1.1正数和负数
1.1正负数

可表示为??
(1)具有相反意义是什么? (2)具有数量是什么?
例2 某年,下列国家的商品进出口总额比上年的变 化情况是:美国减少6.4%,德国增长1.3%,法国 减少2.4%,英国减少3.5%,意大利增长0.2%,中国 增加7.5%.写出这些国家这一年商品进出口总额的
增长率. 答:六个国家这一年商品进出口总额的增
2.如果80 m表示向东走80 m,那么-60 m表示 向西走60 m .
3.如果水位升高3 m时水位记作+3 m,那么水位 下降3 m时水位变化记作 不降时水位变化记作 0 -3 m,水位不升 m.
4.月球表面的白天平均温度零上126 º C,记 作 记作 +126 º C,夜间平均温度零下150 º C,
日本
-7.3%
意大利
7.0%
这一年,上述六国中哪些国家的服务出口额增长了? 中、意 哪些国家的服务出口额减少了? 美、德、英、日
哪国增长率最高?哪国增长率最低? 意大利增长率最高; 日本增长率最低.
某五年间下列国家年平均森林面积(单位:m 2)的变化情况是: 中国减少866,印度增长72,韩国减少130, 新西兰增长434,泰国减少3 247,孟加拉减少88. (1)写出这些国家在这五年间年平均森林面积的 增长量. (2)哪个国家森林面积减少最多? (3)通过对这些数据的分析,你想到了什么?
回顾本节课所做的练习,请同学们谈谈引入负
数的好处.
1.教科书习题1.1第1~6题. 2..找三个生活中含有正数、负数的例子,并解释 其中相关数量的含义.
-150
º C.
补充练习 5.规定盈利为正,某公司去年亏损了2.5万元,记作 -2.5 万元,今年盈利了3.2万元,记作+3.2 万元. 6.规定海平面以上的海拔高度为正,新疆乌鲁木齐 市高于海平面918 m,记作海拔+918 m;吐鲁番 -155 m. 盆地最低处低于海平面155 m,记作海拔 7.汽车在一条南北走向的高速公路上行驶,规定向 北行驶的路程为正.汽车向北行驶75 km,记作 +75 km(或 75 km),汽车向南行驶100 km, 记作 -100 km.
1.1正数与负数

正整数 正有理数 正分数 有理数零 负整数 负有理数 负分数
说明:①分类的 标准不同,结果 也不同;②分类 的结果应无遗漏、 无重复;③零是 整数,零既不是 正数,也不是负 数.
有理数的分类
分类的原则:分类可以根据不同的需要,采 用相应的分类标准,但必须遵循不重不漏 地分类原则。 不重:同一个元素不能在所分类中重复 出现。 不漏:每一个元素都应该在所分某一类 中。
• 问: • ⑴0是整数吗?是正数吗?是有理数吗? • ⑵-5是整数吗?是负数吗?是有理数吗? • ⑶自然数是整数吗?是正数吗?是有理数 吗?
判断正误 ⑴所有整数都是正数;(× ) ⑵所有正数都是整数;(× ) ⑶小学学过的数都是正数;(× ) ⑷分数是有理数;(√ ) ⑸在有理数中,除了负数就是正数。(× )
?
思考
0.1,-0.5,5.32,-150.25等为什么被列为分数?
0.1等都可以化为分数:
1 0.1= 10
1 0.5= 2
133 5.32= 25
601 150.25= 4
数的集合
我们把所有正数组成的集合,叫做正 数的集合,所有负数组成的集合叫做负 数的集合。同样把所有整数组成的集合 叫做整数集合,把所有分数组成的集合 叫做分数集合;把所有有理数的集合叫 做有理数集合。
在日常生活中,你会遇到:
1,你向东走了5米和向西走了3米;
ቤተ መጻሕፍቲ ባይዱ
2,你的爸爸给(收入)你20元和你用了(支出)8元;
3,下雨池塘里的水升高了0.01米和干旱池塘里的水降低
了0.03米;
4,温度是零上10度和零下6度
上面出现的每一对量有什么共同特点?
请看:
向东和向西,给(收入)和用了(支出), 升高和降低,零上和零下 都是具有相反意义的量
1.1正数和负数(第1课时)教案

1.1正数与负数的教案第1课时学习目标1.了解正数与负数是从实际需要中产生的.2.掌握正数、负数及0的意义,掌握正数、负数的表示方法.教学重点感受负数引入的重要性.教学难点掌握正数、负数及0的意义.教学过程一、旧知复习今天我们正式开始七年级数学的学习,我是你们的数学老师.下面我先做一个自我介绍,我叫xxx,今年31岁,身高1.59米,体重60.5千克.我在说一下我们班的情况,我们是七年级(6)班,共50个学生,其中女生有30个,占全班人数的60%……问1:老师刚才得那段话中出现了几个数?分别是哪些?6个数,分别是31,1.59,60.5,50,30,60%.问2:将这些数按以前学过的数的分类方法来分类.整数:31,50,30分数:1.59,60.5,60%以前学过的数主要有两大类,分别是整数和分数(小数).问3:在生活中仅有整数和分数够用吗?以前学过的数已经不够用了,有时候需要比0小的数.今天我们就来学习这类数.二、情景导入在日常生活中,经常遇到数的表示与数的运算的问题,阅读下列三个例题,思考并回答其中的问题.(1)2022年1月某天北京的温度为-3℃~3℃.“-3”的含义是什么?这一天北京的温差是多少?“-3”的含义是零下3摄氏度,这一天北京的温差是6℃.(2)某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一年增长-2.7%,“增长-2.7%”表示什么意思?“增长-2.7%”表示减少2.7%.(3)夏新同学通过捡、卖废品,既保护了环境,又积攒了零花钱.下表是他某个月的部分收支情况,(单位:元)收支情况表 _年_月这里,“结余-1.2”是什么意思?结余“-1.2”表示亏空1.2元.三、新知讲解上述例子中出现的数“-3,3,1.8%,-2.7,3.5,8.5,-4.5,4.0,-5.2,-1.2”,分别属于什么数?3,1.8%,3.5,8.5,4.0是正数.-3,-2.7%,-4.5,-5.2,-1.2是负数.你能归纳出正数和负数的概念吗?1.正数和负数的定义像3,1.8%,3.5这样大于0的数叫做正数.像-3,-2.7%,-1.2这样在正数前面加上符号“-”(负)的数,叫做负数,-1.2读作“负1.2”.注意:有时为了明确表达意义,在正数前面也加“+”号,一个数前面的“+” “-”号叫做它的符号.正数前面的“+”号可省略不写,但负数前面的“-”号不能省略.一般的,正数的符号是“+”,负数的符号是“-”0 既不是正数也不是负数.2.现阶段学习的数的种类:正数负数 03.0只表示没有吗?引入正负数后,0不再简简单单的只表示“没有”. 它具有丰富的意义,还可以表示一个确定的量.如:1.空罐中的金币数量;2.温度中的0℃;3.海拔0m ;4.水库的标准水位;5.身高比较的基准;6.正数和负数的界点;四、典例精析1.指出下列各数的符号(口答)+7;-2.6;9+7的符号是“+”;-2.6的符号是“-”;9的符号是“+”.2.读下列各数,并指出其中哪些是正数,哪些是负数.(口答)31.283,0134--+-,,,,%正数是:+3,13%;31.28.4---负数是:,,五、针对练习1.指出下列各数的符号(口答)5;-3;3.75的符号是“+”;-3的符号是“-”;3.7的符号是“+”.2.读下列各数,并指出其中哪些是正数,哪些是负数.(口答)217,03--9,,,8.3,-3.14 9,8.3正数是:;217 3.143---负数是:,,3.下列关于“0”的说法正确的个数是( B )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃等;④0是正数;⑤0是自然数;⑥0是非负数A.3B.4C.5D.6注意:“非负数”就是“不是负数”,包括正数和0;“非正数”就是“不是正数”包括负数和0.六、课堂小结1.正数是比零大的数,正数前面加“-”号的数叫做负数.2.0 既不是正数也不是负数,它是正负数的分界.3.“非负数” 包括正数和0;“非正数” 包括负数和0.七、作业布置见精准作业八、板书设计。
1.1,正数与负数,教案

1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。
2能用符号表示生活中具有相反意义的量。
3 培养学生会独立考虑、合作交流的认识。
二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。
2.能灵敏运用正负数表示生活中具有相反意义的量是难点。
四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。
3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。
1.1 正数和负数

第一章有理数1.1 正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. 3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A 组为必做题)A 组 1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239. 则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m 表示的意义是………………………( )A .向东行进50m C .向北行进50mB .向南行进50m D .向西行进50m5.下列结论中正确的是 …………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有 ……………………………………………………( )A .2个B .3个C .4个D .5个B 组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.C 组1.写出比O 小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题: 1. 直径为30.032mm和直径为29.97的零件是否合格?2. 你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
1.1 正数和负数(17页)

3 .若规定商品涨价为正,则甲商品涨价 10%可以记作 __+_1_0_%___, 乙商品降价 5%可以记作作 __-__5_%___ .
22202
课堂总结
(1)大于零的数叫作正数(或在其前面加“+”). (2)在正数前面加上符号“-”(负)的数叫作负数. (3)0 既不是正数也不是负数,0 是正负数的分界,0具有 实际意义.
在我国古代,由记数、排 序,产生数1,2,3, ….
在古印度,由表示“没 有”“空位”,产生数0
在古埃及,由分物、
11
测量,产生分数 2 , 3 ,
22202
生活中,仅有这些学过的数够用吗? 在本章引言的问题中,你发现了哪些不一样的数?
(1)北京冬季某一天的最高气温为零上3”?
22202
第一章 有理数 1.1 正数和负数
22202
学习目标
1.掌握正数和负数的由来; 2.学会用正数和负数表示具有相反意义的量; 3.掌握正数、负数和0的实际意义,并掌握正负数的表示方法; 4.掌握正负数的实际应用;
22202
知识回顾
数的产生和发展离不开生活和生产的需要,人们对于数的认识就 是伴随着记数、测量、运算等方面的需求不断拓展的.在小学, 我们学过自然数、分数和小数,它们都是大于或等于0的数.
(2)四种品牌的手机今年的销售量与去年相比,变化率如下: A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3% 写出今年这些品牌的手机销售量的增长率.
解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重
增长0 kg.
(2)四种品牌的手机今年销售量的增长率是: A品牌-2% ,B品牌4%,C品牌1%,D品牌-3%.
1.1正数和负数(有教学反思)
1.1正数和负数(有教学反思)1.1 正数和负数⼀、教学⽬标1、在熟悉的⽣活情景中,能⽤正数和负数表⽰⽣活中具有相反意义的量、知道负数的写法和读法,会⽤负数表⽰⼀些⽇常⽣活中的量。
2、使学⽣经历数学化,符号化的过程,体会负数产⽣的必要性。
3、感受正、负数和⽣活的密切联系,享受创造性学习的乐趣,并结合史料对学⽣进⾏爱国主义思想教育。
⼆、教学重点、难点1、教学重点:体会负数的意义,学会⽤正、负数表⽰⽇常⽣活中具有相反意义的量。
2、教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
三、教法设计:合作探究式分层次教学,讲授、练习相结合。
四、教学过程㈠情景导⼊课前谈话:“上下”是表⽰什么的词?再如“胜负”,你能举出哪些意思相反的⼀组词呢?词汇真丰富,说明你们的语⽂学得好。
今天,是数学课,离不开“数”。
1、出⽰信息:在下列横线上填上适当的词,使前后构成意义相反的量:(1)妈妈在银⾏存⼊1300元, 1300元;(2)电梯 30⽶,下降30⽶;(3)⼩红向北⾛30⽶,向⾛30⽶.(4)淘⽓昨天数学作业,做对5道,做___5道。
2、指名读信息,你发现了什么?同样的数带上了相反意思的⽅向词,就成了“⽅向数”。
你能把这件事情说得更简单些吗?请⼤家把意思为相反⽅向的数记录在本⼦上,但是数字前⾯的⽂字不能照抄,你得创造另外的⽅法记录,要求既简单,⼜明⽩。
3、师:刚才同学们⽤了不同的⽅法去记录,⼤家说得也都有道理。
可是如果每个⼈都按照⾃⼰的想法去表⽰,结果会怎么样呢?那你觉得应该怎么办?要想让⼤家都明⽩,数学家们制定出了⼀个统⼀的标准。
那你认为数学家们会怎样表达呢?4、总结正负数(1)这些数很特别,都带上了符号,它们是⼀种“新数”。
-1300、-80等都叫负数; +1300、+80等都叫正数。
你会读吗?请你读给⼤家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个读⼀读。
1.1正数和负数1--正数和负数的概念
1.1正数和负数1--正数和负数的概念一.【知识要点】1.正数:大于0的数叫做正数。
如:2,0.6,37, , ,…… ※正数都比0要 。
2.负数:在正数前面加上一个“-”号,这样的数叫做负数。
如:2-,0.6-,37-, , ,……;※负数都比0要 。
3.相反意义的量必须满足两个条件:(1)意义相反;(2)同一种量.4.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,在过去学过的数(零除外)的前面放上一个“-”号来表示.二.【经典例题】1.指出下列各数哪些是正数,哪些是负数。
131,3,,0, 2.3,120, 1.42,,.45π-+----2.下列两个量不具有相反意义的是( )A.增产45t 粮食和减产45t 粮食B.收入300元和支出300元C.浪费2t 煤和节约2t 煤D.向东走5km 和向南走5km3.(1)如果上升10米记作+10米,那么下降8米记作 米(2) 获利200元记作+200元,亏损100元记作 元变式2.长江的水位高于正常水位7.6m 时记作+7.6m,那么低于正常水位5m 时应记作 米,-8.2m 表示 ,0m 表示_____________________.4.中国最大的咸水湖−青海湖,高于海平面3260米,它的海拔是___米;世界最低最咸的湖−死海,低于海平面422米,它的海拔是___米,海平面的高度是_______.三.【题库】【A 】1.下列选项中均为负数的是( ) A .2-, 1.9-,0B .0.3,5-, 3.3-C .19-,1-,0.6- D .6-,80,4.0 2.如果80m 表示向东走80m ,那么-60m 表示:______________。
3.下列各组量中,互为相反意义的量是( )A. 收入100元与支出10元B. 上升9米与下降6米C. 超过0.03毫米与不足0.06毫米D. 增加1升与减少1升【B 】1.指出下列各数哪些是正数,哪些是负数。
数学人教版(2024)版七年级初一上册 1.1 正数和负数 课时练 含答案01
第一章 有理数1.1 正数和负数一、单选题1.若零下2摄氏度记为2-℃,则零上2摄氏度记为( )A .2+℃B .0℃C .2-℃D .1-℃2.热气球上升5米记为5+,则下降3米应该记为( )A .3B .2C .2-D .3-3.某建筑工地仓库管理员如果将进货水泥2吨记为2+吨,那么出货水泥2吨可记为( )A .2-吨B .0吨C .2+吨D .4吨4.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .5.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入50元记作50+元,那么支出50元记作( )A .50-元B .50+元C .0元D .100+元6.下列各数中:553025.827---+,,,,,,负数有( )A .1个B .2个C .3个D .4个7.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思就是:在计算过程中遇到具有相反意义的量,要用正数和负数来区分.如果室内温度为零上8℃,记为8+℃,那么室外温度为零下2℃,记为( )A .2-℃B .2+℃C .8-℃D .8+℃8.下列各数中,是正数的有( )5,﹣59,0,0.56A .1个B .2个C .3个D .4个9.在-2,+3,5,0,―23,-0.7,11中,负数有( )A .1个B .2个C .3个D .4个10.下列为负数的是( )A .0B .2024C .2024-D .2024-二、填空题11.如果收入80元,记作80+元,那么支出37元应记作 元.12.由于没有大气层的保护,在太阳光线直射下的空间站表面温度可达150℃以上,在背阳面温度最低可达零下100℃以下,可以说太空环境“冰火两重天”.为了保持空间站设备正常运行并为航天员提供适宜工作生活的温度环境,热控系统发挥了十分关键的作用.空间站的热控系统中的“中央空调”——流体回路遍布在舱段的各个角落,通过特殊液体在管路内的往复循环,将舱内设备以及航天员生活产生的热量收集起来,通过回路再带到相应的设备和结构中,给过热的地方散热,给过冷的地方加热,便实现了散热和补热功能.如果把150℃记作150+℃,那么零下100℃记作 ℃.13.某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶.种类原味草莓味香草味巧克力味净含量/mL 17518019018514.某蓄水池的标准水位记为0m ,若0.08m +表示水面高于标准水位0.08m ,则水面低于标准水位1.2m ,可记为 m .15.某厂家生产一种袋装食品的标准重量是500克,质检员把每袋超出的部分记作正数,不足的部分记作负数,质检员随机测得袋食品质量为501克,则记作 .16.生活中常有用正负数表示范围的情形,例如某种食品的说明书上标明保存温度是()252±℃,请你写出一个适合该食品保存的温度: ℃.17.若指针沿顺时针方向旋转26°,记作26-°,则指针沿逆时针方向旋转106°,记18.某市某一时刻的气温是零上2℃,记作2+℃,另一时刻的气温是零下1℃,则记作 ,若某时气温是零摄氏度,则记作 .19.中国历史上刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.如果收入5000元记作5000+元,那么支出2000元记作 元.20.金星表面的白天平均温度为零上480℃,夜间平均温度为零下120℃.如果零上480℃记作480+℃,那么零下120℃应该记作 ℃.三、解答题21.某饮料公司生产的一种瓶装饮料,外包装上印有“60030mL ()±”的字样,那么“60030mL ()±”是什么含义?质检局对该产品抽查了5瓶,容量分别为603mL ,611mL ,588mL ,568mL ,628mL ,抽查的产品容量是否合格?22.如图,一只甲虫在55´的方格(每小格边长为1)上沿着网格线运动,他从A 处出发去看望B 、C 、D 处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A 到B 记为14{}A B ®,,从B 到A 记为:}14{B A ®--,,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C ®{______,______},C B ® {______,______}:(2)若这只甲虫的行走路线为A B C D ®®®,请计算该甲虫走过的最短路程;(3)若图中另有两个格点M 、N ,且}15{M A a b ®--,,}52{M N a b ®--,,则A N ®应记为什么?直接写出你的答案.23.下列各数中,哪些是正数?哪些是负数?235,8,9,3,0,3,7,101311-+-+--.24.如果前进5km 记作+5km ,后退6km 记作-6km ,那么下列各数分别表示什么?(1)+8km(2)-4.5km25.某班抽查了10名同学的期末成绩,以90分为基准,超出的记为正数,不足的记为负数,记录结果如下:+7,﹣3,+10,﹣7,﹣9,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于90分的所占的是多少?(3)10名同学的平均成绩是多少?26.(1)某人转动转盘,如果用5+圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02g ,那么- 0.03g 表示什么?(3)某大米包装袋上标注着“净含量:10kg 150g ±”,这里的“10kg 150g ±”表示什么?参考答案1.A2.D3.A4.A5.A6.C7.A8.B9.C10.D11.37-12.100-13.香草味14. 1.2-15.1+16.25(答案不唯一).17.106+°18.1-℃0℃19.2000-20.120-21.解:30mL +表示比600mL 多30mL ,30mL -表示比600mL 少30mL ;所以产品合格的容量为570mL 630mL ~这个范围内,所以抽查样品容量603mL ,611mL ,588mL ,568mL ,628mL ,只有568mL 不合格,其它的都合格.22.(1)解:图中{}3,4A C ®,{}2,0C B ®-故答案为:3,4;2-,0.(2)解:由已知可得:A B ®表示为{}1,4,B C ®记为{}2,0,C D ®记为{}1,2-,则该甲虫走过的路程为:1421210++++=.(3)解:由{}1,5M A a b ®--,{}5,2M N a b ®--,可知:()514a a ---=,()253b b ---=,∴点A 向右走4个格点,向上走3个格点到点N ,∴A N ®应记为()4,3.23.解:正数有:28,3,33++;负数有:35,9,7,10111----.24.(1)+8km 表示前进+8km ;(2)-4.5km 表示后退4.5km ;(3)0km 表示没有动25.解:(1)根据题意得:最高分为90+10=100分,最低分为90-9=81分;(2)低于90分的为87,83,81,87,82,共5个,一共有10个,510¸´100%=50% ,占的百分比为50%;(3)10名同学的平均成绩为110(+7﹣3+10﹣7﹣9﹣3﹣8+1+0+10+90×10)=89.8(分).26.解:(1)如果用5+圈表示沿逆时针方向转了5圈,则沿顺时针方向转了12圈记作12-圈;(2)超出标准质量0.02 g 记作+0.02g ,则0.03g -表示乒乓球的质量低于标准质量0.03g ;(3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即最多超出标准质量150 g ,最少少于标准质量150 g .。
(人教版)七年级数学上册课件:1.1 正数和负数1
板书设计
1.1正数和负数
1、相反意义的量;意义相反的两个量。
2、正数与负数;正数和负数表示的是一对具 有相反意义的量。
3、零既不是正数,也不是负数。
例题
练习
从上面的例题中看到增长 -1就是减少1,那 么增长 -6.4%是什么意思呢?什么情况下增 长率是0?减少 -1又是什么意思呢?
归纳
如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们。
正、负数在实际生活中的应用
(1)小学使用的地图册里的中国地形图, 图中珠穆朗玛峰与吐鲁番盆地处都标有海拔高 度数.
练习:教科书第3页 2. 如果把一个物体向右移动1 m记作移动+1 m, 那么这个物体又移动了-1米是什么意思?如何描 述这时物体的位置?
答:这个物体又向左移动了1 m,即回到了原处.
1、读下列各数,并指出其中哪些是正数,哪些是负数。
4 -1,2.5,+ 3 ,0,-3.14,120,-1.732,-
2 7
正数: 2.5,+ 4 ,120,
3
负数:
-1,-3.14,-1.732,-
2 7
2、如果80m表示向东80m,那么-60m表示 向西60m
3、如果水位升高3m时水位变化位不升不降时水位变化记作 0m
4、月球表面的白天平均温度零上126°C,记作 +126 °C, 月间平均温度零下150°C,记作 -150 °C。
4. 举几个生活中含有正数、负数的例子,并解 释其中相关数量的含义.
教学反思
本节是小学所学算术数之后数的范围的第一次扩充, 是算术数到有理数的衔接与过渡,并且是以后学习数 轴、相反数、绝对值以及有理数运算的基础。本节的 重点是通过熟悉的实例引入负数的概念,使学生明确 数学知识来源于生活又服务于生活。教学中特别强调 “0”的特殊身份,明确“0”即不是正数也不是负数, 教学中应多结合实例加深对负数的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 正数和负数一、教学目标1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;通过对数“零”的意义的探讨,进一步理解正数和负数的概念2.能区分两种不同意义的量,会用符号表示正数和负数3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
二、教学重点用正数和负数表示具有相反意义的量。
三、教学难点用正数和负数表示实际问题中具有相反意义的量;理解实际问题中正数和负数的意义。
四、教学内容Ⅰ情境引入⑴活动1:举例说明小学数学中我们学过哪些数?看谁举得全?⑵阅读数学小故事人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有"结绳而治"的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。
如果分配猎获物时5个人分4件东西,每个人该得多少呢?于是分数就产生了。
中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。
…………总结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示。
在测量或计算中,有时不能得出整数,我们用分数或小数表示.(3)问题1:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?Ⅱ知识建构活动2在生活、生产和科研中,经常遇到数的表示和运算等问题。
例如:①今年海门冬季里某一天的气温为—3℃~3℃;②某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一年增长—2.7%;③今年世界杯小组赛C组积分表如下探究1:①中的“3”和“—3”、②中的“1.8%”和“—2.7%”、③中的“7”和“—2”分别表示什么实际意义?总结:①中的“3”表示“零上3℃”,“—3”表示“零下3℃”;②中的“1.8%”表示“增长1.8%”,“—2.7%”表示“减少2.7%”;③中的“7”表示净胜球7个,“—2”表示“净输球2个”。
活动3上面实例中出现的数—3,3,1.8%,—2.7%,7,—2,其中3,1.8%,7都是正数(正数都是大于0的数);也出现了一种新数—3,—2.7%,—2.你能说出这些新数有什么特征吗?你能给它们取个名字吗?总结:—3,—2.7%,—2前面都是在正数3,2.7%,2前面加一个“—”(减号);这些数都比0小。
我们称这些数为负数(给出课题),符号“—”叫做负号。
说明:①有时为了明确表达意义,正数前面可以加上“+”号,一般情况下可以省略;②一个数前面的“+”“—”叫做这个数的符号;③0既不是正数,也不是负数,它是正数和负数的分界;④正数和负数用来表示具有相反意义的量。
Ⅲ知识应用⑴典型例题例⑴一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化。
写出他们这个月的体重增长值;⑵2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
思考:上面图中的正数和负数的含义是什么?你能再举一些用正数和负数表示数量的实际例子吗?探究2 如果把一个物体向右移动1m记作移动+1m,那么这个物体又移动了—1m是什么意思?如何描述这时物体的位置?⑵课堂反馈1.读下列各数,并指出其中哪些是正数,哪些是负数.2.如果80m表示向东走80m,那么—60m表示_______________________.3.如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m,水位不升不降时水位变化记作____________m.4.月球表面的白天平均温度零上126℃,记作__________℃,夜间平均温度零下150℃,记作__________℃.5.2010年我国全年平均降水量比上年增加108.7mm,2009年比上年减少81.5mm,2008年比上年增加53.5mm.用正数和负数表示这三年我国全年平均降水量比上年的增长量.五、课堂总结活动4通过这节课的学习,你学习到了哪些知识?(学生互相补充)总结:这节课,我们学习了一个新数——负数。
由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数。
正数是大于0的数,负数是小于0的数,它是在正数前面加上“-”号的数。
0既不是正数,也不是负数,0可以表示“没有”,也是正数和负数的分界。
0可以表示一个实际存在的数量,如0℃、海平面的平均高度0m六、课后作业1.书本P5 习题1.1 1~62.阅读《数的产生与发展》人类是动物进化的产物,最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有"结绳而治"的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。
这7个符号位置上不论怎样变化,它所代表的数字都是不变的。
它们按照下列规律组合起来,就能表示任何数:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。
一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。
如:""表示 "15,000",""表示"165,000"。
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。
到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。
筹算用的算筹是竹制的小棍,也有骨制的。
按规定的横竖长短顺序摆好,就可用来记数和进行运算。
随着筹算的普及,算筹的摆法也就成为记数的符号了。
算筹摆法有横纵两式,都能表示同样的数字。
从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。
9位以上的数就要进一位。
同一个数字放在百位上就是几百,放在万位上就是几万。
这样的计算法在当时是很先进的。
因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。
但筹算数码中开始没有"零",遇到"零"就空位。
比如"6708",就可以表示为"┴╥ "。
数字中没有"零",是很容易发生错误的。
所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。
不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。
他们最早用黑点(·)表示零,后来逐渐变成了"0"。
说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。
不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。
如"零头"、"零星"、"零丁"。
"一百零五"的意思是:在一百之外,还有一个零头五。
随着阿拉数字的引进。
"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。
如果你细心观察的话,会发现罗马数字中没有"0"。
其实在公元5世纪时,"0"已经传入罗马。
但罗马教皇凶残而且守旧。
他不允许任何使用"0"。
有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。
但"0"的出现,谁也阻挡不住。
现在,"0"已经成为含义最丰富的数字符号。
"0"可以表示没有,也可以表示有。
如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。
除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。
在长期实际生活的应用中,十进制最终占了上风。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。
实际上它们是古代印度人最早使用的。
后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。