)人教版(含答案)

一次函数之动点问题(综合测试)人教版(含答案)

第1页共7页
一次函数之动点问题(综合测试)人教版
一、单选题(共3道,每道33分)
1.如图,在直角坐标系中,O是坐标原点,A,B,C三点的坐标分别为A(18,0),
B(18,8),C(6,8),四边形OABC是梯形,点P,Q同时从原点出发,分别做匀速运动,
其中点P沿OA向终点A运动,速度为每秒2个单位,点Q沿路线O→C→B运动,速度为
每秒3个单位,当一点到达终点时另一点也随之停止运动,设运动的时间为t秒.(1)设△OPQ
的面积为S,则S与t之间的函数关系式为( )

A.
B.
C.
D.
答案:B
解题思路:
第2页共7页
第3页共7页

试题难度:三颗星知识点:一次函数之动点问题
2.(上接第1题)(2)当直线PQ把梯形OCBA分成面积比为1:7的两部分时,t的值为( )
第4页共7页

A.B.
C.D.
答案:A
解题思路:
第5页共7页
试题难度:三颗星知识点:一次函数之动点问题
3.如图,直线与x轴交于点A,与直线交于点P.动点E从原点O
出发,以每秒2个单位的速度沿折线OP—PA向点A匀速运动(点E不与点O,A重合),过
点E分别作EF⊥x轴于点F,EB⊥y轴于点B.设运动t秒时,矩形EBOF与△OPA重叠部分
的面积为S,则S与t之间的函数关系式为( )
第6页共7页

A.
B.

C.
D.
答案:C
解题思路:
第7页共7页
试题难度:三颗星知识点:一次函数之动点问题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。

2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。

重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。

小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。

2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

课后检测: 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。

A .3个B .4个C .5个D .7个2、直线与y=x-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ).A .4个B .5个C .6个D .7个4、如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点.(1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.5、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点,43=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。

(1)求直线3+=kx y 的解析式;(2)当点C 运动到什么位置时△AOC 的面积是6;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由。

自我检测:1.如图,直线OC 、BC 的函数关系式分别为y =x 和y =-2x +6,动点P(x ,0)在OB 上移动(0<x <3), ⑴求点C 的坐标;⑵若A 点坐标为(0,1),当点P 运动到什么位置时(它的坐标是什么),AP+CP 最小; ⑶设△OBC 中位于直线PC 左侧部分的面积为S ,求S 与x 之间的函数关系式。

2.如图2,在矩形ABCD中,动点P从点B出发,沿BC、CD、D匀速运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC 的面积是()A、10 B、16 C、18 D、203、如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示,请回答下列问题:(1)点P在AB上运动时间为s,在CD上运动的速度为cm/s,△APD的面积S的最大值为cm2;(2)求出点P在CD上运动时S与t的函数解析式;(3)当t为s时,△APD的面积为10cm2.4、如图1,等边△ABC中,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x秒.(图2、图3备用)(1)填空:BQ=,PB=(用含x的代数式表示);(2)当x为何值时,PQ∥AC?(3)当x为何值时,△PBQ为直角三角形?一次函数压轴题1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC 。

(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.4.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF 与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.5.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.6.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P 的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.7.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.8.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.10.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.参考答案1.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

相关文档
最新文档