材料力学压杆稳定概述

材料力学压杆稳定概述
材料力学压杆稳定概述

第九章压杆稳定

9-1由五根圆截面钢杆组成的正方形平面桁架,杆的直径均为d=40mm,材料的弹性模量E=200GPa, a=1m,试求使结构到达临界状态时的最小荷载。如F力向里作用,则最小荷载又是多少?

答:F t=124kN, F c=350.2kN

F

题 9 - 1 图解:当F的杆受压

由静力学平衡方程可知该杆所受压力为

F

294

2

2

200100.04

124 ()

124

cr

t cr

EI

F kN

l

F F kN

π

π

π

μ

????

===∴==

当F

为压力时,长为a的杆受压

由静力学平衡方程可知该杆所受压力为

2

F

294

2

22

200100.04

64248 ()(11)

248

2

350.7

cr

c

c

EI

F kN

l

F kN

F kN

π

π

π

μ

????

===

?

=

∴=

9-2 如图所示细长杆,试判断哪段杆首先失稳。

答:(d)

解:0.5

μ=

a

0.7

μ=

b

0.7

μ=

c

2

μ=

d

2

2

()

π

μ

μμμμ

=

>=>

cr

d c b a

EI

F

l

crd F ∴最小

∴d 杆最容易失稳

9-3 试求图示压杆的临界力,材料是HPB235。 答:F cr

=19.7kN

题 9 - 3 图

30X

30X 4

解:一端为自由端,一端为固定端,则2μ

=

22

()cr EI F l πμ=

查表可知:

84084

0 2.92100.7710x y I m I m --=?=?

因为最容易失稳的方向是惯性矩最小的方向 所以8400.7710y I

I m -==? 298

2

210100.771019.7(20.45)

cr

F kN π-????∴=

=?

9-4两端为球铰的压杆的横截面为图示各种不同形状时,压杆会在哪个平面内失稳(即失稳时,横截面绕哪根轴转动)?

F

题 9 - 4 图

答:最易失稳方向即惯性矩最小方向,也即形心主惯性轴方向

对于圆来说,各个方向的的惯性矩都相同,所以各个方向失稳容易程度相同 对于正方形: 对于长方形:

对于等边三角形: 对于等腰三角形:

对于工字钢: 不等边角钢: 等边角钢:

9-5 在图示结构中,AB 为圆截面杆,直径d =80mm, BC 杆为长方形截面,边长为60mm ×40mm ,两杆材料均为钢材,它们可以各自独立发生弯曲而互不影响。已知:5

210MPa, 200MPa p E σ=?=,A

端为固定,B、C为球铰,稳定安全系数k=2.5。试求此结构的许用载荷[P]。

答:[P]=160kN

4

解:AB、BC段的柔度分别为:

BC

AB

max AB

2211

cr22

max

1 1.2

104

0.04

0.7 4.5

157.5

0.02

157.5

E210

79.8MPa

157.5

?

λ==

?

λ==

∴λ=λ=

ππ??

∴σ===

λ

[]

[][]2

79.8

31.92

2.5

0.08160

4

σ

σ===

π

=σ??=

cr MPa

k

P kN

9-6图示铝合金桁架承受一集中荷载F,已知两杆的横截面均为50mm×50mm,材料的E=70GPa, 假设失稳只能发生在桁架的平面内,试用欧拉公式确定引起失稳的F值。

解:由图知,AE、EC为二力杆,AEC

∠为90°,

3

cos

5

α=,

4

sin

5

α=;

1

cos0.6

F F F

α

==,

2

sin0.8

F F F

α

==,由欧拉公式可知,AE、CE杆的临界荷载分别为:2

12

1

EI

F

l

π

=,

2

22

2

EI

F

l

π

=,代入上式得:

题 9 - 6 图

2

2

1

0.6

EI

F

l

π

=①

2

2

2

0.8

EI

F

l

π

=②

由①得:

4

29

2

22

1

0.05

3.147010

12149.8kN

0.60.62

π???

===

?

EI

F

l

由②得:

4

29

2

22

2

0.05

3.147010

12199.7kN

0.80.8 1.5

π???

===

?

EI

F

l

所以失稳的149.8kN

F=。

9-7图示托架承受均布荷载q,撑杆AB为细长杆,其两端铰支,试求q达到何值时,杆AB处于临界状态。

答:q=

2

3

24

EI

a

π

q

题 9 - 7 图

a

2a

解:由欧拉公式可知AB杆的临界荷载为:

222

22

2

3

4

()16

)

cr

EI EI EI

F

l a

πππ

μ

===

取梁为研究对象,对梁端取矩,即

2

1

2c o s60(3)0

2

9

2

=?-=

=

O

M a F q a

F q a

22

23

3916224ππ===

由得即cr

F F EI qa a EI q a 9-8 两根矩形截面柱,横截面尺寸为a ×b ,用来承受一重的刚性板,柱脚埋置在混凝土中,已知两柱间的距离为2a ,试求最合适的截面边长比a /b ,其长方向应沿图示哪个方向?

答:

=a b b 沿x 方向。

题 9 - 8 图

x

解:当立柱在oxz 平面内失稳时:

3

y 23121I ab 21221

E b a 2

12F (2l)=

?μ=π??∴=

cr

当立柱在oyz 平面内失稳时:

323

23

22

113(2=b 1261136(1)μπ=+??=?∴=

?)x cr I a b ab a a E ba F l

当1

2cr cr F F =时设计最合理

2323

22113

66(2)ππ??=?=

E a b

E ab l l a b

9-9 图示结构中AB 为刚性杆,CD 及EF 均为细长杆,抗弯刚度均为EI 。因变形微小,故可认为压杆受力到达F cr 后,其承载能力不能再提高,试求结构所受荷载F 的极限值F max 。

答:2max

2

34EI

F L π=

B

解:以A 为矩心240A CD EF M F a F a F a =?+?-?=

当EF 、CD 都达到临界力时,结构才失稳

此时

2CD EF cr 2

22max

22

EI

F F F L EI 3a 3EI F L 4a 4L πππ===

?∴==?

9-10图示结构中,AB 和BC 皆为圆截面钢杆,直径d =80mm, 材料的容许应力

[σ]=160MPa ,试求结构的容许竖向荷载[F ]。

答:[F ]=

581kN.

题 9 - 10 图

解:由已知可得,圆截面杆的截面积:

232

5.03104

0.024

12

100=0.638

0.02

173.2=0.361π

μλ?μλ?-=

=?=

=?======惯性半径:杆的柔度:,查表得AB 杆折减系数,查表得BC 杆折减系数,

AB AB BC BC A d m d

i m l i l i

又由B 点的平衡可知:

[

][][]AB AB

AB 63BC BC BC 63F 2AB A

F 0.63816010 5.0310593kN 1F F 2

1F 2BC A

F 0.36116010 5.03102581kN F 581kN

σ?σσ?σ--=

=≤≤????==

=≤≤?????=∴=杆应力:杆应力:

9-11图a 所示为四根∠45×5等边角钢组成的等截面电杆塔,图b 为其计算简图。若顶端受压力F =154kN ,材料为Q235钢,b 类截面,其[σ]=150MPa 。试求四根角钢间的最小距离b (图c )。又若每段角钢的两端可简化为球铰,试求每段节间最大距离a 。

答:b =513mm, a =822mm

F

( a )

( b )

( c )

题 9 - 11 图

解:(1)查型钢表得:每根等边角钢面积421

A 4.29210m -=? 848.0410-=?x I m

34

1F 1541089.7MPa 4A 4 4.29210

σ-?===?? []

0.598σ

?

σ=

= 查表得93.43λ= 2120.257μλ?=

=

=即:l

i i i m

244

12

14 1.133104()

4

513-∴=??=?=?+?=得z z x I i A m b I I A b mm

(2)查表最小惯性半径为0

0.88y i cm =

2

1113.60.8810μλ-?=

=

=?,

y a

a

a i 若整体与局部稳定性一致,则 93.43

822λ=?=a mm

9-12 图示焊接组合柱的截面,柱长L =7.2m ,材料为钢材,[σ]=160MPa ,柱的上端可视为铰支,下端当截面绕y 轴转动时可视为铰支,绕z 轴转动时可视为固定,已知轴向压力F =2500kN ,试校核柱的稳定性。

答:安全

题 9 - 12 图

解:当截面绕y 轴转动时:

[]622

22344

y y y y y st y 3

2

st

A (36018240018)10 2.01610m 11

I (3601836018209)218400 6.6210m 1212i 0.1812m

L 17.239.7,i 0.18120.942

151MPa

F 250010124MPa A 2.01610

μλ?σ?σσσσ---=??+??=?=??+???+??=?==?======?===?<查表知杆承担的压力:

所以安全

当截面绕z 轴转动时:

[]3344z z z st z st

11

I 183******** 1.410m 1212i 0.0833m

L 0.77.260.5

i 0.08330.881141MPa μλ?σ?σσσ-=

???+??=?==?======< 所以安全

9-13 图示结构中圆截面杆AB 的直径d =160mm ,AC 及CD 杆的截面为40×60mm 的矩形,材料均为木材,[σ]=10 MPa ,试求容许荷载。

答:[F ]=2.4kN

1 m

1 m

题 9 - 13 图

解:取C 节点为研究对象

利用静力学平衡方程可求得:AC F = 受压

CD F F = 受拉

AB 梁受弯,最大弯矩max

11242

M F F =??= 取AC 压杆研究,312

84642604010I 3210m A 4060102410m 12

----??=

=?=

??=?,

[]2st i 0.0115m l

112375

i 0.0115

3000

0.198

1.98MPa

μλ?λ

σ?σ∴=

==

=

=>∴==∴==

AC st

F A A

F 3.36kN

σσ=

=≤≤解得: 对CD 杆,由强度条件F A

σ

= []

F 2.4kN

σσ≤≤得

对AB 梁,由强度条件,

[]max max 31F M 2W d 32

F 8.04kN

σσπ==≤≤ 综上所述,取

[]F 2.4kN =

9-14 吊车梁AB 由两个200×125×12的角钢组成,[σ]=1600kg/cm 2,长l =5m ,F =5t ,稳定安全系数st n =1.6,弹性模量E=200GPa ,试对AB 梁进行强度和稳定校核。(AB 梁受的压力沿着轴线,又铆钉孔位于梁AB 中间截面上。)

答:不安全。

200 125 12

解:AB 梁受力图如图所示

:

AC l

F sin14l F 2

??=?

得AC

F F 2sin14

=

AB 杆受压力为:N AC F

F F cos14cot142

=?=

AB 杆受压力为:

F l

M 4

?=

AB 杆强度校核:[]46z z F l M 510541070.8MPa 2W 2W 2116.7310

σσ-???====>?? 强度条件不满足 AB 杆稳定性校核:

4

z 24

y I 21570.903141.8cm I (483.1637.912 2.83)21573.58cm =?==+??=

即y

方向柔度大y

l

109.77i

μλ=

=

==

229

cr 22

E 20010163.65MPa 109.77

ππσλ??=== 稳定许用荷载:

[]cr

st st

163.65

102.3MPa n 1.6

σσ=

=

=

实际压杆压应力:[]4N 4st F 510cot141322.4MPa A 2237.91210

σσ-??===>??? 故不稳定 9-15 图示结构,由三根具有相同抗弯刚度EI 的细长杆组成,其B 、D 二点用铰链连接,而A 、C 为固定端,α=30o,试求系统失稳破坏时的临界F 。

答:2

36.03

=EI F l

解:∵AD 、CD 对称 ∴AD 、CD 同时失稳

∴系统失稳破坏时三杆将同时达到临界荷载,系统在微弯状态下平衡。

2crAD crCD 2

2crBD 2

EI

F F 2(0.7EI

F (1l)ππ==

=

?

由节点D 平衡方程得:crAD crBD 2EI F 2F F 36.03l

=+=

9-16 如图所示的结构,两支座处于同一水平位置,细长杆AB 、BC 的EI 相同,试求临界F ,β为何值时,两杆材料充分发挥作用?

答:β=arctg(0.49)

解:要使两杆材料充分发挥作用,则两杆同时失稳

2222

2

2

2

2

2

2

sin (0.7l )0.49cos (1l )ππβππβ=

=

?=

=

?crAB AB crcB BC EI

EI

F h EI

EI

F h

22sin 1

tan cos 0.49tan 0.49arctan(0.49)

βββββ=?=∴=∴=crAB crcB F F

9-17

解:由DE 杆平衡得BD q 42

F 2q 4??== 由B 点平衡可知AB

BC BD 155

F F F q 233

==?=

AB 、BC 杆的临界荷载为

()

4

4

29

29

8

2

cr 2

2

2

d 0.5200102001010EI

56464

F q 553

l πππππμ-????

???

?=

==

= 解得[]q 1.45N /m =

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2) .2(l EI P cr π= ?为什么?并由此判断压杆长因数μ是否可能大于2。

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。 ?

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动) 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ \ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2).2(l EI P cr π=

《材料力学》第9章压杆稳定习题解

第九章压杆稳定习题解 [ 习题9-1] 在§9-2 中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线 形状,导出了临界应力公式 2 EI P cr 。试分析当分别取图b,c,d 所示坐标系及挠曲线形2 l 状时,压杆在F作用下的挠曲线微分方程是否与图 a 情况下的相同,由此所得F cr 公式又cr 是否相同。 解:挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 " M x EIw ( ) 。(c)、(d) 的坐标系相同,它们具有相同的挠曲线微分方程: " M x EIw ( ),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: 2 EI P cr 。 2 l

1

[ 习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为: 2 EI P cr 。由这公式可知,对于材料和截面相同的压杆,2 ( .l) 它们能承受的压力与原压相的相当长度l 的平方成反比,其中,为与约束情况有关的长度系数。 (a)l 1 5 5m (b)l 0.7 7 4. 9m (c)l 0.5 9 4.5m (d)l 2 2 4m (e)l 1 8 8m (f )l 0.7 5 3.5m (下段);l 0.5 5 2. 5m (上段) 故图 e 所示杆F最小,图 f 所示杆F cr 最大。 cr [ 习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性 地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为P cr 2 EI min 2 ( 2.l ) ?为什么?并由此判断压杆长因数是否可能大于2。

材料力学习题册答案第9章 压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

精选材料力学习题册包括答案第9章压杆稳定.docx

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力 P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后 发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状 ; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力 P=P Q 时发生失稳而处于微弯平衡状态, 此时若解除压力 P ,则压杆的微 弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 A ) 对临界应力的影响。 ; 试判断哪一根最容易失稳。答案: ( a ) 6、两端铰支的圆截面压杆,长 1m ,直径 50mm 。其柔度 为 ( C ) A.60 ; B.66.7 ; C.80 ; D.50 7、在横截面积等其它条件均相同的条件下, 压杆采用图 ( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量 E 越大或柔度λ越小; B 、弹性模量 E 越大或柔度λ越大; C 、弹性模量 E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ E B 、λ≤ E P s C 、λ≥ E D 、λ≥ E P s B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 4、压杆的柔度集中地反映了压杆的(A 、长度,约束条件,截面尺寸和形状

材料力学 压杆稳定答案

9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)? 解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。 (a)=1×5=5m (b)=0.7×7=4.9m (c)=0.5×9=4.5m (d)=2×2=4m (e)=1×8=8m (f)=0.7×5=3.5m 故图e所示杆最小,图f所示杆最大。 返回 9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间, 这时杆不受力。已知钢的线膨胀系数。试问当温度升高至多少度时,杆将丧失稳定? 解:

返回 9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按 细长杆考虑),确定最小临界力的算式。 解:在总压力F作用下,立柱微弯时可能有下列三种情况: (a)每根立柱作为两端固定的压杆分别失稳: (b)两根立柱一起作为下端固定而上 端自由的体系在自身平面内失稳 失稳时整体在面内弯曲,则1,2两杆 组成一组合截面。 (c)两根立柱一起作为下端固定而上端 自由的体系在面外失稳

故面外失稳时最小 =。 返回 9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。 解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故 返回 9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。已知杆的材料为Q235钢,强度许用应力,试求压杆的许可荷载。

材料力学压杆稳定分析

第九章压杆稳定 9-1由五根圆截面钢杆组成的正方形平面桁架,杆的直径均为d=40mm,材料的弹性模量E=200GPa, a=1m,试求使结构到达临界状态时的最小荷载。如F力向里作用,则最小荷载又是多少? 答:F t=124kN, F c=350.2kN F 题 9 - 1 图解:当F的杆受压 由静力学平衡方程可知该杆所受压力为F 294 2 2 200100.04 124 () 124 cr t cr EI F kN l F F kN π π π μ ???? ===∴== 当F 为压力时,长为a的杆受压 由静力学平衡方程可知该杆所受压力为 2 F 294 2 22 200100.04 64248 ()(11) 248 2 350.7 cr c c EI F kN l F kN F kN π π π μ ???? === ? = ∴= 9-2 如图所示细长杆,试判断哪段杆首先失稳。 答:(d) 解:0.5 μ= a 0.7 μ= b 0.7 μ= c 2 μ= d 2 2 () π μ μμμμ = >=> cr d c b a EI F l

crd F ∴最小 ∴d 杆最容易失稳 9-3 试求图示压杆的临界力,材料是HPB235。 答:F cr =19.7kN 题 9 - 3 图 30X 30X 4 解:一端为自由端,一端为固定端,则2μ = 22 ()cr EI F l πμ= 查表可知: 8408 4 0 2.92100.7710x y I m I m --=?=? 因为最容易失稳的方向是惯性矩最小的方向 所以8400.7710y I I m -==? 298 2 210100.771019.7(20.45)cr F kN π-????∴= =? 9-4两端为球铰的压杆的横截面为图示各种不同形状时,压杆会在哪个平面内失稳(即失稳时,横截面绕哪根轴转动)?

材料力学教案 第10章 压杆稳定分析

第10章压杆稳定 教学目的:深入理解弹性平衡稳定性的概念;熟练应用压杆的临界压力公式,掌握杆端约束对临界力的影响;压杆的分类与临界应力曲线;掌握压杆 稳定性计算的方法。 教学重点:欧拉临界力公式、压杆的分类、压杆稳定性计算。 教学难点:欧拉临界力公式、压杆的分类、压杆稳定性计算。 教具:多媒体。 教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。 教学内容:稳定的概念;两端铰支细长压杆的欧拉临界力;杆端约束的影响;临界应力总图;压杆稳定性计算。 教学学时:4学时。 教学提纲: 10.1 压杆稳定的概念 在第2章中,曾讨论过受压杆件的强 度问题,并且认为只要压杆满足了强度条 件,就能保证其正常工作。但是,实践与 理论证明,这个结论仅对短粗的压杆才是 正确的,对细长压杆不能应用上述结论, 因为细长压杆丧失工作能力的原因,不是 因为强度不够,而是由于出现了与强度问 题截然不同的另一种破坏形式,这就是本图10-1 章将要讨论的压杆稳定性问题。 当短粗杆受压时(图10-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图10-1a所示的

同样粗细而比较长的杆件(图10-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图10-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图10-3);圆环形拱受径向均布压力时,也可能产生失稳(图10-4)。本章中,我们只研究受压杆件的稳定性。 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图10-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图10-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图10-5b所示,当用外

《材料力学》压杆稳定习题解

第九章压杆稳定习题解 [习题9-1]在§ 9-2中已对两端球形铰支的等截面细长压杆,按图a所示坐标系及挠度曲线 状时,压杆在F cr作用下的挠曲线微分方程是否与图a情况下的相同,由此所得F cr公式又是否相同。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 Elw" M(x)°( c)、(d)的坐标系相同,它们具有相同的挠曲线微分方程: Elw" M (x),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 形状,导出了临界应力公式P cr 2EI 。试分析当分别取图b,c,d所示坐标系及挠曲线形解:挠曲线微分方程与坐标系的y轴正向规定有关,与挠曲线的位置无关。 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: P er 2EI

?为什么?并由此判断压杆长因数 是否可能大于2。 [习题9-2]图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 所示杆在中间支承处不能转动)? 它们能承受的压力与原压相的相当长度 丨的平方成反比,其中,为与约束情况有关的长 度系数。 (a ) l 1 5 5m (b ) l 0.7 7 4.9m (e ) l 0.5 9 4.5m (d ) l 2 2 4m (e ) l 1 8 8m (f ) l 0.7 5 3.5m (下段); l 0.5 5 2.5m (上段) 故图e 所示杆F cr 最小,图f 所示杆F cr 最大。 [习题9-3]图a,b 所示的两细长杆均与基础刚性连接, 但第一根杆(图a )的基础放在弹性 解:压杆能承受的临界压力为: P er 2 EI (.l )2 由这公式可知, 对于材料和截面相同的压杆,

材料力学习题册答案-第9章压杆稳定

第九章压杆稳定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A、弯曲变形消失,恢复直线形状; B、弯曲变形减少,不能恢复直线形状; C、微弯状态不变; D、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C ) A、完全消失 B、有所缓和 C、保持不变 D、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A、长度 B、横截面尺寸 C、临界应力 D、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A、长度,约束条件,截面尺寸和形状; B、材料,长度和约束条件; C、材料,约束条件,截面尺寸和形状; D、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m,直径50mm。其柔度为 ( C ) ;;; 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A、弹性模量E越大或柔度λ越小; B、弹性模量E越大或柔度λ越大; C、弹性模量E越小或柔度λ越大; D、弹性模量E越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A、λ≤ 、λ≤ C、λ≥ D 、λ≥

10、在材料相同的条件下,随着柔度的增大( C ) A 、细长杆的临界应力是减小的,中长杆不是; B 、中长杆的临界应力是减小的,细长杆不是; C 、细长杆和中长杆的临界应力均是减小的; D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A ) A.?临界应力一定相等,临界压力不一定相等; B.?临界应力不一定相等,临界压力一定相等; C.?临界应力和临界压力一定相等; D. 临界应力和临界压力不一定相等; 12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。 A 、细长杆的σe 值与杆的材料无关; B 、中长杆的σe 值与杆的柔度无关; C 、中长杆的σe 值与杆的材料无关; D 、粗短杆的σe 值与杆的柔度无关; 13、细长杆承受轴向压力P 的作用,其临界压力与( C )无关。 A 、杆的材质 B 、杆的长度 C 、杆承受压力的大小 D 、杆的横截面形状和尺寸 二、计算题 1、 有一长l =300 mm ,截面宽b =6 mm 、高h =10 mm 的压杆。两端铰接,压杆材料为Q235钢,E =200 GPa ,试计算压杆的临界应力和临界力。 解:(1)求惯性半径i 对于矩形截面,如果失稳必在刚度较小的平面内产生,故应求最小惯性半径 mm 732.112 612 1 123min min == =?== b bh hb A I i (2)求柔度λ λ=μl /i ,μ=1, 故 λ=1×300/=519>λp =100 (3)用欧拉公式计算临界应力 () MPa 8.652.1731020ππ2 4 22 2cr =?= = λ σE (4)计算临界力 F cr =σcr ×A =×6×10=3948 N= kN 2、一根两端铰支钢杆,所受最大压力KN P 8.47=。其直径mm d 45=,长度mm l 703=。 钢材的E =210GPa ,p σ=280MPa ,2.432=λ。计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=λ(MPa)。 试 (1)判断此压杆的类型; (2)求此杆的临界压力;

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

材料力学考试习题压杆稳定

压 杆 稳 定 基 本 概 念 题 一、选择题 1. 如果细长压杆有局部削弱,削弱部分对压杆的影响有四种答案,正确的是( )。 A .对稳定性和强度都有影响 B .对稳定性和强度都没有影响 C .对稳定性有影响,对强度没有影响 D .对稳定性没有影响,对强度有影响 2. 图示长方形截面压杆,h /b = 1/2;如果将b 改为h 后仍为细长杆,临界力cr P 是原来的( )倍。 A .2倍 B .4倍 C .8倍 D .16倍 3. 细长压杆,若长度系数μ增加一倍, 则临界压力cr P 的变化是( )。 题2图 A .增加一倍 B .为原来的四倍 C .为原来的四分之一 D .为原来的二分之一 4. 图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序是( )。 题4图 A .(a )、(b )、(c )、(d ) B .(d )、(a )、(b )、(c ) C .(c )、(d )、(a )、(b ) D .(b )、(c )、(d )、(a ) 5. 正方形截面杆,横截面边长a 和杆长l 成比例增加,它的长细比( )。 A .成比例增加 B .保持不变 C .按2 ??? ??a l 变化 D .按2 ?? ? ??l a 变化 6. 如图所示直杆,其材料相同,截面和长度相同,支承方式不同,在轴向压力下,他 们的柔度是( )。 A .a λ大,c λ小 B .b λ大,d λ小 C .b λ大,c λ小 D .a λ大,b λ小 -46-

7. 若压杆在两个方向上的约束情况不同,且y μ>z μ。那么该压杆的合理截面应满足的条件是( )。 A .z y I I = B .y I <z I C .y I >z I D .y z λλ= 题6图 8. 两压杆为管状薄壁容器式的细长杆,管两端封闭,且为铰支承。(a )杆无内压,(b ) 杆有内压,其它条件相同。则两杆临界应力的关系是( )。 A .()()b cr a cr σσ= B .()a cr σ>()b cr σ C .()a cr σ<()b cr σ D .无法比较 9. 两根细长杆,直径、约束均相同,但材料不同,且212E E =,则两杆临界应力的关系是( )。 A .()()21cr cr σσ= B .()()212cr cr σσ= C .()()212 1 cr cr σσ= D .()()213cr cr σσ= 10. 由稳定条件][σ?A P ≤,可求[P ],当A 增加—倍时,则[P ]增加的规律有四种答案: A .增加一倍 B .增加二倍 C .增加2 1 倍 D .与A 不成比例 二、判断题(正确的打“√”,错的打“×”) 1. 当压杆的中心压力P 大于临界压力cr P 时,杆原来的直线形式的平衡是 不稳定的平衡。( ) 2. 临界力cr P 只与压杆的长度及两端的支承情况有关。( ) 3. 对于细长压杆,临界压力cr P 的值不应大于比例极限p σ。( ) 4. 压杆的柔度λ与压杆的长度、横截面的形状和尺寸以及两端的支承情况有关。( ) 5. 对压杆进行稳定计算时,公式中压杆的横截面面积A 应采用所谓的“毛面积”。( ) 6. 压杆的长度系数μ与压杆的长度以及横截面的形状和大小有关。( ) 7.计算压杆临界力的欧拉公式2 ) (l EI P cr μπ= 只适用于λ>p λ,的大柔度压杆。( ) -47-

相关文档
最新文档