斜导柱侧向分型与抽芯机构1斜导柱设计
合集下载
侧向分型抽芯机构设计

(2)液压或气动驱动抽芯机构
(3)机动抽芯机构(广泛使用)
3、斜导柱抽芯机构:结构简单、制造 方便、安全可靠、应用广泛等特点。
工作原理如图44所示:
(1)斜导柱的设计
1)斜导柱的结构如图45所示:
图45 斜导柱
2)斜导柱倾斜角α的确定
斜导柱倾斜角α与斜导柱所受的弯曲离 抽拔力开模力等有关的重要参数。α应 小于250,一般在120∽250内选取。
(4)应注意侧型芯与推杆是否会发生干涉。
5、斜滑块侧向抽芯机构 (1)特点:结构简单、制造方便、安全可
靠等。
(2)工作原理如图48所示:
图48 斜滑块侧向抽芯机构 1、斜滑块 2、推杆 3、型芯固定板 4、6型芯 5、锥模套、
7、限位钉
(3)斜滑块内侧向抽芯机构如图49所示:
图49 斜滑块内侧向抽芯机构 1、斜滑块 2、中心楔块 3、动模板 4、推杆
塑料模具设计与制造
1、定义:侧向抽芯机构:当塑件上具有 与开模方向不同的内外侧孔或侧凹等结构 阻碍塑件直接脱模时,必须将成型侧孔或侧 凹的零件做成活动结构的零件。在推动塑 件脱离模具之前需先将侧型芯抽出,然后 再推出塑件,完成侧型芯抽出和复位动作 的机构。
2. 侧向抽芯机构的方法
(1)手动分型抽芯机构:侧抽芯和侧向分 型的动作由人工来实现,模具结构简单,制 模容易,但生产效率低,不能自动化生产, 工人劳动强度大,故在抽拔力较大的场合下 不能采用。
6.斜滑块设计的几点注意事项 (1)一般将型芯设在动模。 (2)斜滑块通常设在动模部分。
塑料模具设计与制造
4、设计中的一些其它问题
(1)斜导柱倾斜角必须与滑块上斜孔的斜角一致,滑块斜孔直径一般比斜 导柱直径大0.5-0.8毫米斜销伸入滑块深度要合适。
(3)机动抽芯机构(广泛使用)
3、斜导柱抽芯机构:结构简单、制造 方便、安全可靠、应用广泛等特点。
工作原理如图44所示:
(1)斜导柱的设计
1)斜导柱的结构如图45所示:
图45 斜导柱
2)斜导柱倾斜角α的确定
斜导柱倾斜角α与斜导柱所受的弯曲离 抽拔力开模力等有关的重要参数。α应 小于250,一般在120∽250内选取。
(4)应注意侧型芯与推杆是否会发生干涉。
5、斜滑块侧向抽芯机构 (1)特点:结构简单、制造方便、安全可
靠等。
(2)工作原理如图48所示:
图48 斜滑块侧向抽芯机构 1、斜滑块 2、推杆 3、型芯固定板 4、6型芯 5、锥模套、
7、限位钉
(3)斜滑块内侧向抽芯机构如图49所示:
图49 斜滑块内侧向抽芯机构 1、斜滑块 2、中心楔块 3、动模板 4、推杆
塑料模具设计与制造
1、定义:侧向抽芯机构:当塑件上具有 与开模方向不同的内外侧孔或侧凹等结构 阻碍塑件直接脱模时,必须将成型侧孔或侧 凹的零件做成活动结构的零件。在推动塑 件脱离模具之前需先将侧型芯抽出,然后 再推出塑件,完成侧型芯抽出和复位动作 的机构。
2. 侧向抽芯机构的方法
(1)手动分型抽芯机构:侧抽芯和侧向分 型的动作由人工来实现,模具结构简单,制 模容易,但生产效率低,不能自动化生产, 工人劳动强度大,故在抽拔力较大的场合下 不能采用。
6.斜滑块设计的几点注意事项 (1)一般将型芯设在动模。 (2)斜滑块通常设在动模部分。
塑料模具设计与制造
4、设计中的一些其它问题
(1)斜导柱倾斜角必须与滑块上斜孔的斜角一致,滑块斜孔直径一般比斜 导柱直径大0.5-0.8毫米斜销伸入滑块深度要合适。
侧向分型抽芯机构设计概要

抽拔距 将侧向型芯或侧滑块从成型位臵抽拔或分开至不妨碍制 品脱模的位臵,侧型芯或滑块需移动的距离称为抽拔距。
抽拔距取侧孔或侧凹在抽拔方向上的最大深度加上2~3mm。 对圆形线圈骨架类制件,在抽拔方向上,各处的侧凹深度是不相 等的,抽拔距应取最大侧凹深度,如图3-8-1所示。 对矩形型与抽芯机构设计
(三)斜顶抽芯机构 图3-8-28 斜顶抽芯的典型结构。由斜顶、底 座、耐磨块等构成。 斜顶的斜角为10°~20°,一般小于12º ,通 常取3º ~8º 。 图3-8-29 斜顶的抽芯过程
14
二、机动式侧向分型与抽芯机构设计
(三)斜顶抽芯机构 斜顶的结构 b c d e斜顶与底座的联结方式 弹性斜顶
图3-8-25 斜导柱在动模底板、滑块在动模推 件板上的结构
11
二、机动式侧向分型与抽芯机构设计
(二)弯销侧向分型抽芯机构 抽芯机构:导滑、锁紧、定位等结构组成。图 3-8-26 弯销侧抽芯的典型结构。 图3-8-27 镶嵌式销削抽芯机构
12
二、机动式侧向分型与抽芯机构设计
(三)斜顶抽芯机构 当制品的侧凹较浅,抽拔力不大,浅侧凹较多 时,采用斜顶抽芯机构使矩形截面的斜顶在模 板的斜孔内滑动,达到侧向分型抽芯的目的。
1.机构的结构组成 (5)楔紧块 楔紧块的作用,一是锁紧滑块,防 止注射过程中因塑料熔体的压力而产生位移; 另一个作用是保证滑块的最终复位。楔紧块的 常见结构形式如图3-8-12所示。 楔紧块的楔角α′必须大于斜导柱的斜角α
如图3-8-13所示
6
二、机动式侧向分型与抽芯机构设计
(一)斜导柱侧向分型抽芯机构
3
二、机动式侧向分型与抽芯机构设计
侧向分型与抽芯机构设计

2021年3月24日星期三
15
4.10.2 斜导柱抽芯机构
2021年3月24日星期三
16
1)斜导柱安装在定模、滑块安装在动模
2021年3月24日星期三
17
1)斜导柱安装在定模、滑块安装在动模(续)
2021年3月24日星期三
18
2)斜导柱安装在动模、滑块安装在定模
2021年3月24日星期三
19
2021年3月24日星期三
58
(5)斜滑块与导滑槽 的双面配合间隙
0~20 0.02~0.03 >100~120 0.08~0.11
斜滑块宽度 b
>20~40
>40~60
0.03~0.05 0.04~0.06
>120~140 >140~160
0.09~0.12 0.11~0.13
>60~80 0.05~0.07 >160~180 0.13~0.15
62
(2)斜推杆导滑的内侧抽芯机构
2021年3月24日星期三
63
(2)斜推杆导滑的内侧抽芯机构
2021年3月24日星期三
64
2. 斜推杆设计要点
(1)当内侧抽芯时,斜滑块的顶端面应低于型芯顶 端面0.05~0.10mm
2021年3月24日星期三
65
(2)在可以满足侧向出模的情况下,斜推杆的斜度 角“a”尽量选用较小角度,斜角a一般不大于20°
70
2. 摆杆机构侧抽芯机构设计要点
(1)设计摆杆机构时,应保证:L2>L1;L4>L3。 (2)图示“A”和“B”处易磨损,须提高此处硬度。
2021年3月24日星期三
71
4.10.8 齿轮齿条抽芯机构
第10章侧向分型与机构

第10章-侧向分型与机构
第1节 侧向抽芯机构的分类及组成
一、侧抽芯机构的组成
斜导柱侧抽芯机构的工作过程与各零件功能
2006-1-1
2
二、侧抽芯机构的分类
按驱动 方式分:
手动侧抽芯机构 机动侧抽芯机构 液压侧抽芯机构
斜导柱侧向分型与抽芯机构
斜滑块侧向分型与抽芯机构 按模具 弯销侧向分型与抽芯机构 结构分: 斜导槽侧向分型与抽芯机构
S L=
sin α
• S=S0+(2~3)mm
2006-1-1
9
确定了斜销倾角α、有效工作长度L和直径d之后,可按图几何 关系算斜销的长度L总。
L 总 = L 1 + L 2 + L 3 + L 4 + L 5 = D 2 ta α + c n tα o + d 2 ts a α + s S n α i + ( 5 n ~ 1 ) m 0m
齿轮齿条侧向分型与抽芯机构
弹性元件侧向分型与抽芯机构
2006-1-1
3
第2节 抽芯力与抽芯距的确定
抽芯力:将侧型芯从塑件上抽出所需的力,与脱模力计算方法相
同。 抽芯距:型芯从成型位置抽到不妨碍塑件脱模的位置所移动的距
离,用S表示。 抽芯距大小: 等于侧孔或侧凹深度So加上2~3mm的 余量,S=So+(2~3)mm
2006-1-1
19
六、滑块定位装置
为什么滑块需定位装置?
开模后,滑块必须停留在一定的位置上,否则闭模时斜销将不能 准确地进入滑块,导致模具损坏,为此必须设置滑块定位装置。
滑块定位装置形式:
图(a)和 (b)是利用限位挡块定位。向上抽芯时,利用滑块自重靠 在限位挡块上(a);其他方向抽芯则可利用弹簧使滑块停靠在限位 挡块上定位(b),弹簧力应为滑块自重的1.5~2倍;(c)弹簧销定 位;(d)弹簧钢球定位;(e)埋在导滑槽内的弹簧和挡板与滑块的沟 槽配合定位。
第1节 侧向抽芯机构的分类及组成
一、侧抽芯机构的组成
斜导柱侧抽芯机构的工作过程与各零件功能
2006-1-1
2
二、侧抽芯机构的分类
按驱动 方式分:
手动侧抽芯机构 机动侧抽芯机构 液压侧抽芯机构
斜导柱侧向分型与抽芯机构
斜滑块侧向分型与抽芯机构 按模具 弯销侧向分型与抽芯机构 结构分: 斜导槽侧向分型与抽芯机构
S L=
sin α
• S=S0+(2~3)mm
2006-1-1
9
确定了斜销倾角α、有效工作长度L和直径d之后,可按图几何 关系算斜销的长度L总。
L 总 = L 1 + L 2 + L 3 + L 4 + L 5 = D 2 ta α + c n tα o + d 2 ts a α + s S n α i + ( 5 n ~ 1 ) m 0m
齿轮齿条侧向分型与抽芯机构
弹性元件侧向分型与抽芯机构
2006-1-1
3
第2节 抽芯力与抽芯距的确定
抽芯力:将侧型芯从塑件上抽出所需的力,与脱模力计算方法相
同。 抽芯距:型芯从成型位置抽到不妨碍塑件脱模的位置所移动的距
离,用S表示。 抽芯距大小: 等于侧孔或侧凹深度So加上2~3mm的 余量,S=So+(2~3)mm
2006-1-1
19
六、滑块定位装置
为什么滑块需定位装置?
开模后,滑块必须停留在一定的位置上,否则闭模时斜销将不能 准确地进入滑块,导致模具损坏,为此必须设置滑块定位装置。
滑块定位装置形式:
图(a)和 (b)是利用限位挡块定位。向上抽芯时,利用滑块自重靠 在限位挡块上(a);其他方向抽芯则可利用弹簧使滑块停靠在限位 挡块上定位(b),弹簧力应为滑块自重的1.5~2倍;(c)弹簧销定 位;(d)弹簧钢球定位;(e)埋在导滑槽内的弹簧和挡板与滑块的沟 槽配合定位。
斜导柱的设计

由于计算比较复杂,有时为了方便,也可用查表法 确定斜导柱的直径。先按已求得的抽拔力 F c 和 选定的斜导柱倾斜角α在表9.1中查出最大弯曲力 Fw ,然后根据 Fw 和 Hw 以及斜导柱倾斜角α在表 9.2中查出斜导柱的直径d。
斜角θ应若小于于斜导柱的倾斜角 , 斜角 应若小于于斜导柱的倾斜角α,锥 应若小于于斜导柱的倾斜角 台部分就会参与侧抽芯, 台部分就会参与侧抽芯,导致侧滑块停留 的位置不符合要求。 的位置不符合要求。
= d h − 1 ta n α − ( 0 .5 ~ 1) m m c o sα 2
斜导柱பைடு நூலகம்力分析与直径计算
如图9.5a所示。图9.5b所示 所示。 斜导柱抽芯时所受弯曲力 F w 如图 所示 所示 为侧抽芯滑块的受力分析图。 为侧抽芯滑块的受力分析图。 图中力F是抽芯时斜导柱通过滑块上的斜导孔对滑块施加的 图中力 是抽芯时斜导柱通过滑块上的斜导孔对滑块施加的 F 正压力, 是它的反作用力;抽拔阻力( 正压力, w 是它的反作用力;抽拔阻力(即脱模力 )t 是抽拔力 F F c 的反作用力;F k 是开模力,它通过导滑槽施加与滑块; 的反作用力; 是开模力,它通过导滑槽施加与滑块; F1 是斜导柱与滑块之间的摩擦力,它的方向与抽芯时滑块沿 是斜导柱与滑块之间的摩擦力, F 斜导柱运动方向相反; 是滑块与导滑槽的摩擦力, 斜导柱运动方向相反; 2 是滑块与导滑槽的摩擦力,它的方向 与抽芯时滑块沿导滑槽移动方向相反。设导柱与滑块、导滑槽与 与抽芯时滑块沿导滑槽移动方向相反。设导柱与滑块、 滑块间的摩擦系数均为μ,则列出平衡方程: 滑块间的摩擦系数均为 ,则列出平衡方程:
co sβ L = S sinα
斜导柱的总长为: 斜导柱的总长为:
LZ = L1 + L2 + L3 + L4 + L5 d2 d1 h s = tanα + + tanα+ + (5 ~10)mm 2 cosα 2 sinα
第11讲 侧向分型与抽芯机构

a.弹簧式先复位机构
原理:在合模之初,即可通过弹簧使推出机构复位,从而避免干涉。 特点:结构简单,安装容易,复位力小,弹性差,适于复位力不大 的场合.
弹簧式先复位机构
11.2.2 斜导柱式侧向抽芯机构的应用形式
3)先复位机构
b.三角滑块式优先复位机构
楔杆三角滑块式先复位机构
11.2.2 斜导柱式侧向抽芯机构的应用形式
11.2.1 斜导柱式侧向抽芯机构设计 2. 斜导柱设计
3)受力分析
F弯=F脱/cosα F开=F脱/ctgα
式中:F弯—抽芯时导柱所受弯曲力; F开—抽芯所需开模力; F脱—抽芯所需的力;
说明:F脱一定时,α增大,则F弯增大,F开增大。 即:α增大斜导柱所变的弯曲力和所需的开模力都增 加,斜导柱受力情况变坏。
(2)措施:
脱模动作应滞后于侧抽芯动作。
11.2.2 斜导柱式侧向抽芯机构的应用形式
(3)模具结构
1)主型芯浮动
塑件留在动模的侧向抽芯结构
11.2.2 斜导柱式侧向抽芯机构的应用形式
2) 哈夫模
哈夫模安装在定模一侧,主型芯、斜导柱固定在动模 一侧,斜导柱与滑块斜孔间有较大间隙c。 动作过程: ① 开模时,分型运动滞 后于开模运动,使塑 件与主型芯松动。 ② 侧向分型后,塑件可 以从型芯上用手取下。 特点:无推出机构,结 构简单,操作麻烦。
侧型方法与滑槽设计 1) 要求:运动平稳,有一定导向精度。 2)导滑槽结构
a. 整体式滑槽 结构紧凑,加工 困难,精度不易保证,用于小 型模具 b. 滑槽镶块嵌入 导滑部分易加 工,精度易保证(常用) c. 平面固定 装配方便(常用) d. 底部中间镶块导向 可减小导 滑加工面 e. 滑块中部导滑 用于滑块上下 方向均无支承场合 f. 燕尾槽导滑 加工困难,导滑 精度高
难点斜导柱侧分型与抽芯注射模的总体结构和工作原理

3)斜滑块侧抽芯机构的要点
正确选择主型芯位置
§6.4 其他类型的侧抽芯注射模
3)斜滑块侧抽芯机构的要点
开模时斜滑块的止动
§6.4 其他类型的侧抽芯注射模
3)斜滑块侧抽芯机构的要点
斜滑块的倾斜角和推出行程
斜滑块的倾斜角可比斜导柱的倾斜角大一些,一般 在≤30°内选取 斜滑块推出模套的行程
立式模具不大于斜滑块高的1/2 卧式模具不大于斜滑块高的1/3
§6.2斜导柱侧抽芯机构设计与计算
斜导柱长度的确定
L l1 l2 l4 l5 D tan ha S抽 (5 ~ 10)mm
2
cos sin
§6.2斜导柱侧抽芯机构设计与计算
斜导柱的受力分析
§6.2斜导柱侧抽芯机构设计与计算
斜导柱直径的确定
斜导柱直径(d)取决于它所受的最大弯曲力(F弯)
斜导柱分型与抽芯机构 斜滑块分型与抽芯机构 其它侧抽芯机构
§6.1 侧分型与抽芯注射模实例分析
2、斜导柱侧抽芯注射模结构组成及工作过程
组成 斜导柱 侧型芯滑块 导滑槽 楔紧块 型芯滑块定距限 位装置
§6.1 侧分型与抽芯注射模实例分析
§6.1 侧分型与抽芯注射模实例分析
§6.2斜导柱侧抽芯机构设计与计算
楔杆摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
楔杆摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
楔杆滑块摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
连杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
2、斜导柱安装在动模、侧滑块安装在定模
§6.3 斜导柱侧抽芯机构应用形式
2、斜导柱安装在动模、侧滑块安装在定模
正确选择主型芯位置
§6.4 其他类型的侧抽芯注射模
3)斜滑块侧抽芯机构的要点
开模时斜滑块的止动
§6.4 其他类型的侧抽芯注射模
3)斜滑块侧抽芯机构的要点
斜滑块的倾斜角和推出行程
斜滑块的倾斜角可比斜导柱的倾斜角大一些,一般 在≤30°内选取 斜滑块推出模套的行程
立式模具不大于斜滑块高的1/2 卧式模具不大于斜滑块高的1/3
§6.2斜导柱侧抽芯机构设计与计算
斜导柱长度的确定
L l1 l2 l4 l5 D tan ha S抽 (5 ~ 10)mm
2
cos sin
§6.2斜导柱侧抽芯机构设计与计算
斜导柱的受力分析
§6.2斜导柱侧抽芯机构设计与计算
斜导柱直径的确定
斜导柱直径(d)取决于它所受的最大弯曲力(F弯)
斜导柱分型与抽芯机构 斜滑块分型与抽芯机构 其它侧抽芯机构
§6.1 侧分型与抽芯注射模实例分析
2、斜导柱侧抽芯注射模结构组成及工作过程
组成 斜导柱 侧型芯滑块 导滑槽 楔紧块 型芯滑块定距限 位装置
§6.1 侧分型与抽芯注射模实例分析
§6.1 侧分型与抽芯注射模实例分析
§6.2斜导柱侧抽芯机构设计与计算
楔杆摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
楔杆摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
楔杆滑块摆杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
连杆式先复位机构
§6.3 斜导柱侧抽芯机构应用形式
2、斜导柱安装在动模、侧滑块安装在定模
§6.3 斜导柱侧抽芯机构应用形式
2、斜导柱安装在动模、侧滑块安装在定模
第四节斜滑块侧抽芯机构讲解

单元五 侧向分型与抽芯 注射模结构
学习目的: 1、了解斜导柱侧抽芯注射模的结构组成和工作过程 2、掌握斜导柱侧抽芯注射模具各组成部分的设计要点,会对
中等复杂程度的塑件进行侧抽芯注射模具结构设计 3、了解斜滑块、弯销、斜导槽等侧抽芯注射模的结构组成,
会针对不同的塑件选用合适的抽芯机构
第四节 斜滑块侧抽芯机构
一、斜滑块侧抽芯机构的工作原理及其类型
应用:当塑件的侧凹较浅,所需的抽芯距 不大,但侧凹的成型面积较大,因而需较 大的抽芯力时,可采用斜滑块机构进行侧 向分型与抽芯。
工作原理:利用推出机构的推力驱动斜滑 块斜向运动,在塑件被推出脱模的同时由 斜滑块完成侧向分型与抽芯动作。
分类:一般可分为外侧抽芯和内侧抽芯两 种。
2、斜滑块内侧抽芯机构
工作原理:滑块型芯2的上端为侧向型芯,它安装在型芯固定板3的斜孔 中,开模后,推杆4推动滑块型芯2向上运动,由于型芯固定板3上的斜孔作 用,斜滑块同时还向内侧移动,从而在推杆推出塑件的同时,滑块型芯完成 内侧抽芯的动作。
二、斜滑块的导滑形式
整体式T形导滑槽,其加工精度 不易保证,又不能热处理,但结 构较紧凑,故适于中小型或批量 不大的模具。其中方形截面也可 制成半圆形,成为半圆形导滑槽。
燕尾式导滑槽,适于小型模具 多滑块的情况,模具结构紧凑, 但加工较困难
以圆柱孔作为斜滑块的导轨, 制造方便,精度容易保证, 仅用于局部抽芯的情况
用型芯镶块作斜滑 块的导向,常用于 斜滑块的内侧抽芯
三、斜滑块侧抽芯机构的设计要点
1、正确选择主型芯位置
主型芯设置在定模一侧,开模 时,主型芯先从塑件中抽出, 然后斜滑块才分型,所以塑件 很容易粘附于斜滑块上某处收 缩值较大的部位,因此不能顺 利从斜滑块中脱出。
学习目的: 1、了解斜导柱侧抽芯注射模的结构组成和工作过程 2、掌握斜导柱侧抽芯注射模具各组成部分的设计要点,会对
中等复杂程度的塑件进行侧抽芯注射模具结构设计 3、了解斜滑块、弯销、斜导槽等侧抽芯注射模的结构组成,
会针对不同的塑件选用合适的抽芯机构
第四节 斜滑块侧抽芯机构
一、斜滑块侧抽芯机构的工作原理及其类型
应用:当塑件的侧凹较浅,所需的抽芯距 不大,但侧凹的成型面积较大,因而需较 大的抽芯力时,可采用斜滑块机构进行侧 向分型与抽芯。
工作原理:利用推出机构的推力驱动斜滑 块斜向运动,在塑件被推出脱模的同时由 斜滑块完成侧向分型与抽芯动作。
分类:一般可分为外侧抽芯和内侧抽芯两 种。
2、斜滑块内侧抽芯机构
工作原理:滑块型芯2的上端为侧向型芯,它安装在型芯固定板3的斜孔 中,开模后,推杆4推动滑块型芯2向上运动,由于型芯固定板3上的斜孔作 用,斜滑块同时还向内侧移动,从而在推杆推出塑件的同时,滑块型芯完成 内侧抽芯的动作。
二、斜滑块的导滑形式
整体式T形导滑槽,其加工精度 不易保证,又不能热处理,但结 构较紧凑,故适于中小型或批量 不大的模具。其中方形截面也可 制成半圆形,成为半圆形导滑槽。
燕尾式导滑槽,适于小型模具 多滑块的情况,模具结构紧凑, 但加工较困难
以圆柱孔作为斜滑块的导轨, 制造方便,精度容易保证, 仅用于局部抽芯的情况
用型芯镶块作斜滑 块的导向,常用于 斜滑块的内侧抽芯
三、斜滑块侧抽芯机构的设计要点
1、正确选择主型芯位置
主型芯设置在定模一侧,开模 时,主型芯先从塑件中抽出, 然后斜滑块才分型,所以塑件 很容易粘附于斜滑块上某处收 缩值较大的部位,因此不能顺 利从斜滑块中脱出。