七年级数学含绝对值的方程与不等式测试卷(难度一般)
上海华育中学七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111 (6)6222=--=-,则方程(3x﹣7)☆(3﹣2x)=2的解为x=()A.1 B.125C.6或125D.62.不等式组1322<4xx->⎧⎨-⎩的解集是()A.4x>B.1x>-C.14x-<<D.1x<-3.不等式()2533x x->-的解集为()A.4x<-B.4x>C.4x<D.4x>-4.关于x的方程3a x-=的解是非负数,那么a 满足的条件是()A.3a>B.3a≤C.3a<D.3a≥5.已知不等式组1113x ax-<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为()A.﹣1 B.0 C.1 D.26.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排,A B两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种7.若a+b>0,且b<0,则a、b、-a、-b的大小关系为( )A.-a<-b<b<a B.-a<b<a<-b C.-a<b<-b<a D.b<-a<-b<a 8.已知点()121M m m--,在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.9.下列说法中不正确的是()A.若a b>,则a1b1->-B.若3a3b>,则a b>C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- 10.若a b <,则下列各式中不一定成立的是( )A .11a b -<-B .33a b <C .a b ->-D .ac bc <11.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数 12.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( )A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号). 14.不等式组63024x x x -⎧⎨<+⎩的解集是__.15.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________.16.已知a 2a <+<a 的值为____________.17.若a b >0,cb<0,则ac________0. 18.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.19.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来) 20.方程组24x y kx y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题21.解不等式:431132x x +-->,并把解集在数轴上表示出来.22.解不等式组32,121.25x x xx <+⎧⎪⎨++≥⎪⎩①②并把解集在数轴上表示出来.23.解不等式,并把解集在数轴上表示出来. (1)()4521x x +≤+(2)()1113125y y y +<--24.某木板加工厂将购进的A 型、B 型两种木板加工成C 型,D 型两种木板出售,已知一块A 型木板的进价比一块B 型木板的进价多10元,且购买2块A 型木板和3块B 型木板共花费220元.(1)A 型木板与B 型木板的进价各是多少元?(2)根据市场需求,该木板加工厂决定用不超过8780元购进A 型木板、B 型木板共200块,若一块A 型木板可制成2块C 型木板、1块D 型木板;一块B 型木板可制成1块C 型木板、2块D 型木板,且生产出来的C 型木板数量不少于D 型木板的数量的1113. ①该木板加工厂有几种进货方案?②若C 型木板每块售价30元,D 型木板每块售价25元,且生产出来的C 型木板、D 型木板全部售出,哪一种方案获得的利润最大,求出最大利润是多少? 25.解不等式,并把解表示在数轴上.417366x x +≥- 26.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分3x-7≥3-2x 和3x-7<3-2x 两种情况,依据新定义列出方程求解可得. 【详解】解:当3x ﹣7≥3﹣2x ,即x ≥2时, 由题意得:(3x ﹣7)+(3﹣2x )=2, 解得:x =6;当3x ﹣7<3﹣2x ,即x <2时, 由题意得:(3x ﹣7)﹣(3﹣2x )=2,解得:x =125(不符合前提条件,舍去), ∴x 的值为6. 故选:D . 【点睛】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.2.A解析:A 【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集. 【详解】解:解不等式13x ->得4x >, 解不等式224x -<得1x >-, ∴不等式组的解集为4x >. 【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.4.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.5.D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案. 【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤,因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案. 故选:C . 【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.7.C解析:C 【分析】根据不等式a+b >0得a >-b ,-a <b ,再根据b <0得b <-b ,再比较大小关系即可. 【详解】 解:∵a+b >0, ∴a >-b ,-a <b. ∵b <0, ∴b <-b , ∴-a <b <-b <a. 故选C. 【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.8.B解析:B 【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论. 【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <, 在数轴上表示为:故选:B . 【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质9.C解析:C 【分析】根据不等式的基本性质对各选项进行逐一分析即可. 【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意; B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意. 故选:C . 【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.D解析:D 【分析】根据不等式的性质进行解答. 【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意. 故选:D . 【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.11.A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】 解:∵3x+3a=2, ∴x=233a- , 又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.12.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵2<2x y ++∴x <y ,故选项A 不符合题意;∴44x y ->-,故B 选项符合题意;33x y --<,故选项C 不符合题意;22x y<,故D 选项不符合题意. 故答案为B . 【点睛】本题主要考查了不等式的性质,给不等式左右两边乘以(除以)一个大于0的代数式(数),不等式符号不变,反之改变.二、填空题13.②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查 解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集. 【详解】解:解不等式630x -,得:2x , 解不等式24x x <+,得:4x <,则不等式组的解集为2x , 故答案为2x . 【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.15.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k的值,代入分别求解可得. 【详解】①当213213k k k +>-+⎧⎨+≤⎩时,解得:213k <≤;②当21333k k k +≤-+⎧⎨-+≤⎩时,解得:203k ≤≤; ∵k 为正整数,16.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【分析】【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.17.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.18.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】 本题考查的是不等式的解,正确的解不等式是解题的关键.19.【分析】根据相反数正负数和有理数加减运算的性质分析即可得到答案【详解】∵∴∴∴∵∴∴∵∴∴即故答案为:【点睛】本题考查了相反数正负数有理数大小比较有理数加减运算的知识;解题的关键是熟练掌握相反数正负 解析:a a b b a b a <+<<-<-【分析】根据相反数、正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵0b -<∴0b >∴0b a a -+>∴b a a ->-,b a a +>∵0a b ⨯<∴0a <∴0a ->∵0a b +<∴b a <-∴0a a b b a b a <+<<<-<-即a a b b a b a <+<<-<-故答案为:a a b b a b a <+<<-<-.【点睛】本题考查了相反数、正负数、有理数大小比较、有理数加减运算的知识;解题的关键是熟练掌握相反数、正负数和有理数加减运算的性质,从而完成求解.20.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.三、解答题21.57x <;数轴见解析 【分析】根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆. 22.解集为:31x -<.在数轴上表示见解析.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:32,12125x x x x <+⎧⎪⎨++≥⎪⎩①②,由①得:1x <;由②得:3x ≥-,∴不等式组的解集为31x -≤<,表示在数轴上,如图所示:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.23.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-,即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.24.(1)A 型木板的进价为50元/块,B 型木板的进价为40元/块;(2)①该木板加工厂有4种进货方案;方案1:购进A 型木板75块,B 型木板125块;方案2:购进A 型木板76块,B 型木板124块;方案3:购进A 型木板77块,B 型木板123块;方案4:购进A 型木板78块,B 型木板122块.②方案1购进A 型木板75块,B 型木板125块利润最大,最大利润为7625元.【分析】(1)设A 型木板的进价为x 元/块,B 型木板的进价为y 元/块,根据“一块A 型木板的进价比一块B 型木板的进价多10元,购买2块A 型木板和3块B 型木板共花费220元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①设购入A 型木板m 块,则购入B 型木板(200-m )块,由购进木板的总资金不超过8780元且生产出来的C 型木板数量不少于D 型木板的数量的1113,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各进货方案; ②根据利润=销售收入-进货成本,分别求出4个进货方案的销售利润,比较后即可得出结论.【详解】解:(1)设A 型木板的进价为x 元/块,B 型木板的进价为y 元/块,依题意,得:1023220x y x y -=⎧⎨+=⎩,解得:5040 xy=⎧⎨=⎩.答:A型木板的进价为50元/块,B型木板的进价为40元/块.(2)①设购入A型木板m块,则购入B型木板(200-m)块,依题意,得:()()() 50402008780112200220013m mm m m m+-≤⎧⎪⎨+-≥+-⎡⎤⎪⎣⎦⎩,解得:75≤m≤78.∵m为整数,∴m=75,76,77,78.∴该木板加工厂有4种进货方案,方案1:购进A型木板75块,B型木板125块;方案2:购进A型木板76块,B型木板124块;方案3:购进A型木板77块,B型木板123块;方案4:购进A型木板78块,B型木板122块.②方案1获得的利润为(75×2+125)×30+(75+125×2)×25-75×50-125×40=7625(元),方案2获得的利润为(76×2+124)×30+(76+124×2)×25-76×50-124×40=7620(元),方案3获得的利润为(77×2+123)×30+(77+123×2)×25-77×50-123×40=7615(元),方案4获得的利润为(78×2+122)×30+(78+122×2)×25-78×50-122×40=7610(元).∵7625>7620>7615>7610,∴方案1购进A型木板75块,B型木板125块利润最大,最大利润为7625元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①根据各数量之间的关系,正确列出一元一次不等式组;②利用利润=销售收入-进货成本,分别求出4个进货方案的销售利润.25.3x≤,见解析【分析】先去分母,然后移项、合并同类项,系数化为1,即可得到答案.【详解】解:去分母,得2417x x≥+-移项,得4271x x-≤-合并同类项,得26x≤系数化为1,得3x≤;把解表示在数轴上如图:【点睛】本题考查了解一元一次不等式,解题的关键是掌握解不等式的方法进行解题.26.(1)x<1,数轴见解析;(2)﹣5≤x< 2,数轴见解析【分析】(1)先解一元一次不等式,再在数轴上表示出不等式的解集;(2)先解一元一次不等式组,再在数轴上表示出不等式组的解集;【详解】解:(1)6194x x ->-6941x x ->-+33x ->-解得:x <1,在数轴上表示如下:(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩①②解不等式①得:x≥﹣5解不等式②得:x < 2∴不等式组的解集为﹣5≤x < 2 ;在数轴上表示如下:.【点睛】本题主要考查求一元一次不等式和一元一次不等式组的解集和数轴,解题的关键是熟练掌握解一元一次不等式和一元一次不等式组的方法.。
七年级数学上册绝对值计算题大全

七年级数学上册绝对值计算题大全1. 基础绝对值计算题
1. 求下列数的绝对值:
- |-5|
- |7|
- |0|
2. 计算下列绝对值:
- |10 - 3|
- |6 - 18|
- |4 + (-9)|
3. 解下列绝对值方程:
- |x + 5| = 9
- |2x - 3| = 7
- |3x + 1| = 2
2. 绝对值计算题的应用
1. 在数轴上表示下列数的位置,并求其绝对值:
- -6
- -3/2
- 2.4
2. 两个数的距离等于其绝对值之差。
计算下列数的距离:
- |-4| - |5|
- |-1| - |1|
- |7| - |(-8)|
3. 解下列问题:
- 一个球从离地面20米的位置自由下落,经过多长时间会触地?
- 一个温度计的温度为80°,将其放进冰箱中,温度下降到多少度?
3. 绝对值计算题综合练
1. 求下列各式的值:
- |8 - 4| + |-6 - (-2)|
- |5 + 3| - |10 - 2|
- |2x - 7| - |3x - 5|
2. 解下列绝对值方程与不等式:
- |2x - 1| = 5
- |3x + 2| = 7
- |4x - 3| > 2
以上是七年级数学上册绝对值计算题的大全。
希望这些题目可以帮助你练和掌握绝对值的计算方法和应用。
*注意:以上题目仅供参考,请根据实际情况和课本要求进行练习。
*。
七年级数学绝对值的试卷

考试时间:60分钟 满分:100分 一、选择题(每题5分,共50分) 1. 下列各数中,绝对值最小的是: A. -3 B. -2 C. 0 D. 1 2. 若|a| = 5,那么a的值可以是: A. 5 B. -5 C. 10 D. -10 3. 下列等式中正确的是: A. |3| = 3 B. |-3| = 3 C. |0| = 0 D. |a| = -a 4. 若|a - 2| = 4,那么a的值可以是: A. 6 B. 2 C. -2 D. -6 5. 下列数中,不是正数的是: A. 5 B. -5 C. 0 D. 3 6. 若|a| + |b| = 7,且a、b同号,那么a和b的和可能是: A. 7 B. 5 C. 3 D. 1 7. 下列关于绝对值的说法正确的是: A. 绝对值表示一个数到0的距离 B. 绝对值总是非负的 C. 绝对值越大,表示的数越小 D. 绝对值越小,表示的数越大 8. 若|a - b| = |b - a|,那么下列说法正确的是: A. a = b B. a ≠ b C. a > b D. a < b 9. 下列数中,绝对值最大的是: A. -1 B. 0 C. 1 D. -2 10. 若|a| = |b|,那么a和b的关系是: A. a = b B. a ≠ b C. a > b D. a < b 二、填空题(每题5分,共25分) 11. |5| = ______;|-5| = ______。 12. 若|a| = 3,则a的值为 ______ 或 ______。 13. 若|a - 2| = 5,则a的值为 ______ 或 ______。 14. 若|a| + |b| = 8,且a、b同号,则a和b的和为 ______。 15. 若|a| = 4,则|a + 2| 的值为 ______ 或 ______。 三、解答题(共25分) 16. (10分)已知数轴上点A表示的数为-3,点B表示的数为5,求点A和点B之间的距离。
(完整版)初一数学一元一次不等式练习题汇总(复习用)含答案

(1) 你能否结合前面学的解方程的知识,尝试解这个不等式。 (2) 列表计算。
某企业为了适应市场经济的需要人平均每人全年可创造产值决定进行人员结构调整现欲从中分流出3假设分流后继续从事生产性行业的人员平均每人全年创造产值可增加均每人全年可创造产值20而分流从事服务性行业的人员平如果要保证分流后该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半试确定分流后从事服务性行业的人数
4 的值 .
4. k 为何值时 , 等式 |-24+3a|+
2
k
3a
b
2
0 中的 b 是负数 ?
参考答案
一、1.-3 > - π ,-2 2 < (-0.2) 2; 2.x > 2; 3.xy > 0; 4.X ≥ 2; 5.|a|
1
- ; 6.1,2,3,4; 7.x
b
≤ y; 8.x
二、 1.A; 2.C; 3.D 4.D; 5.B.
一、公园 ( 或本地区的某个旅游景点 ) 的票价是每人 5 元。团体参观旅游优惠,一次购票满 30
张,每张票可少收 1 元。某班有 27 名学生去公园进行参观活动,假如要你去买票,请问你打
算买多少张 ?
1) 买 27 张票,要付款:_______元。 2) 买 30 张票,要付款:________
元。
A m=2
B m>2
C m<2 D m
≤2
10、 ax>b 的解集是( )
A. x
b
;
B
.x
b
;
C
.x
b
;
D
.无法确定;
人教版七年级数学下册不等式的性质同步测试题(含解析)

人教版七年级数学下册不等式的性质同步测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是132.对于任意的11x -,230ax a +->恒成立,则a 的取值范围为( )A .1a >或0a =B .3a >C .3a >或0a =D .13a << 3.关于x 的不等式1ax b x -≥-在条件2(1)0a +=且|1|1b b +=--下的解( ) A .11b x a +≥+ B .11b x a +≤+ C .任一个数 D .无解 4.不等式3x +1<2x 的解在数轴上表示正确的是( )A .B .C .D .5.若关于x 的方程()251x m +=-有两个实数根,则m 的取值范围是( )6.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 7.不等式523x -->的非负整数解的个数是A .5个B .4个C .3个D .2个8.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a c <<)经过点(1,0),有下列结论: ①20a b +<;①当1x >时,y 随x 的增大而增大;①关于x 的方程2()0ax bx b c +++=有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .39.已知关于x 的一元二次方程2104x x m -+=有实数根,设此方程得一个实数根为t ,令24454y t t m =--+,则( )A .2y >-B .2y ≥-C .2y ≤-D .2y <-10.下列不是不等式5x -3<6的一个解的是( )A .1B .2C .-1D .-2二、填空题11.如图所示,在①ABC 中,DE ,MN 是边AB 、AC 的垂直平分线,其垂足分别为D 、M ,分别交BC 于E 、N ,若AB =8,AC =9,设①AEN 周长为m ,则m 的取值范围为_____.12.不等式112943x x ->+的正整数解的个数为___________________. 13.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________.14.二次函数y =ax 2﹣2ax +c (a <0)的图象过A (﹣3,y 1),B (﹣1,y 2),C (2,y 3),D (4,y 4)四个点.(1)y 3=____(用关于a 或c 的代数式表示);(2)若y 4•y 2<0时,则y 3•y 1____0(填“>”、“<”或“=”)15.不等式312x -≥的解集为________. 16.方程()2314x y z x y z ++=<<的正整数解是________.17.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.用四个不等式①a >b ,①a +b >2b ,①a >0,①a 2>ab 中的两个不等式作为题设,余下的两个不等式中选择一个作为结论,组成一个真命题:_______________________________.20.比大小:﹣17___﹣0.14,|5|--_______(4)--.三、解答题21.定义新运算为:对于任意实数a 、b 都有()1a b a b b ⊕=--,等式右边都是通常的加法、减法、乘法运算,比如()1212213⊕=-⨯-=-.(1)求23⊕的值.(2)若27x ⊕<,求x 的取值范围.(3)若不等式组1223x x a⊕≤⎧⎨⊕>⎩恰有三个整数解,求实数a 的取值范围. 22.关于x 的一元一次方程3132x m -+=,其中m 是正整数. (1)当2m =时,求方程的解;(2)若方程有正整数解,求m 的值.23.在班级元旦联欢会上,主持人邀李强、张华两位向学参加一个游戏.游戏规则是每人每次抽取四张卡片.如果抽到白色卡片,那么加上卡片上的数字;如果抽到黑色卡片,那么减去卡片上的数字,比较两人所抽4张卡片的计算结果,结果较小的为同学们唱歌,李强同学抽到如图(1)所示的四张卡片,张华同学抽到如图(2)所示的四张卡片.李强、张华谁会为同学们唱歌?参考答案:1.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.2.B【分析】分类讨论求出不等式230ax a +->的解集,再根据对于任意的11x -≤≤,230ax a +->恒成立,即可列出关于a 的不等式,解出a 即可.【详解】解:由230ax a +->,得32ax a >-,当0a >时,不等式的解集为32a x a->, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a-<-, 解得,3a >;当0a =时,不等式无解,舍去;当0a <时,不等式的解集为32a x a-<, 对于任意的11x -≤≤,230ax a +->恒成立, ∴321a a->, 解得,1a >(与0a <矛盾,舍去);综上,3a >.故选:B .【点睛】本题考查解不等式和不等式的解集的应用.利用分类讨论的思想是解答本题的关键.3.C【分析】根据题意,先确定a 的值,进而解不等式即可. 【详解】2(1)0a +=,1a ∴=-,1ax b x -≥-,()11a x b ∴+≥+,即10b +≤由已知条件|1|1b b +=--,即10b +≤恒成立.∴不等式的解与x 的值无关,则关于x 的不等式1ax b x -≥-的解为任意一个数故选C .【点睛】本题考查了不等式的解集,非负数的性质,求得1a =-是解题的关键. 4.B【分析】先解不等式,得到不等式的解集,再在数轴上表示即可.【详解】解:3x +1<2x解得:1,x <-在数轴上表示其解集如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“小于向左拐”是解本题的关键.5.B【分析】令该一元二次方程的判根公式240b ac =-≥,计算求解不等式即可.【详解】解:①()251x m +=-①2102510x x m ++-+=①()2241042510b ac m =-=-⨯-+≥ 解得1m ≥故选B .【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.6.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根. 7.B【分析】根据不等式的性质,解不等式即可,再根据非负整数解确定个数.【详解】解: 523x -->28284x x x ->-<<因此非负整数解有0,1,2,3.故选B【点睛】本题主要考查不等式的性质,注意0也是非负整数.8.C【详解】由题意可知:0a b c ++=,()b a c =-+,b c a +=-,0a c <<,2a c a ∴+>,即()2b a c a =-+<-,得出20b a +<,故①正确;20b a +<,∴对称轴012b x a=->,0a >,01x x ∴<<时,y 随x 的增大而减小,0x x >时,y 随x 的增大而增大,故①不正确; 22224()4()40b a b c b a a b a -+=-⨯-=+>,∴关于x 的方程2()0ax bx b c +++=有两个不相等的实数根,故①正确.故选:C .【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.9.B【分析】由一元二次方程根的判别式先求解1,m ≤再利用根与系数的关系可得21,4t t m 从而可得64,y m 再利用不等式的性质可得答案. 【详解】解: 关于x 的一元二次方程2104x x m -+=有实数根, 2410,b ac m解得:1,m ≤设方程的两根分别为1,,t t111,14t t t t m 解得:41,m t t21,4t t m ∴ 24454y t t m =--+245464,t t m m1,m642,m 即 2.y故选B【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,一次函数的性质,不等式的性质,熟练的运用一元二次方程根的判别式与根与系数的关系是解本题的关键. 10.B【解析】略11.1<m <17【分析】根据线段垂直平分线的性质得到EA =EB ,NC =NA ,根据三角形的三边关系解答即可.【详解】解:①DE ,MN 是边AB 、AC 的垂直平分线,①EA =EB ,NC =NA ,①①AEN 周长为m =EA +EN +NA =EB +EN +NC =BC ,在①ABC 中,9-8<BC <9+8,①1<m <17,故答案为:1<m <17.【点睛】本题主要考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.2个【分析】先求出一元一次不等式的解,再找出其正整数解即可得. 【详解】112943x x ->+, 112943x x -->-, 152543x ->-, 209x <, 则不等式的正整数解为1,2,共2个,故答案为:2个.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.13.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根, ①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.14.c<【分析】将x=2代入抛物线解析式可得y3=c,根据抛物线解析式可得抛物线开口方向及对称轴,根据各点到对称轴的距离可判断y3>y2>y4>y1,再由y4•y2<0判断出原点位置,进而求解.【详解】解:将x=2代入y=ax2﹣2ax+c得y=c,①y3=c,①y=ax2﹣2ax+c(a<0),①抛物线开口向下,对称轴为直线212axa-==-,①与抛物线对称轴距离越近的点的纵坐标越大,①A点离对称轴距离为4,B点离对称轴距离为2,C点离对称轴距离为1,D点离对称轴距离为3,①y3>y2>y4>y1,若y4•y2<0,则y3>y2>0>y4>y1,①y3•y1<0,故答案为:c,<.【点睛】本题考查二次函数图象的性质,根据二次函数的对称性求出y3>y2>y4>y1再由不等式的性质找出原点位置是解题关键.15.5x≥【分析】根据解一元一次不等式的步骤:去分母、去括号、移项、合并同类项、系数化为1可得答案.【详解】解:31 2x-≥去分母,得x-3≥2,移项,得x≥2+3,合并同类项,系数化1,得,x≥5,故答案为:x≥5.【点睛】本题考查了解一元一次不等式,解题的关键掌握解一元一次不等式的方法步骤.16.123x y z =⎧⎪=⎨⎪=⎩【分析】由()2314x y z x y z ++=<<,可得出73x <,73z >,又由,,x y z 均为正整数,分析即可得到正确答案.【详解】解:①x y z <<, ①2233x y x z <⎧⎨<⎩①62314x x y z <++= ①73x <, 同理可得:73z > 又①,,x y z 均为正整数①满足条件的解有且只有一组,即123x y z =⎧⎪=⎨⎪=⎩故答案为:123x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.17.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2, ①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b -∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1①[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >【分析】根据题意写出命题,根据不等式的性质1、性质2证明即可.【详解】题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >,是真命题.证明:①a b >,①a b b b +>+,即2a b b +>,①a b >,且0a >,①2a ab >,故答案为:题设:①a b >,①0a >,结论:①2a b b +>,①2a ab >.【点睛】本题考查了命题和定理,掌握真命题的概念、不等式的性质是解题的关键. 20. < <【分析】根据两个负数比较大小,其绝对值大的反而小比较即可;先化简符号,再比较即可. 【详解】解:﹣17=15049,0.147350350-=-=, ①5049350350>, ①﹣17<﹣0.14; ①|5|--=-5<0,(4)--=4,①|5|--<(4)--,故答案为:<,<.【点睛】本题考查了绝对值,有理数的大小比较,能熟记有理数的大小比较法则和绝对值的意义是解此题的关键.21.(1)4-(2)6x <(3)42a -≤<【分析】(1)利用新运算的规则直接进行计算即可;(2)利用新运算的规则对不等式转化,再进行求解;(3)利用新运算的规则对不等式组进行转化,然后解不等式组,再结合该不等式组恰有3个整数解确定a 的取值范围.(1)解:23(23)314⊕=-⨯-=-.(2) 解:27x ⊕<,∴(2)217x -⨯-<,∴6x <.(3)解:由1223x x a ⊕≤⎧⎨⊕>⎩,得(1)112(23)31x x a -⨯-≤⎧⎨-⨯->⎩①②, 解不等式①,得4x ≤;解不等式①,得106a x +>. ∴原不等式组的解集为1046a x +<≤. 又原不等式组恰有3个整数解,∴原不等式的整数解为2,3,4. ∴10126a +≤<, 解得42a -≤<.【点睛】本题考查了对定义新运算理解与运用,解不等式(组),解决本题的关键是将新运算转化为普通四则运算进行求解.22.(1)1x =(2)2m =【分析】(1)把m =2代入方程,求解即可;(2)把m 看做常数,求解方程,然后根据方程解题正整数,m 也是正整数求解即可. (1)解:当2m =时,原方程即为31232x -+=. 去分母,得3146x -+=.移项,合并同类项,得33x =.系数化为1,得1x =.∴当2m =时,方程的解是1x =. (2)解:去分母,得3126x m -+=.移项,合并同类项,得372x m =-.系数化为1,得723m x -=. m 是正整数,方程有正整数解,2m ∴=.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程是解题的关键.23.张华为同学们唱歌.【分析】首先根据游戏规则,分别求出李强、张华同学抽到的四张卡片的计算结果各是多少;然后比较大小,判断出结果较小的是哪个即可.【详解】解:李强同学抽到的四张卡片的计算结果为:13(5)422⎛⎫-+---+ ⎪⎝⎭ 135422=--++ 7=张华同学抽到的四张卡片的计算结果为:7110563⎛⎫----+ ⎪⎝⎭ 78566=-++ 156= ①1756>,①张华为同学们唱歌.答:张华为同学们唱歌.【点睛】本题以游戏为载体考查了有理数的加减运算以及有理数的比较大小,还是那个知识点但出题的形式变了,题目较为新颖.。
初一数学上册综合算式专项练习题解含有绝对值的一元一次方程组

初一数学上册综合算式专项练习题解含有绝对值的一元一次方程组1. 问题描述:解以下含有绝对值的一元一次方程组:1) |2x + 5| = 132) |3x - 7| = 203) |4x + 2| = 102. 解题思路:对于含有绝对值的一元一次方程组,我们可以按照以下步骤进行求解:1) 将绝对值符号去掉,得到两个可能的情况;2) 分别解出两个情况的方程,并进行验证;3) 得到方程的解集。
3. 解题过程:1) 对于方程 |2x + 5| = 13,去掉绝对值后得到两个方程:2x + 5 = 13 或 2x + 5 = -13解第一个方程得:2x = 13 - 5,即 x = 4;解第二个方程得:2x = -13 - 5,即 x = -9;验证第一个方程:|2*4 + 5| = 13 √;验证第二个方程:|2*(-9) + 5| = |-18 + 5| = 13 √;所以方程 |2x + 5| = 13 的解集是 {4, -9}。
2) 对于方程 |3x - 7| = 20,去掉绝对值后得到两个方程: 3x - 7 = 20 或 3x - 7 = -20解第一个方程得:3x = 20 + 7,即 x = 9;解第二个方程得:3x = -20 + 7,即 x = -5/3;验证第一个方程:|3*9 - 7| = |27 - 7| = 20 √;验证第二个方程:|3*(-5/3) - 7| = |-5 - 7| = 12 √;所以方程 |3x - 7| = 20 的解集是 {9, -5/3}。
3) 对于方程 |4x + 2| = 10,去掉绝对值后得到两个方程: 4x + 2 = 10 或 4x + 2 = -10解第一个方程得:4x = 10 - 2,即 x = 2;解第二个方程得:4x = -10 - 2,即 x = -3;验证第一个方程:|4*2 + 2| = |8 + 2| = 10 √;验证第二个方程:|4*(-3) + 2| = |-12 + 2| = 10 √;所以方程 |4x + 2| = 10 的解集是 {2, -3}。
(完整版)初中数学七年级绝对值练习题
《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。
[初中一年级]七年级数学绝对值测试题
2.4绝对值◆随堂检测1、绝对值为4的有理数是〔 〕A. ±4B. 4C. -4D. 22、两个数的绝对值相等,则〔 〕A.这两个数一定是互为相反数B.这两个数一定相等C.这两个数一定是互为相反数或相等D.这两个数没有一定的关系3、绝对值小于4的整数有〔 〕A.3个B.5个C.7个D.8个4、化简4-+-ππ的结果是_______-5、绝对值与相反数都是它的本身〔 〕A .1个 B.2个 C.3个 D.不存在◆典例分析若m 为有理数,且,m m -=-则m 是〔 〕A.非整数B.非负数C.负数D.不为零的数解析:根据"正数或零"的绝对值等于本身可知,-m ≥0,所以他的相反数m ≦0,即为非正数. ◆课下作业●拓展提高1、31-的绝对值是〔 〕 A .-3 B.31 C. 3 D.31- 2、若()b a b a +-=+,则下列结论正确的是〔 〕A .a+b ≤0 B. a+b<0 C. a+b=0 D. a+b>03、-3的绝对值是_______,绝对值是3的数是________.4、一个数a 在数轴上的对应点在原点的左侧,且5.4=a ,则a=__________.5、若的相反数是-0.74,则_______=a .6、若______,21==-x x 则.7、若032=-+-b a ,求a 、b 的值.8、某检测小组乘汽车检修供电线路,向南记为正,向北记为负。
某天自A 地出发,所走路程〔单位:千米〕为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5,每千米耗油0.06升,问今天共耗油多少升?●体验中考1、〔20######〕-5的绝对值是〔 〕A .5B .5C .15D . 152、〔20####贺州〕计算:=-2009.3、〔2008##市〕下列四个数的绝对值比2大的是〔 〕A.-3B.0C.1D.2参考答案:随堂检测1、A 分析:绝对值为4的数是±42、C 分析:绝对值相等的两个数,可相等,也可互为相反数3、C 分析:绝对值小于4的整数由-3,-2,-1,0,1,2,3,共7个4、4 分析:因为4〈π,所以444=-+=-+-ππππ5、A 分析:只有零一个拓展提高1、B2、A 分析:由()b a b a +-=+说明a+b 是负数或零,即a+b ≤03、3;±34、-4.5 分析:因为a 在原点的左侧,则a 为负数,又因为5.4=a ,a=-4.55、 0.74 分析:a 的相反数是-0.74,则a=0.74,所以74.074.0=6、 3或-1 分析:由,21,21±=-=-x x 则得x=3或x=-17、因为02≥-a ,03≥-b ,所以若032=-+-b a ,则a-2=0.b-3=0故a=2,b=38、分析:先求出检修小组乘汽车行驶的总路程,然后再求出总耗油量即可2234281721275223428172127582++-+++-+-+++-+++++-=+++++++++=解:所以总耗油量为82×0.06=4.92〔升〕答:今天共耗油4.92升体验中考1、A2、20093、A。
[初中一年级]七年级数学绝对值测试题
2.4绝对值◆随堂检测1、绝对值为4的有理数是( )A. ±4B. 4C. -4D. 22、两个数的绝对值相等,那么( )A.这两个数一定是互为相反数B.这两个数一定相等C.这两个数一定是互为相反数或相等D.这两个数没有一定的关系3、绝对值小于4的整数有( )A.3个B.5个C.7个D.8个4、化简4-+-ππ的结果是_______-5、绝对值与相反数都是它的本身( )A .1个 B.2个 C.3个 D.不存在◆典例分析若m 为有理数,且,m m -=-那么m 是( )A.非整数B.非负数C.负数D.不为零的数解析:根据“正数或零”的绝对值等于本身可知,-m ≥0,所以他的相反数m ≦0,即为非正数.◆课下作业●拓展提高1、31-的绝对值是( ) A .-3 B.31 C. 3 D.31- 2、若()b a b a +-=+,则下列结论正确的是( )A .a+b ≤0 B. a+b<0 C. a+b=0 D. a+b>03、-3的绝对值是_______,绝对值是3的数是________.4、一个数a 在数轴上的对应点在原点的左侧,且5.4=a ,则a=__________.5、若的相反数是-0.74,则_______=a .6、若______,21==-x x 则.7、若032=-+-b a ,求a 、b 的值.8、某检测小组乘汽车检修供电线路,向南记为正,向北记为负。
某天自A 地出发,所走路程(单位:千米)为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5,每千米耗油0.06升,问今天共耗油多少升?●体验中考1、(2009年湖南郴州)-5的绝对值是( )A .5B .5C .15D . 152、(2009年XX 贺州)计算:=-2009.3、(2008太原市)下列四个数的绝对值比2大的是( )A.-3B.0C.1D.2参考答案:随堂检测1、A 分析:绝对值为4的数是±42、C 分析:绝对值相等的两个数,可相等,也可互为相反数3、C 分析:绝对值小于4的整数由-3,-2,-1,0,1,2,3,共7个4、4 分析:因为4〈π,所以444=-+=-+-ππππ5、A 分析:只有零一个拓展提高1、B2、A 分析:由()b a b a +-=+说明a+b 是负数或零,即a+b ≤03、3;±34、-4.5 分析:因为a 在原点的左侧,则a 为负数,又因为5.4=a ,a=-4.55、 0.74 分析:a 的相反数是-0.74,则a=0.74,所以74.074.0=6、 3或-1 分析:由,21,21±=-=-x x 则得x=3或x=-17、因为02≥-a ,03≥-b ,所以若032=-+-b a ,则a-2=0.b-3=0 故a=2,b=38、分析:先求出检修小组乘汽车行驶的总路程,然后再求出总耗油量即可2234281721275223428172127582++-+++-+-+++-+++++-=+++++++++=解:所以总耗油量为82×0.06=4.92(升)答:今天共耗油4.92升体验中考1、A2、20093、A。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学上册绝对值同步练习题之蔡仲巾千创作创作时间:二零二一年六月三十日基础检测:1.-8的绝对值是 , 记做 .2.绝对值即是5的数有.3.若︱a︱= a , 则 a .4.的绝对值是2004, 0的绝对值是 .5一个数的绝对值是指在上暗示这个数的点到的距离.6.如果 x < y < 0, 那么︱x ︱︱y︱.7.︱x - 1 ︱ =3 , 则 x =.8.若︱x+3︱+︱y -4︱= 0, 则 x + y = .9.有理数a , b在数轴上的位置如图所示, 则a b,︱a︱︱b︱.10.︱x ︱<л, 则整数x = . 11.已知︱x︱-︱y︱=2, 且y =-4, 则 x = .12.已知︱x︱=2 , ︱y︱=3, 则x +y = .13.已知︱x +1 ︱与︱y -2︱互为相反数, 则︱x ︱+︱y︱= .14. 式子︱x +1 ︱的最小值是 , 这时, x值为 .15. 下列说法毛病的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法毛病的个数是 ( )(1) 绝对值是它自己的数有两个, 是0和1(2) 任何有理数的绝对值都不是负数 (3) 一个有理数的绝对值必为正数 (4) 绝对值即是相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数, b 是最年夜的负整数, c 是绝对值最小的有理数, 则 a + b + c 即是 ( ) A -1 B 0 C 1 D 2 拓展提高:18.如果a , b 互为相反数, c, d 互为倒数, m 的绝对值为2, 求式子a ba b c +++ + m -cd 的值.19.某司机在工具路上开车接送乘客, 他早晨从A 地动身, (去向东的方向正方向), 到晚上送走最后一位客人为止, 他一天行驶的的里程记录如下(单元:㎞)+10 , — 5, —15 , + 30 , —20 , —16 , + 14(1) 若该车每百公里耗油 3 L , 则这车今天共耗油 几多升?(2)据记录的情况, 你能否知道该车送完最后一个乘客是, 他在A地的什么方向?距A地多远?20.工厂生产的乒乓球超越标准重量的克数记作正数, 低于标准重量的克数记作负数, 现对5个乒乓球称重情况如下表所示, 分析下表, 根据绝对值的界说判断哪个球的重量最接近标准?代号 A B C D E 超标情况初一(七年级)数学上册绝对值同步练习谜底基础检测:1.-8的绝对值是 8 , 记做︱-8︱ .2.绝对值即是5的数有±5.3.若︱a︱= a , 则 a ≥ 0 .4.±2004 的绝对值是2004, 0的绝对值是 0 .5.一个数的绝对值是指在数轴上暗示这个数的点到原点的距离. 6.如果 x < y < 0, 那么︱x ︱>︱y︱.7.︱x -1 ︱ =3 , 则 x =4或-2 .x -1 = 3, x = 4 ;—(x -1) = 3, x = -28.若︱x+3︱+︱y -4︱= 0, 则 x + y = 1 .x+3= 0 , x = -3;y-4= 0, y = 4;x + y = 19.有理数a , b在数轴上的位置如图所示, 则a < b,︱a︱> ︱b︱.10.︱x ︱<л, 则整数x =0, ±1, ±2, ±3 .11.已知︱x︱-︱y︱=2, 且y =-4, 则 x = ±6 .︱x︱-4 = 2, ︱x︱= 6, x = ±612.已知︱x︱=2 , ︱y︱=3, 则x +y = ±1, ±5 .13.已知︱x +1 ︱与︱y -2︱互为相反数, 则︱x ︱+︱y︱=3 ..互为相反数:|x+1|+|y-2|=0 x+1=0, x=-1;y-2=0, y=2 ;︱x ︱+︱y︱= 1 + 2 = 314. 式子︱x +1 ︱的最小值是0 , 这时, x值为—1 .15. 下列说法毛病的是( c )A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数错:0的绝对值是0, 非正非负.D 任何数的绝对值都不是负数16.下列说法毛病的个数是( A )(1)绝对值是它自己的数有两个, 是0和1 错:所有非正数的绝对值都是它自己.(2)任何有理数的绝对值都不是负数对:任何有理数的绝对值都是正数或0(3)一个有理数的绝对值必为正数错:0非正非负.(4)绝对值即是相反数的数一定是非负数错:绝对值即是相反数的数一定是非正数.A 3B 2C 1D 017.设a 是最小的正整数, b 是最年夜的负整数, c 是绝对值最小的有理数, 则 a + b + c 即是 ( B ) A -1 B 0 C 1 D 2解析:最小的正整数:1, 最年夜的负整数:-1, 绝对值最小的有理数:0 拓展提高:18.如果a , b 互为相反数, c, d 互为倒数, m 的绝对值为2, 求式子a ba b c +++ + m -cd 的值.解:a, b 互为相反数:b=-a c, d 互为倒数:d=1/c | m|=2: m=±2a ba b c +++ + m -cd=0+(±2)-1 =1或-319.某司机在工具路上开车接送乘客, 他早晨从A 地动身, (去向东的方向正方向), 到晚上送走最后一位客人为止, 他一天行驶的的里程记录如下(单元:㎞)+10 , —5, —15 , + 30 , —20 , —16 , +14(1) 若该车每百公里耗油 3 L , 则这车今天共耗油 几多升?解:总共行驶路程为:| +10 | + | —5 | + | —15 | + | + 30 | + | —20 | + | —16 | + | +14 |=110(公里)油耗为:110*(3/100)=3.3(升)(2)据记录的情况, 你能否知道该车送完最后一个乘客是, 他在A地的什么方向?距A地多远?解:A地为原点:+10 —5 —15+ 30 —20 —16 +14 = —2负方向为西方, 他在A点的西方, 距A点2千米.20.工厂生产的乒乓球超越标准重量的克数记作正数, 低于标准重量的克数记作负数, 现对5个乒乓球称重情况如下表所示, 分析下表, 根据绝对值的界说判断哪个球的重量最接近标准?|B | =| —|C | =| —|E | =| —根据绝对值计算结果, A, B球最接近标准.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 / 2 页
七年级数学含绝对值的方程与不等式测试卷(难度一般)
一、填空题
01.∣x+2∣−∣x∣=x的解是__________。
02.方程∣3x−2∣=∣5x−3∣的解集是__________。
03.方程∣4x−5∣=7的解是__________。
04.方程∣2x−3∣−3x =1的解是__________。
05.不等式∣2x+5∣≤10的解集是__________。
06.不等式∣3x+1∣>2x的解集是__________。
07.不等式∣x−1∣>5的解集是__________。
08.若∣x−y∣=y−x,且∣x∣=3,∣y∣=−4,则(y−x)
3
=__________。
09.若0<x<10,则满足条件∣x−3∣=a的所有整数a的值的和为__________。
10.方程∣x−∣2x+l∣∣=3的不同的解的个数是__________。
第 2 / 2 页
二、解答题
11.解不等式∣x+3∣−∣2x−1∣<
2
x
+1
12.已知方程∣x∣=ax+1有一负根,且无正根,求a的取值范围。