第三代压水堆核电站AP1000简介1

第七章 压水堆核电站的二回路系统及设备

第七章压水堆核电站的二回路系统及设备 7.1 主蒸汽系统 主蒸汽系统将蒸汽发生器产生的新蒸汽输送到主汽轮机和其他用汽设备及系统。与主蒸汽系统直接相关的设备是:主汽轮机高压缸、汽轮机轴封系统(CET)、汽水分离再热器(MSR)、蒸汽旁路排放系统(GCT)、主给水泵汽轮机(APP)、辅助给水泵汽轮机(ASG)、除氧器(ADG)和蒸汽转换器(STR)。 三台蒸汽发生器顶部引出的三根外径为Φ812.8mm主蒸汽管,分别穿过反应堆厂房(安全壳);进入主蒸汽隔离阀管廊,并以贯穿件作为主蒸汽管在安全壳上的锚固点。穿过主蒸汽隔离阀管廊后进入汽轮机厂房,然后合并为一根外径为Φ936mm的公共蒸汽母管,再将蒸汽引向各用汽设备和系统。如图7.1所示。 在主蒸汽隔离阀管廊中的每根主蒸汽管道上装有一个主蒸汽隔离阀,其下游安装了一个横向阻尼器。主蒸汽隔离阀上游的管道上装有7只安全阀,一个大气排放系统接头和一个向辅助给水泵汽轮机供汽的接头。大气排放系统接头和辅助给水泵汽轮机供汽接头之所以要接在主隔离阀的上游,是考虑到当二回路故障蒸汽隔离阀关闭时大气排放系统和辅助给水系统还能工作。 在主蒸汽隔离阀两侧还接有一条旁路管,其上装有一个气动隔离阀,在机组启动时平衡主蒸汽隔离阀两侧的蒸汽压力,并在主蒸汽管暖管时提供蒸汽。 在汽轮机厂房内,从蒸汽母管上引出四根Φ631mm的管道与主汽轮机的四个主汽门相连,向汽轮机高压缸供汽。此外,从蒸汽母管两头还引出二条通往凝汽器两侧的蒸汽旁路排放总管。管上各引出6条通往凝汽器的蒸汽排放管,去主给水泵汽轮机、除氧器、蒸汽转换器、汽水分离再热器和轴封的供汽管。两条蒸汽排放总管由一根平衡管线连接在一起。 (1)主蒸汽隔离阀 主蒸汽隔离阀为对称楔形双闸板闸阀。正常运行时全开,但在收到主蒸汽管线隔离信号后能在5秒内关闭。 隔离阀的执行机构是一个与氮气罐相连的液压缸。氮气进入液压缸活塞的上部,其名义bar a。氮气的膨胀力使隔离阀关闭。为开启阀门,设有一套汽动油压泵液压系压力为198. bar a液压油进入液压油缸活塞的下部,克服氮气的压力和开启阻统,产生名义压力为329. 力使阀门开启,见图7.2。快速关阀是由快速排泄液压油缸活塞下部的油液实现的。 控制分配器用于关闭主蒸汽隔离阀。它们由电磁阀操纵。当电磁阀通电时,分配器开启,将液压油缸活塞下部的液体通过常开隔离阀排出,主蒸汽隔离阀在氮气压力作用下迅速关闭。两条排油管线是冗余的,单独一条管线就足以使阀门在5秒内关闭。

先进压水堆核电站核岛通风空调系统设备鉴定研究

先进压水堆核电站核岛通风空调系统设备鉴定研究 文章通过对第三代先进压水堆核电站核岛通风空调系统核级设备样机鉴定进行分析,总结出适用于核岛通风空调系统核级关键设备包括风机类、风阀类、空调类和净化类的样机选择原则、鉴定方法的选择、包络性地震载荷的确定、鉴定的实施和鉴定结论。该鉴定总结对于其他核电站通风空调系统核级设备的鉴定具有较高的参考价值和指导意义。 标签:通风空调系统;设备鉴定;环境鉴定;抗震鉴定;鉴定方法 引言 核电站核岛通风空调系统对于核电站正常运行和环境保护起着重要的作用,是反应堆重要的辅助屏障系统,也是核电站的纵深防御措施之一。通风空调设备是核岛通风空调系统的重要组成部分,对于核安全级(简称核级)的通风空调设备,需要进行鉴定以验证其在规定的使用条件下具备所要求的功能能力。核岛通风空调系统的主要设备包括风机类、风阀类、空调类和净化类,因设备功能不同,这些设备类别又分为多种系列、型号和规格,选择有代表性的样机进行鉴定成为必然。文章在目前国内在建的某第三代先进压水堆核电站核岛通风空调系统关键设备的研制基础上,对鉴定样机的选择原则、鉴定方法的选择、鉴定输入条件、鉴定内容、鉴定结论进行了分析总结。 1 设备鉴定 1.1 设备鉴定的目的 根据NB/T 20036.1[1],设备鉴定的目的是证明被鉴定设备在规定的使用条件下具备所要求的功能能力,并产生相应的证据。 1.2 设备的分级 HAF102[2]在设计总准则一章中针对核电厂的设计提出了“必须明确规定构筑物、系统和部件的全部安全功能。构筑物、系统和部件必须按其安全的重要性进行分级。”从而根据其安全级别对物项的设计和评定提出相应的鉴定要求。根据TS-X-NIEP-TCYV-DC-20001[3],第三代先进压水堆核电站核岛通风空调设备功能安全分级、电气分级、地震分级之间的对应关系如表1所示。 1.3 设备鉴定的内容 设备鉴定包括设备的环境鉴定和抗震鉴定,只有经过设备鉴定合格的设备,才能用于核设施。环境鉴定是验证设备在正常与事故环境条件下的性能,环境鉴定包括长期正常运行工况下的老化鉴定和事故环境工况下的LOCA鉴定;抗震鉴定是验证设备在地震载荷的作用下能否正常工作,保持其要求的性能,以履行

压水堆核电站组成资料

压水堆核电站组成 上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护 enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次 压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。 2-1 压水堆主要部件 2-1-1 堆芯 堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。 压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。用富集度为2%—4.4%的低富集铀为燃料。所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。 图2-1(a) 压水堆堆芯横剖面图

图2-1(b) 压水堆燃料组件 燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。 堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。第一个运行周期的长度一般为1.3—1.9年。以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。通常将新燃料装入最外区,将辐照过的燃料移向中心,称由外向内换料方案。由于辐照过燃料组件的放射性水平极高,所有装卸料操作均在水屏蔽层以下进行。为换料一般需要停堆3—4周,可利用这个时间进行汽轮发电机组及其它设备的检修,压力容器和蒸汽发生器在役检查工作。 为了确保燃料元件的安全,在运行中要严格限制核电站的负荷变化速率〈每分钟5%额定功率〉,用化学与容器控制系统和取样系统对冷却剂水质进行净化,PH值、氧、氢、氯、氟、硼、酸、锂-7等含量的控制及监测,并加强对燃料包壳完整性的监督。 2-1-2 控制棒组件

压水堆基础思考题

一回路复习题 绪论概述 1.简述压水堆核电站的基本组成。 答:以压水堆为热源的核电站。主要由核岛(NI),常规岛(CI),电站配套设施(BOP)三大部分组成。 (1)核岛:蒸汽发生器、稳压器、主泵和堆芯等四大部件。在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。 (2)常规岛:主要包括汽轮发电机组、变压器、冷凝器、加热器、主给水泵及二回路系统等,其形式与常规火电厂类似。 (3)电站配套设施:除核岛和常规岛以外的配套建筑物、构筑物及其设施的统称。 2.压水堆核电站如何将核能转化为电能? 答:压水堆核电站将核能转变为电能的过程分为四步,在四个主要设备中实现的。 (1)反应堆:将核能转变为热能(高温高压水作慢化剂和冷却剂); (2)蒸汽发生器:将一回路高温高压水中的热量传递给二回路的给水,使其变为饱和蒸汽,在此只进行热量交换,不进行能量的转变; (3)汽轮机:将饱和蒸汽的热能转变为高速旋转的机械能。 (4)发电机:将汽轮机传来的机械能转变为电能。 3.核岛厂房主要有哪些?分别布置哪些系统? 答:核岛厂房主要有反应堆厂房(RX1、RX2),燃料厂房(KX),核辅助厂房(NX),电气厂房(LX)。分别布置的系统有: (1)反应堆厂房又称安全壳,其内主要有反应堆和其他一回路主要设备以及部分专设安全系统和核辅助系统设备。 (2)燃料厂房是一个平顶方形混凝土结构,其内主要有乏燃料水池,用以贮放堆芯中卸出的乏燃料。 (3)核辅助厂房为两机组共用。厂房呈矩形,主要布置核辅助系统(如化学容积控制系统、硼和水补给系统等)、废物处理系统及部分专设安全系统设备。 (4)电气厂房布置有主控室和各种仪表控制系统及供配电设备。 4.常规岛主要有哪些厂房?分别布置哪些系统? 答:常规岛厂房主要由汽机厂房和辅助间(1MX 2MX)及联合泵站(1PX 2PX)所组成。汽机厂房布置有二回路及其辅助系统的主要设备,如汽轮机、发电机、冷凝器、除氧器、给水泵等。毗邻的建筑物还有通风间、润滑油传送间、主变压器区等。联合泵站位于循环冷却水(海水)的取水口处,其内主要设置循环水泵和旋转滤网,为汽轮机组的冷凝器提供冷却水源(海水)。 5.厂房及房间的识别符号如何定义? 6.设备的识别符号如何定义? 答:答: 7.工程图纸的识别符号如何定义? 答: 第一章反应堆结构 1.压水型反应堆由哪几大部分组成? 答:反应堆的组成:由堆芯、压力容器、堆内构件和控制棒驱动机构等四部分组成。 2.堆芯内有多少束燃料组件?试述燃料组件的组成? 答:堆芯有157各结构完全相同的燃料组件。燃料组件的组成:由骨架和燃料棒组成,呈17×17正方形栅格排列,总共有289个栅格,其中264个装有燃料棒;24个装有控制棒导向管,它们为控制棒的插入和提出导向;1根通量测量管位于组件中心位置,为机组运行过程中测量堆芯内中子通量的测量元件提供通道。 3.控制棒组件按材料和功能各如何分类?其作用如何? 答:按材料分类:(1)黑棒组:由24根吸收剂棒组成,吸收能力强;(2)灰棒组:由8根吸收剂棒和16根不锈钢棒组成,吸收能力弱。 按功能分类:分为功率调节棒、温度调节棒和停堆棒三类,每类又分为若干组。正常运行时,功率调节棒位于机组功率对应的棒位高度,用于调节反应堆功率;温度调节棒在堆芯上部一定范围移动,用于控制冷却剂温度的波动;停堆棒用于事故紧急停堆,正常运行时提出堆外。

PCTran压水堆核电站事故仿真实验报告

PCTran压水堆核电站事故仿真实验报告 一、预习报告 实验名称:压水堆核电站事故PCTRAN仿真模拟 实验目的:1、熟悉PCTRAN软件的使用; 2、利用PCTRAN软件模拟核电站的工作、事故工况和事故现象; 3、结合仿真软件深入了解核电站事故的发生原因、现象、后果。 实验仪器设备: 电脑、仿真软件 实验内容: 1、启动电脑,打开PCTRAN仿真软件,熟悉操作界面和 方法。 2、加载运行工况,然后加载事故工况。 3、在事故工况稳定之后,导出事故流程记录,并对事故 中产生响应的参数进行图表记录。 实验原理和背景材料: PCTRAN是基于PC的核能仿真软件包尤其针对核电站运行和事故反应的培训。如堆芯熔化,安全壳失效和放射性物质释放等严重事故也包含在它的范围内。从1985引入以来,PCTRAN 已经成为全世界安装在核电站和研究机构中最成功的培训仿真软件。从1996年起,PCTRAN被国际原子能机构(IAEA)选为年度先进反应堆仿真专题研讨会培训软件。相当多的大学用PCTRAN教授核能技术并用作硕士和博士的论文开发平台。 在核电站模拟方面,提供了正常运行时的仪表和控制显示。另外还提供了反应对冷却剂边界泄露或者安全壳失效的图标。组

合的放射物释放形成了应急计划区的放射性剂量分布。PCTRAN 可以为核电站的工作人员提供真实的培训和练习。模拟程序延展到可以根据现实的气象条件提供区域的剂量预测。它的运行可以是真实的速度也可以是数倍于真实的速度。它的图形用户界面使操作起来十分方便。所有的图标,文本信息和数据都是通过Microsoft Office Suite传递。 PCTRAN现有的模型: · GE BWR 2 (Oyster Creek), 4 (Peach Bottom), 5 (La Salle), 6 (River Bend) and ABWR (Lungmen) with Mark I, II, III or advanced containment · GE ABWR and ESBWR · Westinghouse 2-loop Chasma (300 Mwe) 与秦山一期同型, 600 MW Point Beach与秦山二期同型, and 4-loop (Salem) PWR dry containment or ice condenser containment (Sequoyah) · Westinghouse AP1000 三门或海阳 · Korean Standard Nuclear Plant OPR1000 and APR1400 · B&W (now Areva) PWR’s of once through steam generators (TMI)· Framatome PWR’s 3-loop大亚湾或岭澳, Areva EPR 1600, ATMEA PWR 3-loop, Mitsubishi APWR · ABB BWR’s (TVO) · Russian VVER 1000 田湾, 第三代 AES92

第三代核电站的要求

第三代核电站的要求 美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了下一代核电站(即第三代核电站)的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计。 第三代压水堆核电站有两种类型:改进型电厂(如EPR)和非能动型电厂(如 AP1000)。URD对两种类型的核电厂又分别提出了专用要求,其要点如下: 改进型核电厂:更简化的专设安全系统;至少有两条隔离的和独立的交流电源与电网相连;至少三十分钟时间内,不考虑操纵员的干预;在丧失全部给水,至少在2小时内不应有燃料损坏;在丧失厂内外交流电源的8小时内,燃料没有损坏等。 非能动型核电厂:不要求安全相关的交流电源;至少72小时内,不需要操作员干预;严重事故条件下,安全壳有足够的设计裕量;不需要厂外应急计划等。 第三代主要先进堆型介绍:按照URD和和其他相关文件要求,近十年来世界主要核电国家开发了一系列第三代核电堆型,这些堆型按其设计特征可以分为改进型和革新型。主要有三种核电堆型:AP1000、EPR、ABWR。 3.1 AP1000 AP1000是美国西屋公司开发的一种双环路,电功率为1117MW的第三代先进型PWR机组,他是1999年12月获得NRC设计许可证的AP600的设计,主要特征是高水平非动能安全系统的设计,并通过提高功率输出水平,降低发电成本。AP1000主要有以下几个特点:a.采用了既先进又成熟的技术,如反应堆采用Model 314技术和IFBA燃料组件,反应堆冷却剂泵采用全密封泵(屏蔽泵)等; b.采用非动能的安全系统,如非能动的堆芯冷却系统、非能动的安全壳冷却系统、主控室可滞留系统和安全壳隔离系统也通过非动能安全设计和实施实现其功能; c.反应堆冷却系统进行了若干改进以使其更可靠和便于维修; d.采用先进的全数字化仪控系统设计; e.设计改进大大简化了AP1000核电厂。使建造周期大大缩减。 3.2 欧洲先进压水堆EPR 1993年5月,法国和德国的核安全当局提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全壳能力来提高安全性,从放射性保护、废物处理、维修改进、减少人为失误等方面根本改善运行条件。1998年,完成了EPR基本设计。2000年3月,法国和德国的核安全当局的技术支持单位IPSN和GRS完成了EPR基本设计的评审工作,并于2000年11月颁发了一套适用于未来核电站设计建造的详细技术导则。 EPR是法马通和西门子联合开发的反应堆。2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome ANP,AREVA集团的子公司)。

压水堆核电站工作原理简介.

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳。这些能量除了极少数(约2%随裂变产物泄露出反应堆外,其余(约98%全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀

压水堆核电站的组成及总布置

压水堆核电站的组成及总布置 (1)反应堆厂房 –该厂房主要布置核反应堆和反应堆冷却剂系统及部分核岛辅助系统、专设安全设施系统。从结构上来讲,反应堆厂房由筏板基础,带钢衬里的圆筒形预应力钢筋混凝土安全壳及其内部结构组成。安全壳内径37m,屏蔽墙厚0.9m,总高59.4m,设计压力0.52Mpa (绝对压力)。反应堆厂房内部结构布置如下: –·-3.5m放置堆芯仪表系统、安注系统、余热排出系统热交换器、化容控制系统的再生热交换器、安全壳连续通风系统及反应堆坑通风系统的风机。 –·±0.00m放置余热排出系统泵、稳压器卸压箱、安全壳的过滤净化系统过滤器、各系统管道、应急人员气闸门。 –·4.65m主要为三套蒸汽发生器、主泵和稳压器的支承楼板的隔间,放置在本层的还有安全壳过滤净化系统的风机和反应堆压力容器顶盖存放地,压力容器也通过该层。 –·8.00m层为反应堆换料水池楼板层,堆内构件存放及燃料组件倒换装置也放置在该层,进入安全壳的人员闸门也在此标高。–·20.00m层为反应堆操作大厅,有设备闸门通入。 –·反应堆压力容器占有从-3.50至8.20m的堆本体中心净空间。M310加改进型反应堆本体由压力容器、堆芯、堆内构件、堆内测量仪表和控制棒驱动机构等设备组成。

–·各层之间的交通由楼梯与电梯联系。反应堆在运行期间,一般人员不得进入;事故检修和停堆检修时,人员可经由空气闸门进入;设备闸门为安装大件设备时的进入通道,运行时封闭。 –以下简要对堆内构件进行补充说明。 (2)核辅助厂房 –由1、2号机组共用,主要布置核辅助系统及设备,厂房面积74×46m,高22m。布置(层高变化较大,仅介绍几个重要的层间)有如下系统和设备: –·±0.00m主要有上充泵、硼回收系统、废物处理系统、设备冷却水系统、电气用房。 –·5.00~8.00m主要为硼回收系统的气体分离器和蒸发器间,过滤器及除盐装置间,废气处理系统的气体衰变箱隔间、化容控制系统设备间、阀门操作间等。 –·11.50m主要为过滤器及除盐装置上部操作间,硼水制备、硼回收系统贮槽及核辅助厂房通风系统。 –·本厂房的对外出入卫生闸门设在电气厂房±0.00m层,整个厂房内各层垂直联系是通过楼梯和电梯完成。厂房为现浇钢筋混凝土结构,有放射性防护要求的房间按屏蔽要求确定墙和楼板厚度。 (3)燃料厂房 –位于反应堆厂房南侧,外轮廓尺寸46×24m,51×24m。

我国第三代核电技术一览

我国第三代核电技术一览 我国的核电技术路线是在上世纪80年代确定走引进、消化、研发、创新的道路的。经过20余年的努力,通过对引进的二代法国压水堆技术的消化吸收,取得了巨大的技术进步,实现了60万千瓦压水堆机组设计国产化,基本掌握了百万千瓦压水堆核电厂的设计能力。目前我国有五种第三代核电技术拟投入应用,他们分别是 AP1000、华龙一号、CAP1400、法国核电技术(EPR)以及俄罗斯核电技术(VVER)。北极星电力网小编整理五种核电技术及特点供核电业界人士参考。 1、AP1000 AP1000是美国西屋公司研发的一种先进的“非能动型压水堆核电技术”。西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。该技术在理论上被称为国际上最先进的核电技术之一,由国家核电技术公司负责消化和吸收,且多次被核电决策层确认为日后中国主流的核电技术路线。 国家核电技术公司的AP1000和中广核集团与中核集团共推的华龙一号被默认为中国核电发展的两项主要推广技术,两者一主一辅,AP1000技术主要满足国内市场建设和需求,华龙一号则代表中国核电出口国外。 作为国内首个采用AP1000技术的依托项目三门核电一号机组原计划于2013年底并网发电,但由于负责AP1000主泵制造的美国EMD公司多次运抵中国的设备都不合格,致使三门一号核电机组如今已经延期2年。 目前,除在建的两个项目(三门、海阳)外,三门二期、海阳二期、广东陆丰、辽宁徐大堡、以及湖南桃花江等内陆核电项目均拟选用AP1000技术。 AP1000技术主要目标工程包括:海阳核电厂1-2号机组、三门核电厂1-2号机组、红沿河核电厂二期项目5-6号机组、三门核电厂二期项目、海阳核电厂二期项目、徐大堡核电厂一期项目以及陆丰核电厂一期项目等。其中海阳核电厂1-2号机组和三门核电厂1-2号机组为正在建设的核电项目,其余五个为有望核准的核电项目。 【三门核电站】浙江三门核电站是我国首个采用三代核电技术的核电项目。三门核电站在全球率先采用第三代先进压水堆AP1000技术,其1号机组是全球首座AP1000核电机组。三门核电站位于浙江南部三门县,一期工程建设2004 年7月获得国务院批准并于2009年4月19日开工建设,总投资250亿元,将首先建设两台目前国内最先进的100万千瓦级压水堆技术机组。这是继中国第一座自行设计、建造的核电站——秦山核电站之后,获准在浙江省境内建设的第二座核电站。三门核电站总占地面积740万立方米,可分别安装6台100万千瓦核电机组。全面建成后,装机总容量将达到1200万千瓦以上,超过三峡电站总装机容量。 AP1000技术特点:

先进型压水堆核电机组AP1000综述

先进型压水堆核电机组AP1000综述 一、AP1000的总体概况和技术特点 1. 总体概况 AP1000是西屋公司开发的一种双环路1000 MW的压水堆核电机组,其主要特点有:采用非能动的安全系统,安全相关系统和部件大幅减少、具有竞争力的发电成本、60年的设计寿命、数字化仪空室、容量因子高、易于建造(工厂制造和现场建造同步进行)等,其设计与性能特点满足用户要求文件(URD)的要求。 西屋公司在开发AP1000之前,已完成了AP600的开发工作,并于1998年9月获得美国核管会(NRC)的最终设计批准(FDA),1999年12月则获得NRC的设计许可证,该设计许可证的有效期为15年。西屋公司投入了大量人力,通过大量的实体试验和众多听证与答辩来确保其设计的成熟性。 AP1000基本上保留了AP600核岛底座的尺寸,但也作了适当的设计改进以提升AP1000的先进性和竞争力:增加堆芯长度和燃料组

件的数目;加大核蒸汽供应系统主要部件的尺寸;适当增加反应堆压力壳的高度;采用△125的蒸汽发生器;采用大型密封反应堆主泵(装备有变速调节器);采用大型的稳压器;增加安全壳的高度;增加某些非能动安全系统部件的容量;增加汽轮机岛的尺寸和容量等。2. 主要技术特点 反应堆采用西屋成熟的Model314技术,该技术已成功地用于比利时Doel-4、Tihange-3和美国South Texas Project电站上。 反应堆冷却系统为二环路设计,每个环路通过冷却剂管道联接有一台大容量蒸汽发生器和两台密封式的冷却剂泵,此外冷却系统上还联接有一台稳压器。 采用非能动的安全系统。它采用双层安全壳,并保留了AP600的非能动安全系统的构架,系统设计简化,安全性大大提高。 仪控系统是基于Sizewell B的全数字技术而开发完成的,特别采用了经验证的数字化安全系统,采用了紧凑型的工作站式的控制室,采用了基于影像技术的人-机接口。 二、AP1000的安全性、经济性与成熟性 1. AP1000的安全性 AP1000采用失效概率低的非能动安全系统,大大提升了机组的安全性,其堆芯熔化概率(CDF)仅3×10-7/堆年,远低于URD的10-5/堆年的要求,其安全裕度与堆芯熔化概率较典型二代压水堆核电站以及AP600都有了长足的进步。其非能动堆芯冷却系统如下图所示:

压水堆核电站稳压器压力控制系统仿真研究

基金项目:国家自然科学基金资助项目(61040013);上海市教育委员 会重点学科建设项目(J51301);上海市教育委员会科研创 新项目(09YZ347) 收稿日期:2012-03-23修回日期:2012-05-04第30卷第1期计算机仿真2013年1月文章编号:1006-9348(2013)01-0193-04 压水堆核电站稳压器压力控制系统仿真研究 张国铎,杨旭红,许行,卢栋青 (上海电力学院,上海200090) 摘要:研究PID 控制器参数优化问题,针对稳压器压力控制系统具有复杂非线性、时变性特点,引起系统的输出品质特性较差,超调量大,调节时间长,上升时间长,控制精度差等。传统PID 的控制参数难以精确整定,且依赖于对象的精确数学模型。为了提高PID 控制精度,减小超调量、调节时间和上升时间,提出用单神经元的神经网络来优化PID 控制器参数的方法。通过单神经元的自学习和自适应能力,获得最优控制性能的PID 控制参数。仿真结果表明,单神经元神经网络的PID 控制方法与传统的PID 控制方法相比,系统响应速度更快,超调量更小,为优化控制系统提供了参考。 关键词:压水堆;稳压器;压力控制系统;比例积分微分控制;单神经元 中图分类号:TP183文献标识码:A Simulation of Pressurizer Pressure Control System of Pressurized Water Reactor Nuclear Power Station ZHANG Guo -duo ,YANG Xu -hong ,XU Hang ,LU Dong -qing (Shanghai University of Electric Power ,Shanghai 200090,China ) ABSTRACT :Study PID controller parameters optimization problem.The pressure control system of pressurizer has the characteristics of complex nonlinear and time -varying ,leading to the poor outputs of the system ,such as large o-vershoot ,long setting time and low control accuracy.It is difficult to get precise parameters with traditional PID con-troller ,and the PID control method is relied on the precise mathematical model badly.In order to improve the precision of PID control ,decrease the overshoot and the setting time ,and the rising time ,a PID controller parameter optimization method was put forward based on single neuron neural network.Through the self -learning and the self -adaptive abili-ty of the single neuron ,the optimal PID controller parameters were obtained.The computer simulation experiment dem-onstrates that the single neuron PID controller performs very well :the response is quicke ant the overshoot is minimal compared with the tradition PID regulator.And it provides some reference for optimization control system. KEYWORDS :PWR -type ;Pressurizer ;Pressure control system ;PID controller ;Single neuron 1引言 稳压器是压水堆核电站的重要设备之一,其压力控制的优劣直接影响到核电站能否安全的运行。稳压器的压力要 维持在一定范围内,在稳态运行时一回路绝对压力在15. 5MPa 的整定值附近。当系统压力过高时,系统压力边界可 能会被破坏,当系统压力过低时堆芯会发生DNB (偏离泡核 沸腾)。PID 控制是传统的稳压器压力控制系统常用的控制 方法,该方法具有直观、实现简单和鲁棒性好等优点。但是, 在很多实际的情况中,被控对象往往具有非线性、时变性和不确定性,对象参数和环境常常随着时间发生变化,使得控制对象和模型失配, 传统PID 控制器参数往往优化不良,控制效果欠佳[1]。因此常规PID 控制的应用受到了很大的挑战和限制。针对传统PID 控制器参数优化过程存在的问题,运用单神经元的自学习和自适应能力,获得最优控制性能的PID 控制参数,结合单神经元神经网络适用于复杂非线性系统进行建模和控制特点,本文提出了一种用单神经元神经网络来优化PID 控制器参数的方法,并通过MATLAB 仿真来证明该控 制方法比传统的PID 控制优越性体现在超调量的减小、调节 时间的减小和上升时间的减小。2稳压器压力控制系统压力控制的作用是在稳态和设计瞬态工况下,使稳压器 —391—

压水堆核电站反应堆压力容器金属材料概述

压水堆核电站反应堆压力容器金属材料概述压水堆核电站反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此ASME规范第Ⅺ卷要求,反应堆压力容器应采用优质材料、严格制造工艺、完善的试验和检查技术,且在服役期间必须定期进行检查。 1.反应堆压力容器结构和作用 功率在1000MW及以上的普通压水堆核电站反应堆压力容器设计压力高达17MPa,设计温度在350℃左右,直径近5m,厚度超过20cm,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、简体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金Im718或18—8钢)“0”形环密封。为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm厚的不锈钢衬里。为防止外表面腐蚀,压力容器外表面通常涂漆保护。 2.反应堆压力容器材料的发展史 压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B(法兰锻件为A350LFs),由于A212B钢淬透性和高温性能较差,第二代改用Mn-Mo 钢A302B (锻材为A336),该钢中的Mn是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。随着核电站向大型化发展,压力容器也随之增大和增厚,A302B钢缺口韧性差的不足就逐渐显露出来,为保证厚截面钢的淬透性,使强度与韧性有良好的配合,20世纪60年代中期又对A302B钢添加Ni,改用淬透性和韧性比较好的Mn-M-Ni钢A533B (锻材为A508一Ⅱ钢)。并以钢包精炼、真空浇铸等先进炼钢技术提高钢的纯净度、减少杂质偏析,同时将热处理由正火+回火处理改为淬火+回火的调质处理,使组织细化,以获得强度、塑性和韧性配合良好的综合性能。与此同时,由于壁厚增加和面对活性区的纵向焊缝辐照性能差,所以将压力容器由板焊接结构改为环锻容器,材料采用A508一Ⅱ钢。它曾盛行一时,但自1970年西欧发现A508一Ⅱ钢堆焊层下有再热裂纹之后,又发展了A508一Ⅲ钢。 A508一Ⅲ钢是在A508一Ⅱ钢基础上,通过减少碳化物元素C、Cr、Mo、V的含量,以减少再热裂纹敏感性,使基体堆焊不锈钢衬里后,降低产生再热裂纹的倾向。为弥补因减少淬透性元素而降低的强度和淬透性,特增加了A508一Ⅲ钢中的Mn含量。因锰易增大钢中偏析,故又降低了磷、硫含量。硅在上述钢中是非合金化元素。有增加偏析、降低钢的塑、韧性的倾向,其残存量以偏低为好。厚截面的A508-Ⅲ钢淬火后,基体组织是贝氏体,当冷却速度不足时,将出现铁素体和珠光体,这种组织较贝氏体粗大,对提高强度和韧性不利,所以反应堆压力容器用钢要求采用优化的调制热处理工艺。 俄罗斯的反应堆应力容器用的材料不是Mn-Mo-Ni钢而是Cr-M0-V以及Cr-Ni-Mo-V钢。该钢已分别用在俄罗斯及东欧的VVER-440和VVER-l000压水堆上以及我国的田湾核电站

压水堆核电站的发电原理

压水堆核电站的发电原理 把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由1717根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束控制棒,控制核裂变反应。

利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图 2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,吸收了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废

压水堆核电站基础

第五章 反应堆冷却剂系统(RCP ) 反应堆冷却剂系统是核电站一回路主系统,系统代码为 RCP ,包括三个环路,每个环 路上有一台冷却剂循环泵和一台蒸汽发生器,其中 1号环路上还设有一台稳压器及与其相 关的卸压箱。 反应堆冷却剂系统的功能是: (1) 主泵使冷却剂在环路中循环,将堆芯的热量带出,通过蒸汽发生器将热量传给 二次侧给 水; (2) 堆芯中的冷却剂又起慢化剂作用,使中子得到慢化; (3) 冷却剂中溶有硼酸,用来控制反应性的变化; (4) 稳压器用来控制冷却剂压力,防止堆芯产生偏离泡核沸腾; (5 )稳压器上的安全阀起超压保护作用; (6)在发生燃料元件包壳破损时,反应堆冷却剂系统的压力边界是防止放射性泄漏 的第二道屏 障。 图5.1是RCP 系统1号环路的示意图,图中也标出了其它一些与 RCP 系统连接的辅助系 统。注意有些辅助系统与 RCP 的接口不在1号环路,这里只是示意性地把它们表示出来。 图5.1 RCP 主系统(1号环路) 5.1反应堆冷却剂泵 反应堆冷却剂泵又称主泵, 是三相感应电动机驱动的立式、 单级、轴封泵,由电动机、 11 越I 停塔轡即 曲冒 Bl

轴封组件和水力部件组成。反应堆冷却剂由装在转动轴下部的泵唧送,冷却剂通过泵壳底 部吸入,然后从泵壳侧面出口接管排出。串联布置的三级轴封有效地限制了冷却剂沿泵轴 的泄漏。 三台主泵的设备编码分别为RCP001PO、002PO、003PO。主泵名义流量23790 m3/h, 压头97.2 mCL,转速1485 rpm。其结构如图5.2所示。 5.1.1水力部件 1.泵体 泵体由泵壳、扩散器(又称导叶)、 进水导管、叶轮、泵轴组成。其中除泵轴 为不锈钢锻件之外,均为不锈钢铸件。 叶轮有七个螺旋离心叶片,装在泵轴 的下端。扩散器汇集来自叶轮的冷却剂, 它由十二个螺旋离心叶片组成,被安装在 扩散段法兰的底部,扩散器可以与泵的内 部部件同时从泵体中取出。在扩散器的下 部装有防热罩。冷却剂由泵壳底部的进口 接管吸入,由装在泵轴下部的叶轮唧送, 经扩散器从泵壳侧面的出口接管排出。 2?热屏 热屏是由12层不锈钢扁平盘管组成 的热交换器,装在叶轮与泵轴承之间,热 屏法兰构成泵壳上法兰。由RCV系统来的 高压冷却水注入泵径向轴承和轴封之间, 它对轴封来说是密封水,对径向轴承来说 则是润滑剂。 热屏冷却盘管内流动的冷却水来自设 备冷却水系统( 图5.2反应堆冷却剂泵 RRI),其进口温度为35 C,流 量约为9 m3/h。它在反应堆冷却剂(292.4 C)和轴承之间提供传热屏障,冷却流过的反应堆冷却剂,防止轴封和轴承的损坏。即使在失去RCV系统注入水的情况下,这样构成的热 屏可保持其上部温度不超过72 C。因此,在主泵运行时或在主泵停运后而一回路温度高于70 C时,必须供给热屏冷却水。 3 .泵轴承

压水堆核电站反应堆压力容器材料概述1

压水堆核电站反应堆压力容器材料概述 李承亮,张明乾 (深圳中广核工程设计有限公司上海分公司,上海200030) 摘要 反应堆压力容器是核电站重要部件之一,综述了反应堆压力容器材料的发展历程、性能要求、在役辐照脆化、制造现状等,指出A5082Ⅲ钢具有优良的焊接性、较高的淬透性和抗中子辐照脆化性,并具有良好的低温冲击韧性和较低的无延性转变温度等优点。分析了该钢的化学成分、制造工艺与性能之间的关系,对反应堆压力容器材料国产化的实现与未来发展方向的指引有一定的参考作用。 关键词 压水堆核电站 反应堆压力容器 材料 辐照脆化Overview of Reactor Pressure Vessel Steel in PWR Nuclear Power Plant s L I Chengliang ,ZHAN G Mingqian (Shanghai Branch ,China Nuclear Power Design Company Ltd.(Shenzhen ),Shanghai 200030) Abstract Reactor pressure vessel is one of the key components to PWR nuclear power plants.The development of reactor pressure vessel steel and its performance requirements ,in 2service irradiation embrittlement ,and manufactur 2ing status ,etc are summarized.It is demonstrated that A5082Ⅲsteels have advantages such as good weld 2ability ,high hardenability and enhanced resistance to neutron irradiation damage ,as well as excellent low 2temperature impact toughness and lower transition temperature without ductility.In addition ,the relation of chemical composition and fab 2rication techniques to mechanical properties is also analyzed.This paper will provides an reference for directing the suc 2cess of the localization and f uture development of reactor pressure vessel steel to some extent. K ey w ords PWR power plant ,reactor pressure vessel ,materials ,irradiation embrittlement  李承亮:男,1982年生,助理工程师,硕士,从事核电站核岛主设备材料设计、研究以及先进核能系统研究等工作 E 2mail :licliang @https://www.360docs.net/doc/a712748731.html, 随着国家核电中长期发展规划的颁布,未来相当长时间内 我国将大力发展压水堆核电站。反应堆压力容器是在高温、高压流体冲刷和腐蚀,以及强烈的中子辐照等恶劣条件下运行的,因此在ASM E 规范第XI 卷要求,反应堆压力容器应采用优质材料、严格制造、完善的试验和检查技术,且在服役期间应定期地进行检查。SA508系列钢是随着反应堆压力容器的大型化和整体化发展起来的,适用于制造压力容器顶盖、筒体、法兰、封头等锻件,在压水堆核电站中还应用于蒸汽发生器压力壳、稳压器压力壳和主泵压力壳等部件。 1 反应堆压力容器结构和作用 功率在1000MW 及以上的普通压水堆核电站反应堆压力 容器设计压力高达17MPa ,设计温度在350℃左右,直径近5m ,厚度超过20cm ,有的单件铸锭毛重达500多吨,设计寿命至少要求40年。因为其体积庞大,不可更换,所以压力容器的寿命决定了核电站的服役年限。 压水堆压力容器是由反应堆容器和顶盖组成,前者由下法兰(含接管段)、筒体和半球形下封头组焊而成,顶盖由半球形上封头和上法兰焊接组成(或者为一体化顶盖)。上下法兰面之间用两道自紧式空心金属(高镍耐蚀合金In 2718或1828钢)“O ”形环密封。为了避免容器内表面和密封面腐蚀,在压力容器内壁堆焊有大于5mm 厚的不锈钢衬里(过渡层309L (00Cr23Ni11)+308L (00Cr20Ni10))。为防止外表面腐蚀,压 力容器外表面通常涂漆保护。 反应堆压力容器的作用是:(1)装载着活性区及堆内所有构件,对堆芯具有辐射屏蔽作用,在顶盖上安装着控制棒管座及其驱动机构,承受很大的机械和动载荷;(2)作为承压边界,密封高温高压含放射性的一回路冷却剂并维持其压力,承受动载荷和温度载荷;(3)作为第二道屏障,在燃料元件破损后有防止裂变产物外逸的功能。 上述因素要求反应堆压力容器材料具备良好的纯净度、致密度、成分和性能均匀性,在中高温度下具有优良的力学性能(强度、塑性、冲击韧性、断裂韧性等)、冶金质量及良好的耐蚀性、焊接性和抗辐照的性能(中子辐照脆化敏感性低)、热稳定性、加工性等。其中,以面对活性区的筒体段材料性能要求最高。 2 反应堆压力容器材料的发展史 压水堆反应堆压力容器材料一般都是在工程上成熟的材料基础上改进而成的。美国第一代压水堆核电站反应堆压力容器材料用的是具有优良工艺稳定性、焊接性和强度较好的锅炉钢A212B (法兰锻件为A350L F 3),由于A212B 钢淬透性和高温性能较差,第二代改用Mn 2Mo 钢A302B [1](锻材为A336),该钢中的Mn 是强化基体和提高淬透性的元素,它能提高钢的高温性能及降低回火脆性。随着核电站向大型化发展,压力容器也随之增大和增厚,A302B 钢缺口韧性差的不足就逐渐显露出

相关文档
最新文档