初中数学知识点总结:与三角形有关的线段、角
等腰三角形知识点总结等腰三角形知识点归纳重点

等腰三角形知识点总结等腰三角形知识点归纳重点等腰三角形是初中数学中的一种基本几何图形,具有很多特殊的性质和定理。
本文将对等腰三角形的相关知识点进行总结和归纳,帮助读者更好地理解和掌握等腰三角形的特点和应用。
以下是等腰三角形知识点总结汇总,希望对大家的学习有所帮助。
1、等腰三角形知识总结,定义(1)等腰三角形:有两条边相等的三角形叫等腰三角形,相等的两条边叫腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
(2)等边三角形:特殊的等腰三角形,三条边都相等的三角形叫做等边三角形。
2、等腰三角形知识总结,等腰三角形的相关概念(1)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴。
(2)等腰三角形的外心、内心、重心和垂心都在顶角平分线上,即四心共线。
(3)等边三角形的外心、内心、重心和垂心四心合一,成为等边三角形的中心。
3、等腰三角形知识总结,等腰三角形的性质定理(1)推理格式:在△ABC中,因为AB=AC,所以∠B=∠C。
(2)定理的作用:证明同—个三角形中的两个角相等。
4、等腰三角形知识总结,等腰三角形性质定理的推论(1)等腰三角形的顶角平分线平分底边并且垂直于底边。
(2)等边三角形的三个内角都相等,并且每个角都等于60°。
5、等腰三角形知识总结,等腰三角形的判定定理(1)该定理是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据。
(2)注意:该定理不能叙述为“如果一个三角形中有两个底角相等,那么它的两腰也相等”。
因为在没有判定出它是等腰三角形之前,不能用“底角”、“腰”这些名词,只有等腰三角形才有“底角”、“腰”。
相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。
(2)等边对等角;(3)底边上的高、底边上的中线、顶角平分线互相重合;(4)是轴对称图形,对称轴是顶角平分线;(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(6)顶角等于180°减去底角的两倍;(7)顶角可以是锐角、直角、钝角,而底角只能是锐角.等边三角形性质:①具备等腰三角形的一切性质。
解析几何学知识点总结初中

解析几何学知识点总结初中一、线段1.1 线段的定义:两个点A、B之间的部分称为线段AB,记作AB。
1.2 线段的性质:(1)长度:线段的长度是确定的,可以用数确定。
(2)方向:线段有起始点和终点,并且有指向性。
(3)真分的概念:一个线段被任意两点所截,称为这条线段的真分。
二、角2.1 角的定义:两条射线共同起点的部分称为角,起点称为顶点,共同起点的射线称为角的两边,不含公共端点的两条射线称为角的两腿。
2.2 角的性质:(1)角的度量单位:度。
(2)角的分类:锐角、直角、钝角等。
(3)角的补角、余角:当两个角的和等于或补角为90°时,它们互为补角;当两个角的和等于或余角为180°时,它们互为余角。
2.3 角的相等:两个角的度数相等。
三、三角形3.1 三角形的性质:(1)三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。
(2)三角形的角关系:三角形的三个内角和为180°。
(3)三角形的分类:按边长、按角度分成等边三角形、等腰三角形、直角三角形、等腰直角三角形、等角三角形等。
3.2 三角形的计算技巧:利用三角形的各种性质进行计算,比如利用直角三角形的勾股定理、等角三角形的相似性等。
四、四边形4.1 四边形的分类:平行四边形、菱形、矩形、正方形、梯形等。
4.2 四边形的性质:(1)内角和:任意四边形的内角和为360°。
(2)平行四边形的性质:对角线相等、相对角相等。
(3)矩形、正方形的性质:相邻边互相垂直、对角互相垂直。
4.3 四边形的计算技巧:利用四边形的各种性质进行计算,比如利用平行四边形的对角线相等性质,矩形的性质进行计算。
五、几何图形的面积和周长5.1 面积概念:几何图形的面积是指该图形所包围的部分的大小。
5.2 周长概念:几何图形的周长是指该图形边界的长度总和。
5.3 常见图形的面积和周长计算方法:(1)三角形的面积计算:利用底和高的关系进行计算。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
初中数学知识归纳三角形的中线和高线

初中数学知识归纳三角形的中线和高线初中数学知识归纳:三角形的中线和高线三角形是初中数学中的重要内容之一,涵盖了许多基本概念和性质。
本文将围绕三角形的中线和高线展开讨论,帮助读者对这一知识点有更深入的理解。
一、中线的定义和性质中线是连接三角形两个顶点的边的中点的线段。
下面我们来研究中线的性质。
1. 三角形的每一条中线都有相同的长度,且与其他两条中线相等。
证明:以三角形的两个顶点为起点,分别连接三个顶点的中点,得到三条中线。
假设这三条中线长度分别为a、b和c。
我们可以发现,通过恰当的平移和旋转,可以使得这三条中线分别与三边重合。
由于平移和旋转都不会改变线段的长度,所以这三条中线的长度都相等。
2. 三角形各边与相应中线的长度呈1:2的比例。
证明:以三角形任意顶点为起点,连接该顶点与相应中线的交点,得到两个等腰三角形。
在等腰三角形中,底边与中线的长度比为1:2。
二、高线的定义和性质高线是从三角形一个顶点到对边所在的直线段,垂直于对边。
下面我们来研究高线的性质。
1. 三角形的三条高线交于一点,该点称为三角形的垂心。
证明:设三角形的三个顶点分别为A、B和C。
我们以AB边为底边,画一个垂直于底边的高线AD,交对边BC于点D。
同样地,我们可以在AC和BC两条边上分别画高线,即AE和BF。
根据垂直线相交于一点的性质,可知AD、AE和BF三条高线交于一点,即三角形的垂心。
2. 垂心到三角形各顶点的距离相等,且垂心到对边的距离等于对边上相应高线的长度。
证明:在垂心上分别作垂线,垂线与三角形的三边相交于D、E和F。
根据直角三角形的性质,可知AD、BE和CF分别是三角形的高线。
由于垂心是由三个垂线的交点确定的,所以垂心到三个顶点的距离相等。
另外,根据垂直线性质可知,垂心到对边的距离等于对边上相应高线的长度。
三、中线和高线的关联性中线和高线是三角形内部的重要线段,它们具有一定的关联性。
1. 三条中线的交点是三角形的重心,重心到各顶点的距离相等,且等于中线长度的2/3。
初一下册几何知识点总结归纳

初一下册几何知识点总结归纳一、初中数学几何知识点1、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合6、等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8、直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b二、数学知识点总结热冰时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序平行线与相交线部分1过两点有且只有一条直线(强调唯一性和存在性)2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补尺规作图(这是重难点)作线段等于已知线段和作角等于已知角(1)理解尺规作图的含义①只用没有刻度的直尺和圆规作图称为尺规作图.显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.②基本作图:a.用尺规作一条线段等于已知线段;b.用尺规作一个角等于已知角.利用这两个基本作图,可以作两条线段或两个角的和或差.(2)熟练掌握尺规作图题的规范语言Ⅰ.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;Ⅱ.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×.(3)尺规作图题的步骤:①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;②求作:能根据题目写出要求作出的图形及此图形应满足的条件;③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°(掌握证明此定理的两种方法)附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高.(易错点)注意:(1)三角形的高是线段,垂线段.(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心.三角形的三条中线交于三角形内部,这一点叫做三角形的重心.三角形三条角平分线交于三角形内部,这一点叫做三角形的内心.四边形内容部分18定理四边形的内角和等于360°19四边形的外角和等于360°20多边形内角和定理 n边形的内角的和等于(n-2)×180°21推论任意多边的外角和等于360°22多边形对角线公式n (n-3)/21点、线、面、体知识点三、几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
初中数学角平分线的几何知识点

初中数学角平分线的几何知识点初中数学角平分线的几何知识点初中数学角平分线的几何知识点2020-01-07初中数学角平分线的几何知识点角平分线要领:由定义可知,三角形的角平分线是一条线段。
角平分线三角形三个角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等。
三角形的角平分线不是角的平分线:前者是线段,后者是射线。
其它解释:角平分线可以看作是到角两边距离相等的所有点的集合。
三角形的角平分线定义三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和交点的线段叫做三角形的角平分线。
(也叫三角形的内角平分线。
) 由于三角形有三个内角,所以三角形有三条角平分线。
且,三角形的角平分线交点一定在三角形内部。
知识总结:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
等腰三角形与等边三角形的性质知识点总结

等腰三角形与等边三角形的性质知识点总结等腰三角形和等边三角形是我们在初中数学学习中经常遇到的两种特殊三角形。
它们具有一些独特的性质,这些性质对于我们理解三角形的性质和解题都有很大的帮助。
下面将对等腰三角形和等边三角形的性质进行总结和归纳,帮助大家更好地理解和应用这些知识点。
一、等腰三角形的性质1. 定义:等腰三角形是指两边长度相等的三角形。
2. 底角和顶角:等腰三角形的两个底角(底边两侧的角)是相等的,称为底角;顶角是等腰三角形的顶点所对的角,也是两个底角。
3. 对称性质:等腰三角形具有对称性,即等腰三角形可以通过一条对称轴分成两个对称部分。
4. 高度:等腰三角形的高度是从顶点到底边的垂直距离,高度所在的线段与底边垂直,并且把底边分为两个相等的线段。
5. 角平分线:等腰三角形的顶角所在的角平分线同时也是底边的中线和高线。
6. 等腰定理:等腰三角形的两个底角相等。
7. 等腰三角形的面积:等腰三角形的面积可以通过高度和底边的长度来计算,公式为:面积 = 底边长度 ×高度 ÷ 2。
8. 等腰三角形的判定:当我们知道一个三角形的两边相等时,可以判断它是否为等腰三角形。
二、等边三角形的性质1. 定义:等边三角形是指三条边长度都相等的三角形。
2. 角度:等边三角形的三个角都是60度。
3. 高度:等边三角形的高度是从顶点到底边的垂直距离,高度所在的线段与底边垂直。
4. 三角形内角和:等边三角形的三个角的和为180度,因为每个角都是60度,所以三角形的三个角相加为180度。
5. 等边定理:如果一个三角形的三边相等,则它是等边三角形。
6. 等边三角形的面积:等边三角形的面积可以通过边长来计算,公式为:面积 = 边长的平方× √3 ÷ 4。
7. 等边三角形的判定:当我们知道一个三角形的三边相等时,可以判断它是否为等边三角形。
三、等腰三角形与等边三角形的关系1. 等腰三角形也可以是等边三角形:当等腰三角形的两个底角为60度时,它就是等边三角形。
初二数学知识点总结归纳【完整版】

初二数学知识点总结归纳【完整版】八年级上册数学知识点篇一1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°初二数学知识点归纳篇二一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx 平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点总结:与三角形有关的线段、角
初中数学知识点总结:与三角形有关的线段、角知识点总结
一、三角形的有关概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高
(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;
②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
二、三角形的边和角
三边关系:三角形中任意两边之和大于第三边。
三角形内、外角的关系,比较两角大小的;(4)利用三边关系判断三条线段能否组成三角形或给出三角形的两边长,来确定第三边长的取值范围,亦或证明线段之间的不等关系。
误区提醒
忽略构成三角形的条件。
【典型例题】(2019年山西)现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为 ( )
A.1个
B.2个
C.3个
D.4个
【解析】选4cm,6cm,8cm可以组成1个,选6cm,8cm,10cm 可以组成1个,选 4cm,8cm,10cm又可以组成1个,所以能组成的三角形个数为3个,故本题选C。