中考数学基础巩固复习专题(二)代数式

合集下载

专题2代数式含答案解析2023年山东省中考数学一轮复习专题训练

专题2代数式含答案解析2023年山东省中考数学一轮复习专题训练

专题2 代数式一、单选题1.(2022·高青模拟)一种商品,先降价10%后又提价10%,现在商品的价格()A.比原价格高B.比原价格低C.与原价格相等D.无法比较2.(2022·高唐模拟)算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.3.(2022·泗水模拟)如图中,分别是由1个、2个、n个(n为正整数)正方形连接成的图形,在图1中,x=70°;在图2中,y=28°;通过以上计算,请写出图3中a+b+c+⋯+d=____(用含n的式子表示)A.45°n B.90°n C.135°n D.180°n 4.(2022·冠县模拟)计算31,32,33,34,35,36,并观察这些幂的个位数字,根据你发现的规律,判断32022的个位数字跟()的个位数字相同.A.31B.32C.33D.345.(2022·莱州模拟)已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式m2−m+2022的值为()A.2020B.2021C.2022D.2023 6.(2022·淄川模拟)当x=2时,代数式ax5+bx3+cx−7的值是-10,则当x=-2时,该代数式的值为()A.-10B.10C.4D.-47.(2022·日照模拟)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9−Y4=()A.15×24B.31×24C.33×24D.63×24 8.(2022·沂源模拟)在使用DY-570型号的计算器时,小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键:若一开始输入的数据为5,那么第2022步之后,显示的结果是()A.5B.15C.125D.259.(2021·邹城模拟)一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A.0.125a元B.0.15a元C.0.25a元D.1.25a元10.(2021·博山模拟)根据如图所示的程序计算函数y的值,若输入的x的值为3或-4时,输出的y 值互为相反数,则b等于()A.-30B.-23C.23D.30 11.(2022·临清模拟)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a1,第2幅图形中“•”的个数为a2,第3幅图形中“•”的个数为a3,…,以此类推,则a19的值为()A .378B .380C .386D .39912.(2022·淄博模拟)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1CC 1B 1;延长C 1B 1交x 轴于点A 2,作正方形A 2C 1C 2B 2,….按照这样的规律,第2021个正方形的面积是( )A .5×(94)2019B .5×(94)2020C .5×(94)2021D .5×(94)2022二、填空题13.(2021·金乡模拟)当代数式a +2b 的值为3时,代数式1+2a +4b 的值是 .14.(2021·菏泽)如图,一次函数 y =x 与反比例函数 y =1x( x >0 )的图象交于点 A ,过点 A作 AB ⊥OA ,交 x 轴于点 B ;作 BA 1//OA ,交反比例函数图象于点 A 1 ;过点 A 1 作 A 1B 1⊥A 1B 交 x 轴于点 B ;再作 B 1A 2//BA 1 ,交反比例函数图象于点 A 2 ,依次进行下去,……,则点 A 2021 的横坐标为 .15.(2021·乐陵模拟)阅读理解:用“十字相乘法”分解因式 2x 2−x −3 的方法.⑴二次项系数 2=1×2 ;⑵常数项 −3=−1×3=1×(−3) 验算:“交叉相乘之和”;1×3+2×(−1)=1;1×(−1)+2×3=5;1×(−3)+2×1=−1;1×1+2×(−3)=−5⑶发现第③个“交叉相乘之和”的结果1×(−3)+2×1=−1,等于一次项系数-1,即(x+1)(2x−3)=2x2−3x+2x−3=2x2−x−3,则2x2−x−3=(x+1)(2x−3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x−12=.16.(2021·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.17.(2021·金乡模拟)对于实数m,n,定义运算m⊗n=mn2﹣n.若2⊗a=1⊗(﹣2)则a=.18.(2021·烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为.19.(2021·潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点A n(506,﹣505),则n的值为.20.(2021·滨城模拟)按一定规律排列的单项式:a2,−3a3,9a10,−27a15,81a26,…,第n个单项式是.21.(2021·东昌府模拟)观察下列等式:第一行:4−1=3第二行:9−4=5第三行:16−9=7第四行:25−16=9按照上述规律,第n行的等式为.22.(2021·夏津模拟)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.23.(2022·曹县模拟)已知x−2y=3则1−2x+4y的值为.24.(2022·嘉祥模拟)观察下列各式:a1=23,a2=35,a3=107,a4=53,a5=2611,a6=3513,a7=103,根据其中的规律可得a8=.25.(2022·济宁模拟)如图所示,用棋子摆成“T”字形,按照图①,图②,图③的规律摆下去,若摆成第n个“T”字形需要m颗棋子,则m关于n的关系式是.答案解析部分1.【答案】B【解析】【解答】解:设商品初始价格为a元,降价10%后的价格为(1-10%)×a=0.9a元;又提价10%的价格为(1+10%)×0.9a =0.99a元;∵0.99a<a,∴比原价格低,故答案为:B.【分析】设商品初始价格为a元,分别求出降价和提价后的价格,再比较大小即可。

中考数学专题训练第2讲整式(知识点梳理)

中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。

单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。

2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。

(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。

(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。

3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。

(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。

(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。

(4)运算时,要注意运算顺序。

(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。

2.单项式中不能含有加减法运算,但可以含有除法运算。

3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。

2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)

2023中考九年级数学分类讲解 - 第二讲  代数式(含答案)(全国通用版)

第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。

中考数学专题复习专题02 代数式与整式(课件)

中考数学专题复习专题02 代数式与整式(课件)

知识点梳理
知识点4 :幂的运算
1. 同底数幂乘法:底数不变,指数相加,am·an= am+n ,如 a3 ·a-2= a . 2. 同底数幂除法: 底数不变,指数相减 ,am÷an= am-n (a≠0) 3. 幂的乘方: 底数不变,指数相乘 ,(am)n= amn . 4. 积的乘方: 各因式乘方的积 ,(ambn)p= ampbnp ,如(-2a2b)3= -8a6b3 , (-ab)2= a2b2 .
典型例题
知识点4 :幂的运算
【例12】(2022•南充)比较大小:2-2 30.(选填>,=,<)
【考点】零指数幂;负整数指数幂
【解答】解:∵2-2= 1 ,30=1,
4
∴2-2<30, 故答案为:<. 【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义, 零指数幂的意义是解决问题的关键.
知识点梳理
知识点5 :整式的乘除
4.(1)乘法公式:(a+b)(a-b)= a2-b2 ; (a+b)2= a2+2ab+b2 ;
(2)常见的变形有:a2+b2=(a+b)2-2ab; (-a-b)2=(a+b)2;
(a-b)2= a2-2ab+b2 ; (a-b)2=(a+b)2-4ab; (-a+b)2=(a-b)2
“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,
其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x
本,则购买乙种读本的费用为( )
A.8x元
B.10(100-x)元 C.8(100-x)元 D.(100-8x)元
【考点】列代数式. 【解答】【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100-x)元. 故选:C.

中考数学 专题02 代数式和整数(专题测试-基础)(解析版)

中考数学 专题02 代数式和整数(专题测试-基础)(解析版)

专题02 代数式和整式(专题测试-基础)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2018·河北中考模拟)有理数a、b、c在数轴上的对应点如图所示,化简代数式:|a﹣b|+|a+b|﹣2|c﹣a|=()A.﹣2c B.2b﹣2c+2a C.﹣2a﹣2b﹣2c D.﹣4a+2c【解析】根据数轴上点的位置得:a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,则原式=b﹣a﹣a﹣b﹣2c+2a=﹣2c.故选A.2.(2018·江苏中考模拟)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1 B.﹣1 C.7 D.﹣7【解析】∵a+b=4,c-d=3,∴原式=b+c-d+a=(a+b)+(c-d)=3+4=7,故选:C.3.(2016·山东中考真题)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【解析】∵第1个图形中,小正方形的个数是:221-=3;-=8;第2个图形中,小正方形的个数是:231第3个图形中,小正方形的个数是:241-=15;…∴第n 个图形中,小正方形的个数是:2(1)1n +-=22n n +; 故选C .4.(2016·广东中考模拟)下列各组的两项是同类项的为( ) A .3m 2n 2与-m 2n 3 B .12xy 与2yx C .53与a 3 D .3x 2y 2与4x 2z 2【解析】A 、3m 2n 2与﹣m 2n 3字母n 的指数不同不是同类项,故A 错误;B 、12xy 与2yx 是同类项,故B 正确;C 、53与a 3所含字母不同,不是同类项,故C 错误;D 、3x 2y 2与4x 2z 2所含的字母不同,不是同类项,故D 错误, 故选B .5.(2013·四川中考真题)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙C .丙D .一样【解析】解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ; 乙超市售价为:x (1﹣15%)2=0.7225x ; 丙超市售价为:x (1﹣30%)=70%x=0.7x ; 故到丙超市合算. 故选:C .6.(2018·四川中考模拟)把四张形状大小完全相同的小正方形卡片(如图1)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子的底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分的周长和是( )A .4mcmB .4ncmC .2(m +n )cmD .4(m −n )cm【详解】设小长方形卡片的长为a ,宽为b ,∴L 上面的阴影=2(n ﹣a +m ﹣a ),L 下面的阴影=2(m ﹣2b +n ﹣2b ),∴L 总的阴影=L上面的阴影+L 下面的阴影=2(n ﹣a +m ﹣a )+2(m ﹣2b +n ﹣2b )=4m +4n ﹣4(a +2b ).又∵a +2b =m ,∴4m +4n ﹣4(a +2b )=4n . 故选B .7.(2018·湖北中考真题)下列代数式中,整式为( )A .x+1B .11x + CD .1x x+ 【详解】A 、x+1是整式,故此选项正确;B 、1x 1+是分式,故此选项错误;C D 、x 1x+是分式,故此选项错误, 故选A .8.(2018·贵州中考模拟)下面关于单项式-13a 3bc 2的系数与次数叙述正确的是( ) A .系数是13,次数是6 B .系数是-13,次数是5C .系数是13,次数是5D .系数是-13,次数是6【解析】单项式的系数为:13-;次数为:3+1+2=6.故选D .9.(2019·江苏中考模拟)若﹣2a m b 4与5a 2b 2+n 是同类项,则m n 的值是( ) A .2 B .0C .4D .1【详解】∵﹣2a m b 4与5a 2b 2+n 是同类项, ∴m =2, 2+n=4, 解得: m =2, n =2, ∴22 4.n m == 故选:C.10.(2011·安徽中考模拟)已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .﹣13x ﹣1D .13x+1【解析】设这个多项式为M , 则M=3x 2+4x-1-(3x 2+9x ) =3x 2+4x-1-3x 2-9x =-5x-1. 故选A .11.(2018·浙江中考模拟)下列各式中,是8a 2b 的同类项的是( ) A .4x 2y B .―9ab 2C .―a 2bD .5ab【详解】A 、8a 2b 和4x 2y ,字母不同不是同类项,故本选项错误;B 、8a 2b 和-9ab 2所含字母指数不同,不是同类项,故本选项错误;C 、8a 2b 和-a 2b 所含字母相同,指数相同,是同类项,故本选项正确;D 、8a 2b 和5ab 所含字母指数不同,不是同类项,故本选项错误. 故选:C.12.(2015·江苏中考真题)计算3(2)4(2)x y x y --+-的结果是( ) A .2x y - B .2x y +C .2x y --D .2x y -+【解析】原式去括号合并即可得到结果. 解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y , 故选A .二、 填空题(共5小题,每小题4分,共20分) 13.(2017·四川中考真题)若312m x y +-与432n x y +是同类项,则2017()m n +=______. 【解析】 解:∵312m x y +-与432n x y +是同类项, ∴m +3=4,n +3=1,∴m =1,n =﹣2, ∴2017()m n +=(1﹣2)2017=﹣1,故答案为:﹣1.14.(2017·辽宁中考模拟)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).【解析】故剪n次时,共有4+3(n-1)=3n+1.15.(2018·广东中考模拟)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.【解析】由2x﹣3y﹣1=0可得2x﹣3y=1,所以5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.16.(2018·内蒙古中考模拟)若两个单项式2x m y n与﹣3xy3n的和也是单项式,则(m+n)m的值是_____.【详解】∵两个单项式2x m y n与-3xy3n的和也是单项式,∴2x m y n与-3xy3n是同类项,∴m=1,n=3n,∴m=1,n=0,∴(m+n)m=(1+0)1=1,故答案为:117.(2017·广西中考模拟)单项式225x y的系数是_______,次数是_______.【解析】根据单项式定义得:单项式﹣225x y的系数是﹣25,次数是3.故答案为:25,3. 三、 解答题(共4小题,每小题8分,共32分)18.(2018·河北中考真题)嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++W ,发现系数“W ”印刷不清楚.1)他把“W ”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“W ”是几? 【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2 =﹣2x 2+6; (2)设“”是a ,则原式=(ax 2+6x+8)﹣(6x+5x 2+2) =ax 2+6x+8﹣6x ﹣5x 2﹣2 =(a ﹣5)x 2+6,∵标准答案的结果是常数, ∴a ﹣5=0, 解得:a=5.19.(2018·安徽中考模拟)先化简,再求值:2x 2–[3(–13x 2+23xy )–2y 2]–2(x 2–xy+2y 2),其中x =12,y =–1. 【分析】先去小括号,再去中括号,然后,合并同类项,这样即可得出最简整式,从而代入x 及y 的值即可得出答案. 【详解】原式=()2222222222x x xy y x xy y ⎡⎤--+---+⎣⎦=2x²+x²-2xy+2y²-2x²+2xy-4y² = x 2-2y 2当12x =,y=-1时, x 2-2y 2=221()2(1)2-⨯-=74-20.(2019·浙江中考模拟)如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形. (1)用含m 或n 的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得. 【详解】(1)矩形的长为:m ﹣n , 矩形的宽为:m+n ,矩形的周长为:2[(m-n)+(m+n)]=4m ;(2)矩形的面积为S=(m+n )(m ﹣n )=m 2-n 2, 当m=7,n=4时,S=72-42=33.21.(2017·北京中考模拟)已知x 2﹣x ﹣3=0,求代数式(x ﹣1)2+(x+2)(x ﹣2)的值. 【解析】原式22214,x x x =-++- 2223x x =--, 230x x --=Q , 23x x ∴-=,∴原式()223633x x =--=-=.。

2022年中考数学分类复习强化练 -第二讲 代数式(含答案)

2022年中考数学分类复习强化练 -第二讲  代数式(含答案)

第二讲代数式专项一列代数式知识清单代数式:用________把数和表示数的字母连接起来的式子叫做代数式.注意代数式不含等号,单独一个数或一个字母也是代数式.考点例析例1 如图1,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球的总数,则表达错误的是()A.12(m-1)B.4m+8(m-2)C.12(m-2)+8 D.12m-16分析:正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球算了3次,多计算2次,则正方体棱长上的所有小球个数为12m-8×2=12m-16.将各选项化简即可.解:例2 (2021•模考海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图2是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).分析:根据已知图形可得,图形中菱形的个数为序数的平方与序数减1的平方的和,据此求解可得.解:归纳:在一些实际问题中,有时表示数量的代数式有单位,如果代数式是和或差的形式,则必须先把代数式用括号括起来,单位写在式子后面.跟踪训练1.(2021•模考重庆)已知a+b=4,则代数式1++的值为()A.3 B.1 C.0 D.﹣12.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,共需花费元.3. (2021•模考鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……依此规律排列下去,第9个图形中圆的个数是个.第3题图专项二整式知识清单一、整式的加减1. __________与__________统称为整式(注意整式的分母中不含有字母).2. 同类项:所含__________相同,并且相同字母的__________也相同的项叫做同类项.3. 合并同类项法则:同类项的__________相加,所得的结果作为_________,字母和字母的__________保持不变.4. 整式的加减运算:先去括号,再合并同类项(当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都__________符号;当括号前面是“-”时,把括号和它前面的“-”去掉,括号内各项都__________符号).二、幂的运算1. 同底数幂的乘法:a m·a n=___________(m,n都是正整数);2. 幂的乘方:(a m)n=___________(m,n都是正整数);3. 积的乘方:(ab)n=___________(n是正整数);4. 同底数幂的除法:a m÷a n=___________(a≠0,m,n为正整数).三、整式的乘法1. 单项式乘以单项式:把它们的___________、___________分别相乘,对于只在一个单项式里出现的字母,则连同它的___________作为积的一个因式.2. 单项式乘以多项式:a(a+b+c)=a2+ab+ac.3. 多项式乘以多项式:(a+b)(b+c)=ab+b2+ac+bc.4. 乘法公式:①平方差公式:(a+b)(a-b)=___________;②完全平方公式:(a±b)2=___________.四、整式的除法1. 单项式相除,把___________、___________分别相除作为商的一个因式,对于只在被除式里出现的字母,则连同它的___________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的___________除以这个单项式,再把所得的商___________.考点例析例1 (2021•模考鄂尔多斯)下列计算错误的是()A.(﹣3ab2)2=9a2b4B.﹣6a3b÷3ab=﹣2a2C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1分析:(x+1)2=x2+2x+1是完全平方式,故选项D错误.解:例2 已知3m=4,32m-4n=2,若9n=x,则x的值为()A.8 B.4 C. D.分析:先逆用幂的乘方及同底数幂的除法法则将32m-4n=2变形为(3m)2÷(3n)4,再将9n变形为(3n)2,代入求得n的值.再开平方求得x 的值,注意x在本题中应为正数.解:归纳:幂的运算首先要分清运算法则,再选择相应法则进行计算.在解答利用幂的运算性质求值类的题目时,需注意幂的运算的逆向运用.例3 (2021•模考郴州)如图①,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图②所示的长方形.这两个图能解释的等式是()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)分析:左边两个长方形面积等于大正方形的面积减去阴影正方形的面积,即x2﹣1,右边大长方形的面积可以表示为(x+1)(x﹣1),根据空白部分面积相等列等式.解:例4 已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.分析:直接利用乘法公式以及单项式乘多项式运算法则化简,这里不要着急求解x的值,可以将条件式变形,整体代入求得.解:归纳:整式的运算主要是整式的加减运算和乘除运算.进行加减运算时要注意去括号时的符号问题;进行乘法运算时,首先要观察是否可以运用乘法公式,其次运算时注意不要重复或遗漏.跟踪训练1.(2021•模考日照)单项式﹣3ab的系数是()A.3 B.﹣3 C.3a D.﹣3a2. (2021•模考济南)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3D.(a﹣b)2=a2﹣b23. (2021•模考河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.×D.÷4. (2021•模考淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.5205. (2021•模考绵阳)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.6. 化简:(x+y)2-x(x+2y).7. (2021•模考襄阳)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.专项三因式分解知识清单1. 因式分解:把一个多项式化为几个整式的_________的形式,像这样的式子变形叫做把这个多项式因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc=_______________.(2)公式法:①平方差公式:a2-b2=_______________.②完全平方公式:a2±2ab+b2=_______________.考点例析例1 (2021•模考西藏)下列分解因式正确的是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2分析:2xy+4x=2x(y+2),选项B提公因式不彻底;选项C,D不是完全平方公式,不能用公式法因式分解.解:归纳:判断因式分解是否正确,一看等式右边是否是整式的积的形式,二看左右两边是否相等.例2 (2021•模考自贡)分解因式:3a2﹣6ab+3b2=.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解:归纳:一个多项式有公因式先提取公因式,再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.多项式是二项式优先考虑平方差公式分解,三项式优先考虑完全平方公式分解.跟踪训练1. (2021•模考河北)若=8×10×12,则k的值是()A.12 B.10 C.8 D.62. (2021•模考眉山)已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4 B.2 C.﹣2 D.﹣43.(2021•模考盐城)因式分解:x2﹣y2=.4. (2021•模考营口)ax2﹣2axy+ay2=.5. (2021•模考深圳)分解因式:m3﹣m=.6. (2021•模考常德)【阅读理解】对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).【理解运用】如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.【解决问题】求方程x3﹣5x+2=0的解是__________________________.专项四分式知识清单一、分式的相关概念1. 定义:用A ,B(B≠0)表示两个整式,A÷B就可以表示成.如果B中含有____________,式子叫做分式.2. 分式有意义、值为0的条件:分式的分母____________,分式有意义;分式的____________不为0,____________为0时,分式的值为0.二、分式的基本性质分式的分子与分母都乘(或除以)同一个__________的整式,分式的值不变.三、分式的运算1. 最简分式:分子与分母没有____________的分式,叫做最简分式.2. 分式的约分、通分:把分式的分子与分母的_____________约去,叫做约分;把几个____________的分式分别化为与原来的分式相等的____________的分式,叫做通分.3. 分式的乘法运算法则:分式乘分式,用分子的积作为积的_____________,分母的积作为积的____________,即·=____________.4. 分式的除法运算法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即÷=____________.5. 分式的乘方:分式的乘方等于分子的乘方除以分母的乘方,即=____________.6. 分式的加减运算法则:同分母的分式相加减,____________不变,把____________相加减;异分母分式相加减,先通分,化为_________分式,然后再按同分母分式的加减法则进行运算.考点例析例1 (2021•模考河北)若a≠b,则下列分式化简正确的是()A.B.C.D.分析:根据分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变来判断. 选项A,B 是同加或同减,不是同乘除,不符合分式的基本性质;选项C中,分子、分母同乘的整式不相同,也不符合分式的基本性质;选项D中,分式的分子与分母同乘2,分式的值不变.解:归纳:根据分式的基本性质对分式变形,要注意:①分子与分母必须同乘(或除以)同一个整式;②该整式不等于0.例2 (2021•模考雅安)若分式=0,则x的值是()A.1 B.﹣1 C.±1 D.0分析:根据分式的值为0的条件,得x2-1=0且x+1≠0.解:归纳:判断分式值等于0时,要从两方面来考虑:一是分子等于0,二是分母不等于0.例3 (2021•模考娄底)先化简,然后从﹣3,0,1,3中选一个合适的数代入求值.分析:本题可以先将括号中的两项通分,再利用除法法则变形,约分得到最简结果,最后把m的值代入计算.还可以先把除法变为乘法,利用乘法分配律计算.化简时可以根据题目选择最简便的方法. 解:归纳:分式化简的最后结果,一定是最简分式或整式,求值所选数值要使原分式有意义.跟踪训练1. (2021•模考衡阳)要使分式有意义,则x的取值范围是()A.x>1 B.x≠1C.x=1 D.x≠02. (2021•模考金华)分式的值是零,则x的值为()A.2 B.5 C.-2 D.-53.(2021•模考淄博)化简的结果是()A.a+b B.a﹣b C.D.4.(2021•模考随州)的计算结果为()A. B. C. D.5. (2021•模考阜新)先化简,再求值:,其中x=﹣1.6. (2021•模考自贡)先化简,再求值:,其中x是不等式组的整数解.专项五二次根式知识清单1. 二次根式:形如_________(a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含__________;(2)被开方数中不含能_________的因数或因式.同时满足上述两个条件的二次根式,叫做最简二次根式.3.二次根式的性质:(1)=____________(a≥0);(2)=|a|=(3)=____________(a≥0,b≥0);(4)=____________(a≥0,b>0).4. 二次根式的运算(1)二次根式的乘法:=____________(a≥0,b≥0);(2)二次根式的除法:=____________(a≥0,b>0);(3)二次根式的加减:先把每个二次根式化成____________,再把__________相同的二次根式进行合并.考点例析例1 若代数式在实数范围内有意义,则x的取值范围是________________.分析:根据二次根式有意义的条件和分母不为零的性质,可得2x-6>0,求解即可.解:归纳:二次根式有意义的条件是被开方数是非负数,若二次根式在分母上,则被开方数不能为0,由此可确定字母的取值范围.例2 (2021•模考攀枝花)实数a,b在数轴上的位置如图所示,化简的结果是()A.﹣2 B.0 C.﹣2a D.2b分析:根据数轴,知﹣2<a<﹣1,1<b<2,故a+1<0,b﹣1>0,a﹣b<0,原式可转化为-(a+1)+b﹣1+(a﹣b),去括号合并即可.解:例3 (2021•模考包头)计算:=.分析:本题可以把原式化为,再将中括号内的部分利用平方差公式计算,运算更简便.解:归纳:进行二次根式的混合运算,应注意先化简,后合并,还要注意乘法公式的灵活应用.跟踪训练1.(2021•模考广东)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣22. (2021•模考济宁)下列各式是最简二次根式的是()A.B.C.D.3. (2021•模考南通)下列运算结果正确的是()A.B.3+=C.÷=3 D.×=4. (2021•模考朝阳)计算的结果是()A.0 B.C.D.5.(2021•模考荆州)若x为实数,在“(+1)□x”的“□”中填入一种运算符号(在“+,﹣,×,÷”中选择)后,其运算的结果为有理数,则x不可能是()A.+1 B.﹣1 C.D.1﹣6. (2021•模考益阳)若计算m的结果为正整数,则无理数m的值可以是(写一个).7. (2021•模考河北)已知﹣=a﹣=b,则ab=.8. (2021•模考株洲)计算的结果是.专项六代数式中的数学思想1. 整体思想整体思想是指在解决某些问题时,把一些组合式子作为一个“整体”,并把这个“整体”直接代入另一个式子,避免局部运算烦琐的方法.在分解因式、求代数式的值时,恰当使用整体思想,可以提高解题效率,减少复杂的计算.例1 (2021•模考临沂)若a+b=1,则a2﹣b2+2b﹣2=.分析:把a+b看做一个整体,由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.解:归纳:在代数式的化简与求值过程中,如果不能确定整式中字母的具体值,可以考虑将该整式看做一个整体代入求值.2. 数形结合思想数形结合就是把抽象难懂的数学语言、数量关系与直观形象的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.例2 (2021•模考呼伦贝尔)已知实数a在数轴上对应点的位置如图所示,则化简|a﹣1|﹣的结果是()A.3﹣2a B.﹣1 C.1 D.2a﹣3分析:先根据数轴上a的位置,确定绝对值符号内式子的正负,然后再用去绝对值符号的方法进行化简.解:归纳:实数与数轴上的点之间具有一一对应关系,平面上的点与有序实数对之间具有一一对应关系,这些都是“数”和“形”转化的桥梁.3. 归纳推理思想由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概括出一般的结论.例3 (2021•模考青海)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1.请按以上规律写出第4个算式:,用含有字母的式子表示第n个算式:.分析:观察发现,和算式序号相等的数与比序号大2的数的积减去比序号大1的数的平方,等于﹣1,根据此规律写出即可.解:跟踪训练1.(2021•模考枣庄)图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②所示拼成一个正方形,则中间空余部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2第1题图第5题图2.(2021•模考西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n的值是()A.18 B.19 C.20 D.213.(2021•模考十堰)已知x+2y=3,则1+2x+4y=.4.(2021•模考雅安)若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.5.(2021•模考赤峰)一个电子跳蚤在数轴上做跳跃运动.设原点处为O,第一次从点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;…;如此跳跃下去,最后落点为OA2019的中点A2020,则点A2020表示的数为.参考答案专项一列代数式考点例析:例1 A 例2 41 (2n2﹣2n+1)跟踪训练:1. A 2.(30m+15n) 3. 92专项二整式考点例析:例1 D 例2 C 例3 B例4 原式=9x2-4+x2-2x=10x2-2x-4.因为5x2-x-1=0,所以5x2-x=1.所以原式=2(5x2-x)-4=2×1-4=-2.跟踪训练:1. B 2. A 3. D 4. D 5. 0或86.解:原式=x2+2xy+y2-x2-2xy=y2.7.解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy.当x =,y =﹣1时,原式=6××=﹣.专项三因式分解考点例析:例1 A 例2 3(a﹣b)2跟踪训练:1. B 2. A 3.(x+y)(x﹣y) 4. a(x﹣y)2 5. m(m+1)(m﹣1)6.x=2或x=﹣1+或x=﹣1﹣提示:将x3﹣5x+2=0变形为x3﹣4x﹣x+2=0,则x(x2﹣4)﹣(x﹣2)=0,x(x+2)(x﹣2)﹣(x﹣2)=0,即(x﹣2)(x2+2x﹣1)=0.所以x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±.专项四分式考点例析:例1 D 例2 A例3 原式=•=(m﹣3)﹣2(m+3)=﹣m﹣9.因为m的值为﹣3,0,3时,原分式没有意义,所以m只能取1.当m=1时,原式=﹣1﹣9=﹣10.跟踪训练:1. B 2. D 3. C 4. B5. 解:原式==.当x =-1时,原式==1﹣.6. 解:==.解不等式组得﹣1≤x<1.因为x是不等式组的整数解,所以x的值为﹣1,0.11因为x=﹣1时,原分式无意义,所以x=0.当x=0时,原式==.专项五二次根式考点例析:例1 x>3 例2 A 例3 ﹣跟踪训练:1. B 2. A 3. D 4. B 5.C 6. 答案不唯一,如7. 6 8.2专项六代数式中的数学思想考点例析:例1 ﹣1 例2 D 例3 4×6﹣52=24﹣25=﹣1 n(n+2)﹣(n+1)2=﹣1 跟踪训练:1. C 2. A 3. 7 4. 6 5.12。

中考数学专题02 代数式【考点巩固】(解析版)

中考数学专题02 代数式【考点巩固】(解析版)

专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。

专题02:代数式和因式分解(中考数学精品复习真题专题分类训练系列)

专题02:代数式和因式分解(中考数学精品复习真题专题分类训练系列)

温馨提醒:【每个题的详细解析在试题后!】1中考数学精品复习专题分类训练系列专题2:代数式和因式分解一、选择题【版权归江苏泰州锦元数学工作室邹强所有,转载必究】1. (2013佛山)下列计算正确的是【】A .3412aaaB .347(a )aC .2363(a b)a bD .34aaa (a 0)2. (2013深圳)下列计算正确的是【】A.222ababB.22ababC. 235aaD.23a aa3. (2013湛江)下列运算正确的是【】A. 236aaaB. 426aaC. 43a a aD. 222x yxy4. (2013广州)计算:23m n的结果是【】A. 6m nB. 62m n C. 52m nD. 32m n5. (2013佛山)多项式212xy 3xy 的次数及最高次项的系数分别是【】A. 33, B. 32, C. 35, D. 32,6. (2013佛山)分解因式3aa 的结果是【】13.A .2a(a1)B .2a(a 1)C .a(a 1)(a 1)D .2(aa)(a 1)7. (2013茂名)下列各式由左边到右边的变形中,属于分解因式的是【】A .a (x+y )=ax+ayB .x 2﹣4x+4=x (x ﹣4)+4 C .10x 2﹣5x=5x (2x ﹣1)D .x 2﹣16+6x=(x+4)(x ﹣4)+6x8. (2013深圳)分式2x4x2的值为0,则【】A. x=-2B. x=±2C. x=2D. x=09. (2013湛江)计算2x x2x2的结果是【】A. 0B.1C. -1D. x真题再现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考初中数学基础巩固复习专题(二)代数式【知识要点】:知识点1 整式的概念⎩⎨⎧升降幂排列系数项数多项式的次数多项式系数单项式的次数单项式整式—————— (1)整式中只含有一项的是单项式,否则是多项式,单独的字母或常数是单项式;(2)单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数;(3)单项式的系数,多项式中的每一项的系数均包括它前面的符号(4)同类项概念的两个相同与两个无关:两个相同:一是所含字母相同,二是相同字母的指数相同;两个无关:一是与系数的大小无关,二是与字母的顺序无关;(5)整式加减的实质是合并同类项;(6)因式分解与整式乘法的过程恰为相反。

知识点2 整式的运算 (如结构图)知识点3 因式分解多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:(1)提公因式法如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式,m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用)b ab a )(b a (b a ,)b a (b ab 2a ),b a )(b a (b a 223322222+±=±±=+±-+=- 写出结果.(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab =q ,a +b =p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足 a 1a 2=a ,c 1c 2=c ,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根x 1,x 2,那么)x x )(x x (a c bx ax 212--=++。

知识点4 分式的概念(1)分式的定义:整式A 除以整式B ,可以表示成BA 的形式。

如果除式B 中含有字母,那么称BA 为分式,其中A 称为分式的分子,B 为分式的分母。

对于任意一个分式,分母都不能为零。

(2)分式的约分(3)分式的通分知识点5 分式的性质(1))0(≠=m B A Bn Am (2)已知分式ba ,分式的值为正:a 与b 同号;分式的值为负:a 与b 异号;分式的值为零:a =0且b ≠0;分式有意义:b ≠0。

(3)零指数 )0(10≠=a a(4)负整数指数 ).p ,0a (a1a p p 为正整数≠=- (5)整数幂的运算性质 nn n mn n m n m n m n m n m b a )ab (,a )a (),0a (a a a ,a a a ==≠=÷=⋅-+上述等式中的m 、n 可以是0或负整数.知识点6 根式的有关概念1. 平方根:若x 2=a (a>0),则x 叫做a 的平方根,记为a ±。

注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2. 算术平方根:一个数的正的平方根叫做算术平方根;3. 立方根:若x 3=a (a>0),则x 叫做a 的立方根,记为3a 。

4. 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。

5. 同类二次根式:化简后被开方数相同的二次根式。

知识点7 二次根式的性质①)0(≥a a 是一个非负数; ②)0()(2≥=a a a③⎪⎩⎪⎨⎧<-=>==)0a (a )0a (0)0a (a |a |)a (2 ④)0,0(>≥=b a b a b a ⑤)0,0(≥≥⋅=b a b a ab知识点8 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.(2)二次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即).0b ,0a (ab b a ≥≥=⋅二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式.(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.【复习点拨】1. 复习整式的有关概念,整式的运算2. 理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,能把简单多项式分解因式。

3. 掌握分式的概念、性质,掌握分式的约分、通分、混合运算。

4. 理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。

会求实数的平方根、算术平方根和立方根,了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。

【典例解析】例题1:实数a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是( )A .﹣2a+bB .2a ﹣bC .﹣bD .b 【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴上a ,b 的位置,进而得出a <0,a ﹣b <0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.例题2:计算a5÷a3结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的除法法则:同底数幂相除,底数不变,指数相减,求出a5÷a3的计算结果是多少即可.【解答】解:a5÷a3=a2故选:B.【点评】此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.例题3:若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3【分析】分式有意义的条件是分母不为0.【解答】解:∵分式有意义,∴x﹣3≠0,∴x≠3;故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.例题4:计算a2•a4的结果为()A.a2B.a4C.a6D.a8【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:原式=a 2+4=a 6.故选C .例题5:分式方程﹣=0的解为 x=﹣ . 【考点】B3:解分式方程. 【分析】根据解方式方程的步骤一步步求解,即可得出x 的值,将其代入原方程验证后即可得出结论.【解答】解:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣.经检验,x=﹣是原方程的解.故答案为:x=﹣.例题6:若,,则等于( )A .2B .1C .-2D .-1【考点】完全平方公式,代数式的值,整体思想【分析】根据完全平方公式对变形,再整体代入可得. 【解答】解:∵∴()929222=++=+b ab a b a ∵∴=1 故选B例题7:(计算:(1)(x+y )2﹣x (2y ﹣x );(2)(a+2﹣)÷. 【分析】(1)按从左往右的顺序进行运算,先乘方再乘法;(2)把(a+2}看成分母是1的分数,通分后作乘法,最后的结果需化成最简分式.【解答】解:(1)(x+y)2﹣x(2y﹣x)=x2+2xy+y2﹣2xy+x2=2x2+y2;(2)(a+2﹣)÷=()×==.【点评】本题主要考查了分式的混合运算,运算过程中注意运算顺序.分式的运算顺序:先乘方,再乘除,最后加减.有括号的先算括号里面的.注意分式运算的结果需化为最简分式.例题8:我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n 的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【考点】59:因式分解的应用.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【达标检测】一、选择题1. 下列运算正确的是()A.(-x)5=﹣x5C.x3x2=x6D.3x2+2x3=5x5【分析】根据幂的乘方,同底数幂的乘法以及合并同类项计算法则进行解答.【解答】解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.2. 下列运算正确的有()A.5ab﹣ab=4 B.(a2)3=a6C.(a﹣b)2=a2﹣b2D. =±3【考点】47:幂的乘方与积的乘方;22:算术平方根;35:合并同类项;4C:完全平方公式.【分析】根据合并同类项、幂的乘方、完全平方公式以及算术平平方根的定义和计算公式分别进行计算,即可得出答案.【解答】解:A、5ab﹣ab=4ab,故本选项错误;B、(a2)3=a6,故本选项正确;C、(a﹣b)2=a2﹣2ab﹣b2,故本选项错误;D、=3,故本选项错误;故选B.3. )下列计算正确的是()A.x2+x2=x4B.x8÷x2=x4C.x2•x3=x6D.(﹣x)2﹣x2=0【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x2,故A不正确;(B)原式=x6,故B不正确;(C)原式=x5,故C不正确;(D)原式=x2﹣x2=0,故D正确;故选(D)4. .若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【分析】代入后求出即可.【解答】解:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.【点评】本题考查了求代数式的值,能正确代入是解此题的关键,注意:代入负数时要有括号.5. 若分式的值为零,则的值是()A.1 B.-1 C. D.2【分析】分式的分母不能为0【解答】解:∵=0∴⎩⎨⎧≠+=-0101x x∴1=x故选A【点评】本题考查分式的意义,解题的关键是熟练记住知识点,本题属于基础题型.二、填空题:6. 分解因式:x 2y ﹣y= y (x+1)(x ﹣1) .【考点】55:提公因式法与公式法的综合运用.【分析】观察原式x 2y ﹣y ,找到公因式y 后,提出公因式后发现x 2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x 2y ﹣y ,=y (x 2﹣1),=y (x+1)(x ﹣1),故答案为:y (x+1)(x ﹣1).7. 因式分解:x 2﹣6x+9= (x ﹣3)2 .【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x 2﹣6x+9=(x ﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.8. 如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为 0 .【考点】33:代数式求值.【分析】根据题意求出m 、n 、c 的值,然后代入原式即可求出答案.【解答】解:由题意可知:m=﹣1,n=0,c=1∴原式=(﹣1)2015+2016×0+12017=0,故答案为:09. 化简: = 1 . 【考点】6B :分式的加减法.【分析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.【解答】解:原式==1.10.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6 .【考点】4G:平方差公式的几何背景.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.三、解答题11. (2017张家界)先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.【考点】6D:分式的化简求值;C7:一元一次不等式的整数解.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.12.化简求值:(x﹣)•﹣y,其中x=2,y=.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分后计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•﹣y=﹣=﹣,当x=2,y=时,原式=﹣.13. (1)计算:|﹣|﹣+20170;(2)解方程: =.【考点】B3:解分式方程;2C:实数的运算;6E:零指数幂.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.14. 先化简,再求值:( +)÷,其中x=+2,y=﹣2.【考点】6D:分式的化简求值.【分析】先根据分式的混合运算顺序和法则化简原式,再将x、y的值代入求解可得.【解答】解:原式=[+]÷=•y(x+y)=,当x=+2,y=﹣2时,原式===.15. 先化简,再求值:(﹣)÷,其中x=.【考点】6D:分式的化简求值.【分析】先把除法化为乘法,再根据运算顺序与计算方法先化简,再把x=代入求解即可.【解答】解:原式=(﹣)•=•=•=,当x=时,原式==.。

相关文档
最新文档