《图形的相似(第2课时)》教案 (省一等奖)
图形相似教学设计(共6篇)

图形相似教学设计(共6篇)第1篇:图形相似的教学案例三星初中邱清华教学内容:依据新教材(苏科版)八年级下学期《图形的相似》的相关内容而开发生成的适合网络教学的自编教材。
教材设计意念:根据基础教育课程的具体目标,我们知道学习是学生主动建构知识的过程的建构主义理论,把握好学生的独立探索与教师的引导支持之间的辩证关系。
因此在教学中,我给予了学生充足的时间习参与集体活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观;其次根据初中生的心理特点,他们对游戏活动有着强烈的好奇心,以及对具有挑战性的知识强烈的欲望,再加上他们已有平面图形的有关知识作基础,完全有可能也有能力自己探索相似图形的一些本质特征,因此我利用几何画板软件设计了几个带有竞争意识的游戏活动,使他们在游戏中学到数学知识,在活动中掌握知识,从而在快乐中感受知识的来龙去脉。
教材分析:本节内容选于苏科版教材八年级(下),本章在已学习“全等图形”的基础上,以认识相似图形(即形态相同图形)为核心内容,在本节课的学习过程中,通过几何画板软件,让学生充分感受到相似图形的魅力,通过动手操作画出相似图形,体会相似图形在现实中的应用,进一步增强学生的数学应用意识,通过几个小游戏让学生充分领略到学习的乐趣。
本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
教学重点:学生自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。
教学难点:正确地运用相似图形的特征解决生活中实际问题。
教学目标:使学生联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;引导学生经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观,使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以“生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的意识,培养学生的动手操作能力和创新精神。
初中数学《图形的相似》教案

数学备课组第十九周供二十周用主备课稿导画出几何示意图利用相似三角形性质解.【难点】在四条线段的比例中,如果比例内项相同时,我们把这个比例内项称为比例中项.即如果有a:c=c:b,则称c为a、b的比例中项,有c2=a·b.【易错易混点】在两个直角三角形中,若斜边与直角边对应成比例,则这两个直角三角形相似;若两直角边对应成比例,则这两个直角三角形相似;若有一个锐角对应相等,则这两个直角三角形相似。
拓展与延伸①判断一个图形是否是位似图形,先判断其是否相似,然后判断其是否是位似图形,注意找出位似中心;②位似一定相似,但相似不一定位似;③在平面直角坐标系中作P(x,y)关于原点位似,并且位似比为k时,它的对应点的坐标为(kx,ky)或(-kx, -ky).教学设计(包括导入,各教学环节的安排,导学案设计等)相似多边形的性质通常应用于求两个相似的多边形中未知的边或角的大小。
练习与试卷【重点题】(2013,山东聊城)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为()A.a B.12a C.13a D.23a【难点题】△ABC中,D、E分别是边AB与AC的中点,BC = 4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1 : 4;④△ADE的周长与△ABC的周长之比为1 : 4;其中正确的有①②③.(只填序号)【易错易混题】如图所示,平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(2,-3),△AB’O’是△ABO关于点A的位似图形,且O’的坐标为(-1,0),则点B’的坐标为.教法设计与学法指导(包括突出重点、突破难点的方法,易错易混点的解决措施,教学手段和教学资源利用,学法指导)【重点】利用相似三角形的性质可以解决生活、生产中的某些距离、长度等问题,如求树木、旗杆的高度,求河的宽度等.解题时,应根据题中条件构造相似三角形,画出几何示意图利用相似三角形性质解.【难点】在四条线段的比例中,如果比例内项相同时,我们把这个比例内项称为比例中项.即如果有a:c=c:b,则称c为a、b的比例中项,有c2=a·b.【易错易混点】在两个直角三角形中,若斜边与直角边对应成比例,则这两个直角三角形相似;若两直角边对应成比例,则这两个直角三角形相似;若有一个锐角对应相等,则这两个直角三角形相似。
第4章图形的相似(教案)

1.相似图形的定义与性质
-相似图形的判定方法
-相似图形的对应角相等,对应边成比例
-相似多边形的性质及其应用
2.位似图形
-位似图形的定义与判定
-位似图形的坐标表示
-位似变换的性质及其应用
3.相似多边形的面积比与周长比
-相似多边形面积比的求法
-相似多边形周长比的求法
1.讨论主题:学生将围绕“相似图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.培养学生的几何直观与空间想象能力,通过相似图形的学习,使学生能够观察、分析并构建几何图形,形成对几何图形特征的深刻理解。
2.提升学生的逻辑推理能力,使学生能够运用相似图形的性质与判定方法,进行严谨的几何证明与问题求解。
3.增强学生的数学建模能力,通过解决实际问题,让学生学会将现实问题抽象为数学模型,运用相似性原理进行求解。
-举例:判断两个三角形是否相似,需证明它们的对应角相等,对应边成比例。
-相似图形的性质:包括对应角相等、对应边成比例等,这些性质是解决相似图形问题的重要依据。
-举例:在相似三角形中,周长的比等于相似比,面积的比等于相似比的平方。
-位似图形及其坐标表示:位似图形是相似图形的特殊情况,掌握其坐标表示有助于解决实际问题。
2.在提问技巧上,我应该设计更多开放性和启发性的问题,引导学生深入思考和探索。
3.需要关注每个学生的学习情况,提供个性化的辅导,帮助他们克服难点。
初中数学最新-图形的相似教案2 精品

复习内容:第3章 图形的相似 (第2课时)目标设计:巩固相似三角形的性质和判定方法,能灵活选用判定方法判定三角形相似。
复习过程: 一、题例:1、如图,在△ABC 中,DE ∥BC ,分别交AB 于D ,交AC 于E ,若:2:1AD DB =,求:四边形ADE DBCE S S ∆分析: ∵DE ∥BC∴∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC∴2ADE ABC S AD S AB ∆∆⎛⎫= ⎪⎝⎭又∵:2:1AD DB = ∴:2:3AD AB = ∴49ADE ABC S S ∆∆= 设ADE S k ∆=个平方单位,(k >0),则94ABC S k ∆=个平方单位 ∴54四边形ABC ADE DBCE S S S k ∆∆=-=(平方单位) ∴5::4:54四边形ADE DBCE S S k k ∆==2、在△ABC 中,90ACB ∠=︒,D 是AB 的中点,DE ⊥AB 交BC 于F ,交AC 的延长线于E ,求证:2DC DE DF =.E ACBD 12分析: 方法一:∵DE AB ⊥,90ACB ∠=︒∴90FDB FCE ∠=∠=︒,而12∠=∠ ∴B E ∠=∠ ∴ DBF ∆∽DEA ∆ ∴DF DBDA DE= 即AD BD DE DF =又∵D 为Rt △ABC 斜边AB 中点,即CD 为中线 ∴CD AD BD ==∴2CD DE DF = 方法二:∵CD 为Rt △ABC 斜边AB 中线 ∴CD BD = ∴1B ∠=∠又∵在Rt △ABC 和Rt △ADE 中,90B A E A ∠+∠=∠+∠=︒ ∴B E ∠=∠ ∴1E ∠=∠ ∴CDF ∆∽EDC ∆ ∴CD DFED DC=,即2DC DE DF = 3、如图,在矩形ABCD 中,M 是BC 上一动点,DE ⊥AM ,E 为EFCBD12EF C BD1垂足,3AB =2BC ,并且AB 、BC 是方程()2220x k x k --+=的两根。
2022年《图形的相似1》参考优秀教案2

图形的相似〔一〕教学目的:(1)从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.(2)在相似图形的探究过程中,让学生运用“观察—比拟—猜测〞分析问题.(3)在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点:认识图形的相似.教学难点:理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察以下几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?课本图课本图师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形学生活动:共同交流,得到相似图形的概念.学生归纳总结:板书形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗学生活动:学生观察思考,小组讨论答复;二通过练习稳固相似图形的概念活动3练习问题:1如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形〔1〕或2相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后答复以下问题教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三小结稳固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、以下说法正确的选项是〔〕A.小明上幼儿园时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的2、填空题1〕形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
人教版九年级数学下册第二十七章27.1图形的相似(教案)

举例:
(1)难点解释:学生可能不清楚在什么情况下可以使用AA相似定理,什么情况下不能。需要通过具体例题,如两个等腰三角形的底角相等,但顶角不等,不能直接判定相似,来帮助学生理解。
(2)难点突破:针对实际问题,如地图比例尺问题,教师需要引导学生将地图上的实际距离和图上距离建立相似关系,理解比例尺的意义。
实践活动环节,同学们分组讨论和实验操作的过程非常积极,但我也观察到有的小组在解决问题时思路不够清晰,对相似知识的应用还不够熟练。这让我意识到,在实践活动的设计上,我需要更加注重引导学生思考和探索,提供更多提示和帮助,以便他们能够更好地将理论知识应用到实际问题中。
此外,学生小组讨论的环节也让我看到了同学们的潜力。他们在讨论相似图形在实际生活中的应用时,提出了很多有趣的观点和创意。但在分享成果时,有的小组表达不够清晰,这也提醒我在今后的教学中要加强对学生表达能力的培养。
(3)难点澄清:对于相似图形的面积比,学生可能会误认为面积比等于周长比。需要通过具体图形的面积计算和证明,使学生明白面积比是相似比的平方。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体形状相似的情况?”比如,放大镜下的图像和原图形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似图形的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版九年级数学下册27.1图形的相似(教案)

-难点二:在实际图形中找出相似图形。教师可以设计一些具有挑战性的题目,如多边形内含相似三角形等,引导学生通过观察、分析找到相似图形。
-难点三:相似性质与其他几何知识的综合应用。例如,在求解复杂图形的线段长度时,需要运用相似性质与勾股定理。教师需引导学生逐步分析,将复杂问题分解为简单步骤,便于学生理解。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义:相似图形的对应角相等,对应边成比例。
-掌握相似图形的性质及其应用,如相似三角形的判定(AA、SAS等)。
-学会运用相似性质解决实际问题,如求线段长度、角度等。
-通过实例,让学生理解相似在实际生活中的应用,提高学生的实际应用能力。
举例解释:
-通过比较两个三角形,强调对应角相等、对应边成比例的相似定义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体形状相似但大小不同的情况?”(如两个不同大小的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似图形的基本概念。相似图形是指对应角相等,对应边成比例的图形。它在几何学中有着广泛的应用,如解决实际问题中的长度、面积等计算。
2.案例分析:接下来,我们来看一个具体的案例。通过分析两个相似三角形,展示相似在实际中的应用,以及如何利用相似性质解决问题。
华东师大版九年级上册数学第23章《图形的相似》教案2

课题相似三角形的判定(一)【学习目标】1.初步掌握两个三角形相似的判定条件,能够运用三角形相似的条件解决简单的问题;2.经历两个三角形相似条件的探索过程,进一步发展学生的探究、交流能力,以及动手、动脑、手脑协调一致的习惯;3.发展学生的合情推理能力和初步的逻辑推理意识,体会数学思维的价值.【学习重点】掌握有两个角相等的相似三角形判定定理.【学习难点】应用三角形相似的判定定理.一、情景导入生成问题问题:1.根据相似多边形的定义,你知道什么样的两个三角形相似吗?2.还有判断两个三角形相似的方法吗?3.思考:有没有其他简单的办法判断两个三角形相似?二、自学互研生成能力知识模块一两角对应相等的两个三角形相似阅读教材P64~P67的内容.问题:已知:如右图,在△ABC和△A1B1C1中,∠A=∠A1,∠B=∠B1.求证:△ABC∽△A1B1C1.证明:在边AB或它的延长线上截取AD=A1B1,过点D作BC的平行线交AC于点E,则△ADE∽△ABC.∵DE∥BC,∴∠ADE=∠B.在△ADE与△A1B1C1中,∵∠A=∠A1,∠ADE=∠B=∠B1,AD=A1B1,∴△ADE≌△A1B1C1,∴△ABC∽△A1B1C1.问题:如果两个三角形仅有一个角对应相等,那么这两个三角形相似吗?归纳:三角形相似的判定定理1:两个角对应相等的两个三角形相似.知识模块二两角对应相等的两个三角形相似的应用范例:如图,在Rt△ABC和Rt△A′B′C′中,∠C与∠C′都是直角,∠A=∠A′,求证:△ABC∽△A′B′C′.证明:∵∠C=∠C′=90°,∠A=∠A′.∴△ABC∽△A′B′C′(两角分别相等的两个三角形相似).仿例1:如右图,在△ABC中,DE∥BC,EF∥AB.求证:△ADE∽△EFC.证明:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.又∵EF∥AB,∴∠EFC=∠B,∴∠ADE =∠EFC,∴△ADE∽△EFC(两角分别相等的两个三角形相似).仿例2:如图,已知在△ABC中,∠BAC=90°,BC的垂线交BC于D,交AC于E,交BA的延长线于F,求证:BD·DC=DE·DF.证明:∵∠BAC=90°,∴∠B+∠C=90°,∵FD⊥BC,∴∠BDF=∠CDE=90°,∠B+∠F=90°,∴∠F=∠C,∴△BDF∽△EDC,∴BDDE=DFDC,∴BD·DC=DE·DF三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两角对应相等的两个三角形相似知识模块二两角对应相等的两个三角形相似的应用仿例(方法二)还可利用对顶角相等:∠AEF=∠CED四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:____________________________________________________2.存在困惑:________________________________________________课题相似三角形的判定(二)【学习目标】1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两组对应边的比相等且它们的夹角相等的两个三角形相似”及“三边对应成比例,两个三角形相似”的判定方法.3.能够灵活运用三角形相似的条件解决简单的问题.【学习重点】三角形相似的判定方法.【学习难点】三角形相似的判定方法的灵活运用.一、情景导入生成问题到目前为止,我们学会了哪些判定三角形相似的方法?二、自学互研生成能力知识模块一两边成比例且夹角相等的两个三角形相似阅读教材P67~P69的内容.问题:1.观察右图,如果有一点E在边AC上移动,那么点E在什么位置时能使△ADE与△ABC相似呢?2.图中△ADE与△ABC的一组对应边AD与AB的长度的比值为13,将点E由点A开始在AC上移动,可以发现当AE等于AC的三分之一时,△ADE与△ABC似乎相似,此时AD∶AB=__1∶3__.猜想:如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.下面我们来证明上述猜想.已知:如图,在△ABC和△A1B1C1中,∠A=∠A1,ABA1B1=ACA1C1.求证:△ABC∽△A1B1C1.证明:在边AB或它的延长线上截取AD=A1B1,过点D作BC的平行线交AC于点E,则△ADE∽△ABC,∴ABAD=ACAE,∵ABA1B1=ACA1C1,AD=A1B1,∴AE=A1C1,在△ADE和△A1B1C1中,∵AD=A1B1,∠A=∠A1,AE=A1C1,∴△ADE≌△A1B1C1,∴△ABC∽△A1B1C1.结论:相似三角形判定定理2:两边成比例且夹角相等的两个三角形相似.范例:证明如图中的△AEB和△FEC相似.证明:∵AEFE=5436=1.5,BECE=4530=1.5,∴AEFE=BECE,又∵∠AEB=∠FEC,∴△AEB∽△FEC(两边成比例且夹角相等的两个三角形相似)知识模块二三边对应成比例的两个三角形相似探索:三边对应相等的两个三角形全等,那么三边对应成比例的两个三角形相似吗?在如图所示的方格图中任画一个三角形,再画出第二个三角形,使它的三边长都是原来三角形三边长的相同倍数,画完之后,用量角器度量并比较两个三角形对应角的大小,你得出了什么结论?结论:相似三角形的判定定理3:三边对应成比例的两个三角形相似.范例:在△ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=10cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,试证明△ABC与△A′B′C′相似.证明:∵ABA′B′=618=13,BCB′C′=824=13,ACA′C′=1030=13,∴ABA′B′=BCB′C′=ACA′C′.∴ABA′B′=BCB′C′=ACA′C′.∴△ABC∽△A′B′C′(三边成比例的两个三角形相似).三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的判定定理2知识模块二相似三角形的判定定理3四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________________2.存在困惑:__________________________________________________课题相似三角形的性质【学习目标】1.掌握相似三角形的性质定理的内容及证明,使学生进一步理解相似三角形的概念;2.能运用相似三角形的性质定理来解决有关问题;3.通过由特殊情况猜想到一般情况,渗透由特殊到一般的数学思想,让学生感受数学的和谐美,并进一步养成严谨科学的学习品质.【学习重点】理解相似三角形的性质定理并能初步运用.【学习难点】相似三角形的性质定理的证明.一、情景导入生成问题1.什么叫相似三角形?2.如何判定两个三角形相似?3.相似三角形的对应边有什么特征?对应角有什么特征?二、自学互研生成能力知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方阅读教材P71~P72的内容.问题:两个三角形相似,除了对应边成比例,对应角相等之外,还可以得到许多有用的结论.例如在右图中,△ABC和△A′B′C′是两个相似三角形,相似比是k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系?这两个三角形的面积之比又是多少?归纳:△ABD和△A′B′D′都是直角三角形,且∠B=∠B′,因为有两个角对应相等,所以这两个三角形相似,因此ADA′D′=ABA′B′=k.由此可以得出结论:相似三角形对应边上的高的比等于相似比.由ADA′D′=BCB′C′=k,可得S△ABCS△A′B′C′=12AD·BC12A′D′·B′C′=ADA′D′·BCB′C′=k2.由此可以得出结论:相似三角形面积的比等于相似比的平方.知识模块二相似三角形对应角的平分线之比等于相似比、对应边上的中线之比等于相似比、周长之比等于相似比思考:如图,△ABC与△A′B′C′相似,AD、A′D′分别为对应边上的中线,BE、B′E′分别为对应角的平分线,那么它们之间是否有与对应边上的高类似的关系?这两个三角形的周长又有什么关系?以周长为例探究一下:∵△ABC∽△A′B′C′,∴ABA′B′=BCB′C′=ACA′C′=k,∴AB=kA′B′,BC=kB′C′,AC=kA′C′,∴C△ABCC△A′B′C′=AB+BC+ACA′B′+B′C′+A′C′=kA′B′+kB′C′+kA′C′A′B′+B′C′+A′C′=k结论:相似三角形对应角的平分线之比等于相似比.相似三角形对应边上的中线之比等于相似比.相似三角形的周长之比等于相似比.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方知识模块二相似三角形对应角的平分线之比、对应边上的中线之比、周长之比等于相似比四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:__________________________________________________2.存在困惑:______________________________________________课题相似三角形的应用【学习目标】1.通过例题教学使学生进一步理解和应用相似三角形的判定和性质,并熟练应用这些判定和性质解决实际生活中的有关问题;2.在教学过程中,通过鼓励学生个性化学习和大胆发言,让学生能主动参与、乐于探究、勤于思考.培养其分析问题和解决问题的能力,以及合作交流自主探索的新型学习观;3.通过对生活中数学问题的探讨,使学生经历理论与实际相结合的全过程,体验数学的实践性,知道数学来源于生活,而又服务于生活,从而激发其对数学学习的浓厚兴趣.【学习重点】通过建立相似三角形模型解决实际问题.【学习难点】如何从实际问题中抽象出相似三角形的模型.一、情景导入生成问题问题:1.识别两个三角形相似的方法有哪些?2.相似三角形有哪些性质?二、自学互研生成能力知识模块一相似三角形的应用一阅读教材P72~P74的内容.范例:古代一位数学家想出了一种测量金字塔高度的方法:如图,为了测量金字塔的高度OB,先竖一根已知长度的木棒O′B′与金字塔的影长AB垂直,即可近拟算出金字塔的高度OB,如果O′B′=1米,A′B′=2米,AB=274米,求金字塔的高度OB.解:∵太阳光线是平行光线,∴∠OAB=∠O′A′B′.∵∠ABO=∠A′B′O′=90°,∴△OAB∽△O′A′B′(两角分别相等的两个三角形相似).∴OBO′B′=ABA′B′,∴OB=AB×O′B′A′B′=274×12=137(米).答:金字塔的高度OB为137米.范例:如右图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选定点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.解:∵∠ADB=∠EDC,∠ABD=∠ECD=90°,∴△ABD∽△ECD(两角分别相等的两个三角形相似).∴ABEC=BDCD.解得AB=BD×ECCD=120×5060=100(米).知识模块二相似三角形的应用二范例:如右图,已知D、E分别是△ABC的边AB、AC上的点.且∠ADE=∠C.求证:AD·AB=AE·AC.证明:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACB(两角分别相等的两个三角形相似).∴ADAC=AEAB,∴AD·AB=AE·AC.仿例1:如图,AE=12EC,AD=12DB,测得DE=20米,求池塘宽BC是多少米?解:∵AC=12EC,AD=12DB,∠A=∠A,∴△ADE∽△ABC,∴DEBC=AEAC=13,∵DE=20米,∴BC=60米.答:池塘宽BC为60米.仿例2:小明在打网球时,使球恰好能过网,而且落在离网5米的位置上,已知如图,求球拍击球的高度h?(设网球作直线运动)解:∵DE⊥AB,CB⊥AB,∴DE∥BC,∴DEBC=ADAB,∵DE=0.8,AD=5,AB=15,∴0.8BC=515,∴BC=2.4米.答:球拍击球高度为2.4米.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的应用一知识模块二相似三角形的应用二四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________________2.存在困惑:__________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似 一、教学目标 1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等. 2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算. 二、重点、难点 1.重点:相似多边形的主要特征与识别. 2.难点:运用相似多边形的特征进行相关的计算. 3.难点的突破方法 〔1〕判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似〔见例1〕,也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识. 〔2〕由相似多边形的特征可知,如果两个多边形相似,就等于知道它们的对应角相等,对应边的比相等〔对应边成比例〕,在计算时要能灵活运用. 〔3〕相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数〔即相似多边形的对应边的长放大或缩小的倍数〕. 三、例题的意图 本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而假设说明两个多边形不相似,那么必须说明各角无法对应相等或各对应边的比不相等,或举出适宜的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用〔使用方程思想〕的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以稳固相似多边形的性质. 四、课堂引入 1. 如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形. 2. 问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等. 3.【结论】: 〔1〕相似多边形的特征:相似多边形的对应角相等,对应边的比相等. 反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. 〔2〕相似比:相似多边形对应边的比称为相似比. 问题:相似比为1时,相似的两个图形有什么关系? 结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形. 五、例题讲解 例1〔补充〕〔选择题〕以下说法正确的选项是〔 〕 A.所有的平行四边形都相似 B.所有的矩形都相似 C.所有的菱形都相似 D.所有的正方形都相似 分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D. 例2〔教材P39例题〕. 分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式. 解:略 例3〔补充〕 四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,假设四边形ABCD的周长为40,求四边形ABCD的各边的长. 分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题. 解:∵ 四边形ABCD与四边形A1B1C1D1相似, ∴ AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1. ∵ A1B1:B1C1:C1D1:D1A1=7:8:11:14, ∴ AB:BC:CD:DA= 7:8:11:14. 设AB=7m,那么BC=8m,CD=11m,DA=14m. ∵ 四边形ABCD的周长为40, ∴ 7m+8m+11m+14m=40. ∴ m=1. ∴ AB=7,那么BC=8,CD=11,DA=14. 六、课堂练习 1.教材P40练习2、3. 2.教材P41习题4. 3.〔选择题〕△ABC与△DEF相似,且相似比是 ,那么△DEF 与△ABC与的相似比是〔 〕. A. B. C. D. 4.〔选择题〕以下所给的条件中,能确定相似的有〔 〕 〔1〕两个半径不相等的圆;〔2〕所有的正方形;〔3〕所有的等腰三角形;〔4〕所有的等边三角形;〔5〕所有的等腰梯形;〔6〕所有的正六边形. A.3个 B.4个 C.5个 D.6个 5.四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少? 七、课后练习 1.如图,AB∥EF∥CD,CD=4,AB=9,假设梯形CDEF与梯形EFAB相似,求EF的长. ※3.如图,一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值. [教学
反思] 学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。 在本节课的教学中,我始终坚持以引导为起点,以问题为主线,以能力培养为核心,遵照教师为主导,学生为主体,训练为主线的教学原那么;通过师生双边活动,通过对单元的复习,使学生对本单元的知识系统化,重点知识突出化,能力培养阶梯化;在选择题目时注意了以基此题为主,少量思考性较强的题目为辅,兼顾了不同层次学生的不同要求。 本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。由于剪的方法不同,展开图的形状也可能是不同的。学生在剪、拆盒子过程中,很容易把盒子拆散了,无法形成完整的展开图,就要求适当进行指导。通过动手操作,动脑思考,集体交流,不仅提高了学生的空间思维能力,而且在情感上每位学生都获得了成功的体验,建立自信心。接着,我利用可操作材料,体会展开图与长方体、OB
AC
正方体的联系;通过立体与平面的有机结合,开展学生的空间观念。这样由浅入深、由表及里地使学生逐步达教学目标的要求:闭上眼睛想象展开或折叠的过程,促进学生建立表象,帮助学生理解概念,开展空间观念。
24.1 圆 (第3课时) 教学内容 1.圆周角的概念. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半. 推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90•°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题. 重难点、关键 1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在. 教学过程 一、复习引入 〔学生活动〕请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评:〔1〕我们把顶点在圆心的角叫圆心角. 〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等. 刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题. 二、探索新知 问题:如下图的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只
能在EF所在的⊙O其它位置射门,如下图的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法答复下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? 〔学生分组讨论〕提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半. 下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且 它的度数恰好等于这条弧所对的圆心角的度数的一半.〞 〔1〕设圆周角∠ABC的一边BC是⊙O的直径,如下图 ∵∠AOC是△ABO的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO
∴∠ABC=12∠AOC
〔2〕如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC=12∠AOC吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,•那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
〔3〕如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC=1
2∠AOC吗?请同学们独立完成证明. 老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,
而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC 现在,我如果在画一个任意的圆周角∠AB′C,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导: 半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目. 例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么? 分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,•只要连结AD证明AD是高或是∠BAC的平分线即可. 解:BD=CD 理由是:如图24-30,连接AD ∵AB是⊙O的直径 ∴∠ADB=90°即AD⊥BC 又∵AC=AB ∴BD=CD 三、稳固练习 1.教材P92 思考题. 2.教材P93 练习. 四、应用拓展 例2.如图,△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为