形心重心计算公式
材料力学形心计算公式

材料力学形心计算公式材料力学是研究物质的内部结构和性质以及物质受力和变形规律的一门学科。
在材料力学中,形心是一个重要的概念,它可以帮助我们更好地理解物体的受力和变形情况。
在本文中,我们将介绍材料力学中形心的概念以及形心计算公式。
首先,让我们来了解一下形心的概念。
形心是一个物体几何形状的特征点,它可以用来描述物体的质量分布情况。
对于一个平面图形而言,形心通常是指该图形在均匀质量分布下的质心位置。
而对于一个立体物体而言,形心则是指该物体在均匀质量分布下的重心位置。
形心的计算可以帮助我们分析物体受力和变形的情况,对于工程设计和科学研究具有重要意义。
接下来,让我们来介绍一些常见图形的形心计算公式。
对于一个平面图形而言,常见的形心计算公式包括矩形、三角形、梯形和圆形等。
以矩形为例,其形心的计算公式为:\[ X = \frac{b}{2} \]\[ Y = \frac{h}{2} \]其中,\( X \) 和 \( Y \) 分别表示矩形的形心坐标,\( b \) 和 \( h \) 分别表示矩形的宽度和高度。
对于三角形而言,其形心的计算公式为:\[ X = \frac{a}{3} \]\[ Y = \frac{h}{3} \]其中,\( X \) 和 \( Y \) 分别表示三角形的形心坐标,\( a \) 和 \( h \) 分别表示三角形的底边长和高度。
对于梯形和圆形,其形心的计算公式也可以通过数学推导得出。
这些形心计算公式可以帮助我们在工程设计和科学研究中更好地分析和应用形心的概念。
除了平面图形外,对于立体物体而言,形心的计算也具有重要意义。
常见的立体物体包括长方体、圆柱体和球体等。
这些立体物体的形心计算公式可以通过积分或几何推导得出,它们可以帮助我们更好地理解立体物体的质量分布情况。
在工程设计中,形心的计算可以帮助我们确定物体的受力和变形情况,从而指导工程设计和结构分析。
在科学研究中,形心的计算也可以帮助我们深入理解物体的内部结构和性质,为科学研究提供重要参考。
对称图形对称位置的形心推导

对称图形对称位置的形心推导
当截面具有两个对称轴时,二者的交点就是该截面的形心。
据此,可以很方便的确定圆形、圆环形、正方形。
形心是一个对称轴的截面,一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
形心计算公式是∫∫Dxdxdy=重心横坐标×D的面积,∫∫Dydxdy=重心纵坐标×D的面积。
形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
z轴上的形心=对y轴的静距/图形面积。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。
如果一个物件质量分布平均,形心便是重心。
几何形心坐标计算公式

几何形心坐标计算公式几何形心是指一个几何形状的质心或重心,是该形状所有点的平均位置。
在数学和物理学中,几何形心的计算对于求解形状的重心、稳定性和其他性质非常重要。
本文将介绍几何形心的计算公式,并以常见的几何形状为例进行详细说明。
在二维平面上,常见的几何形状包括点、直线、三角形、四边形、圆等。
对于这些几何形状,它们的形心坐标可以通过不同的方法计算得到。
1. 点的形心坐标。
对于一个点来说,它的形心坐标就是它自身的坐标,即(x, y)。
2. 直线的形心坐标。
对于一条直线来说,它的形心坐标可以通过两个端点的坐标计算得到。
假设直线的两个端点分别为A(x1, y1)和B(x2, y2),则直线的形心坐标为((x1+x2)/2,(y1+y2)/2)。
3. 三角形的形心坐标。
对于一个三角形来说,它的形心坐标可以通过三个顶点的坐标计算得到。
假设三角形的三个顶点分别为A(x1, y1)、B(x2, y2)和C(x3, y3),则三角形的形心坐标为((x1+x2+x3)/3, (y1+y2+y3)/3)。
4. 四边形的形心坐标。
对于一个四边形来说,它的形心坐标可以通过四个顶点的坐标计算得到。
假设四边形的四个顶点分别为A(x1, y1)、B(x2, y2)、C(x3, y3)和D(x4, y4),则四边形的形心坐标为((x1+x2+x3+x4)/4, (y1+y2+y3+y4)/4)。
5. 圆的形心坐标。
对于一个圆来说,它的形心坐标就是圆心的坐标,即(x, y)。
以上是对于简单几何形状的形心坐标计算公式,接下来我们将以具体例子进行说明。
例1,计算三角形的形心坐标。
假设有一个三角形,其三个顶点分别为A(1, 1)、B(3, 4)和C(5, 2),现在需要计算该三角形的形心坐标。
根据上述公式,三角形的形心坐标为((x1+x2+x3)/3, (y1+y2+y3)/3),代入各顶点坐标得到:((1+3+5)/3, (1+4+2)/3) = (3, 7/3)。
T字型截面形心计算公式

T字型截面形心计算公式
T字型截面的形心是指截面所有形状的重心,它是计算截面抵抗弯曲力和剪切力的重要参数。
计算T字型截面形心的公式如下:χ = [(b1*d1^2/2) + (b2*d2^2/2)] / [(b1*d1) + (b2*d2)]
其中,χ为形心距底板距离的比例系数,b1和b2分别为T字型截面上下底板的宽度,d1和d2分别为T字型截面上下底板到形心的距离。
解释:公式的分子部分故名思义是对应矩的计算,即以底板作为基准面,分别计算上下板的对应矩(moment),然后加起来。
而分母部分是对应力的计算,即底面积乘以距离,也就是总的力矩。
这个公式的计算方法是先通过横截面图形上套用静力学平衡原理求得图形的惯性矩,然后再通过求和、平均,求得形心的位置。
这个公式常用于建筑物结构、机械设计以及船舶工程等领域。
参数方程的形心坐标公式

参数方程的形心坐标公式形心,也称作质心或重心,是指一个平面图形或三维空间图形的重心位置,即该图形的所有质点的平均位置。
在几何学中,求解形心坐标是一个重要的问题,可以通过参数方程来计算。
参数方程是一种表示曲线或曲面的方程,其中自变量通常表示为参数。
在二维平面上,一个曲线的参数方程可以表示为x = f(t), y = g(t),其中t是参数,f(t)和g(t)是关于t的函数。
同样,在三维空间中,一个曲面的参数方程可以表示为x = f(u, v), y = g(u, v), z = h(u, v),其中u和v是参数,f(u, v), g(u, v)和h(u, v)是关于u和v 的函数。
对于一个平面图形的形心,可以使用参数方程的形心坐标公式来计算。
对于一个曲线,形心坐标公式可以表示为:x̄= (1/L) ∫[a,b] x(t)ρ(t)dtȳ= (1/L) ∫[a,b] y(t)ρ(t)dt其中L是曲线的弧长,[a,b]是参数t的取值范围,x(t)和y(t)分别是曲线上点的x坐标和y坐标的函数,ρ(t)是曲线上点的单位质量。
同样地,对于一个曲面,形心坐标公式可以表示为:x̄ = (1/S) ∬[D] x(u, v)ρ(u, v)dAȳ = (1/S) ∬[D] y(u, v)ρ(u, v)dAz̄ = (1/S) ∬[D] z(u, v)ρ(u, v)dA其中S是曲面的面积,[D]是参数u和v所确定的曲面上的区域,x(u, v),y(u, v)和z(u, v)分别是曲面上点的x坐标、y坐标和z坐标的函数,ρ(u, v)是曲面上点的单位质量,dA是曲面上的面积元素。
形心坐标公式的推导可以通过对参数t、u和v进行积分来得到。
在计算形心时,需要确定曲线或曲面上每个点的密度分布,即单位质量。
通常情况下,可以假设质量均匀分布在曲线或曲面上,即单位质量在整个曲线或曲面上是恒定的。
形心坐标公式的应用非常广泛。
在工程学中,形心坐标公式可以用于计算物体的质心位置,从而确定物体的平衡状态。
工程力学形心计算公式

工程力学形心计算公式工程力学形心计算公式是工程力学中的一个重要概念,用来描述物体的形状和质量分布对于力的作用点的影响。
在工程中,形心计算公式被广泛应用于各种结构物和力学系统的分析与设计中。
形心,也被称为重心或质心,是一个物体所有质点所在位置的平均值,可以看作是物体的几何中心。
形心计算公式通过将物体划分为无限小的质点,然后计算这些质点的位置和质量对形心的贡献,从而得到整个物体的形心位置。
对于一个均匀物体,其形心可以通过几何的方法求解。
比如,对于一个均匀的平面图形,其形心可以通过对图形进行分割,然后计算每个小区域的形心位置,并根据每个小区域的面积加权平均得到。
同样地,对于一个均匀的立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。
然而,在大多数实际工程问题中,物体的形状和质量分布往往并不均匀,因此需要使用形心计算公式来求解。
形心计算公式根据物体的几何形状和质量分布提供了计算形心位置的方法。
常见的形心计算公式包括:1. 平面图形的形心计算:对于一个平面图形,可以使用一些特定的公式来计算其形心位置。
比如,对于一个矩形,其形心位于中心点;对于一个三角形,其形心位于三条边的交点的重心位置。
2. 立体物体的形心计算:对于一个立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。
具体的计算方法可以根据物体的几何形状和质量分布的特点来确定。
形心计算公式的应用非常广泛。
在建筑工程中,形心计算公式可以用来确定建筑结构的荷载传递和受力分析。
在机械工程中,形心计算公式可以用来确定机械零件的平衡位置和稳定性。
在航空航天工程中,形心计算公式可以用来确定飞行器的姿态控制和稳定性。
形心计算公式是工程力学中一个重要的概念,可以用来描述物体的形状和质量分布对于力的作用点的影响。
通过使用形心计算公式,工程师可以准确地计算物体的形心位置,为工程设计和分析提供有效的方法和工具。
形心重心计算公式
形心重心计算公式形心和重心是两个不同的概念,在几何中具有不同的定义和计算方法。
形心(Centroid)形心是指一个物体或一个几何图形的几何中心,也被称为几何中心或质心。
它是物体或图形对称性的中心点,可以通过将图形切分成小的区域然后计算每个小区域的中心来确定。
对于一个平面图形而言,形心是该图形内部所有点的平均值。
形心可以用于许多计算,例如计算物体的平衡点、计算物体的质量分布等。
重心(Center of Mass)重心是指物体的质量中心。
物体的重心是物体质量分布的平均位置,也可以理解为物体质量对于各个部分质量的加权平均。
通过计算物体各个部分的质量与位置的乘积之和,再除以总质量,可以得到物体的重心位置。
对于一个平面图形或平面物体而言,重心可以通过将图形或物体拆分成小的区域,并计算每个小区域的质量与位置的乘积之和,再除以总质量来确定。
下面以常见的二维几何图形为例,介绍如何计算形心和重心。
1.三角形对于一个三角形而言,可以将其分为三个小三角形。
假设三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。
形心的计算公式为:形心的x坐标=(x1+x2+x3)/3形心的y坐标=(y1+y2+y3)/3重心的计算公式为:重心的x坐标=(m1*x1+m2*x2+m3*x3)/(m1+m2+m3)重心的y坐标=(m1*y1+m2*y2+m3*y3)/(m1+m2+m3)其中,m1,m2,m3为各个小三角形的质量,也可以看作是各个小三角形的面积。
一般来说,可以假设各个小三角形的质量相同。
2.矩形对于一个矩形而言,可以将其视为四个小三角形。
假设矩形的左下角顶点坐标为A(x1,y1),右下角顶点坐标为B(x2,y2),右上角顶点坐标为C(x3,y3),左上角顶点坐标为D(x4,y4)。
形心的计算公式为:形心的x坐标=(x1+x2+x3+x4)/4形心的y坐标=(y1+y2+y3+y4)/4重心的计算公式为:重心的x坐标=(m1*x1+m2*x2+m3*x3+m4*x4)/(m1+m2+m3+m4)重心的y坐标=(m1*y1+m2*y2+m3*y3+m4*y4)/(m1+m2+m3+m4)其中,m1,m2,m3,m4为各个小三角形的质量,也可以看作是各个小三角形的面积。
工字钢形心位置计算公式
工字钢形心位置计算公式
形心坐标计算公式:Dxdxdy=重心横坐标×D的面积,Dydxdy=重心纵坐标×D的面积。
形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。
非正式地说,它是X中所有点的平均。
如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。
三角形形心推导公式
三角形形心推导公式咱们先来说说三角形形心这玩意儿。
三角形形心,这可是个在数学里有点小神秘又挺重要的概念。
想象一下,有一块形状不规则的三角形土地,咱要在这上面建个仓库,得找个能让货物运输到三个顶点距离总和最小的位置,这个神奇的位置就是三角形的形心。
要推导三角形形心的公式,咱们得从三角形的重心说起。
还记得小时候玩跷跷板不?如果两边重量不一样,重的那边就会往下沉。
三角形的重心就好比是让这个三角形在跷跷板上能平衡的那个点。
咱们先来看一个简单的三角形 ABC 。
假设三个顶点的坐标分别是A(x₁, y₁) ,B(x₂, y₂) ,C(x₃, y₃) 。
为了找到形心,咱们先找重心。
重心的坐标可以通过这样的公式来计算:重心 G 的横坐标是 (x₁ + x₂ + x₃) / 3 ,纵坐标是 (y₁ + y₂ +y₃) / 3 。
那形心和重心有啥关系呢?其实在质量均匀分布的情况下,重心就是形心。
咱们来举个例子感受一下。
有一次我在纸上画了一个大大的三角形,然后开始琢磨怎么找它的形心。
我拿尺子量来量去,算来算去,搞得自己头都有点大。
最后发现,按照公式算出来的结果和我自己瞎琢磨的还真差不多,那一刻我就觉得这数学公式还真神奇,能让这么复杂的问题变得简单明了。
那为什么会有这样的公式呢?咱们来仔细想想。
把三角形分成很多小份,每一份的质量可以看作是均匀分布的。
对于每一份来说,它的重心就在它的几何中心。
然后把所有这些小份的重心加起来,再除以份数,不就得到了整个三角形的重心,也就是形心嘛。
再深入一点说,这其实就像是把一堆苹果平均分到三个篮子里,怎么分才能让每个篮子看起来差不多重,这里面就有数学的智慧啦。
总之,三角形形心的推导公式虽然看起来有点复杂,但只要咱们一步一步来,多想想多琢磨,就能明白其中的道理。
就像我们解决生活中的很多难题一样,只要有耐心,有方法,总能找到答案。
希望大家以后看到三角形形心的问题,都能轻松应对,不再头疼啦!。
惯性矩、静矩、抵抗矩形心、重心、质心
力学计算中截面参数计算,关键点的描述原先对于惯性矩、静矩、极惯性矩、抵抗矩的概念及计算方法总是模糊不清,这次认真的整理了下,估计大家对这些基本概念认知也比较凌乱,在此斗胆与大家分享下,其中的不足之处希望大家谅解,也恳请大家批评指正。
计算平面的惯性矩方法:在CAD中将平面图画好——生成面域——工具(查询——面域/质量特性)——得到质心和惯性矩(此惯性矩的计算轴为坐标原点处X、Y 轴)——将坐标轴原点移动刚算出的质心坐标上——工具(查询——面域/质量特性)得此平面图的惯性矩和面积1:静矩:平面图形的面积A与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。
一般用S 来表示。
Sx=Yc*A 其中Yc=∑Yci*Ai/∑Ai2:惯性矩:轴惯性矩反映截面抗弯特性的一个量,简称惯性矩。
截面对某个轴的轴惯性矩等于截面上各微面积乘微面积到轴的距离的平方在整个截面上的积分。
公式如:Ix=∫y*ydA3:极惯性矩:极惯性矩是平面图形对坐标轴原点(即o点)的矩,计算公式为:ip=ix+iy(各惯性矩之和)4:抵抗矩:截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值。
公式为:W=I/Ymax面积矩:面积矩是一个概念,凡是与面积有关的都称为面积矩,如静矩,抵抗矩等都为面积矩。
质心:为质量集中在此点的假想点;重心:为重力作用点(与组成该物体的物质有关);(如没有引力,则就没有重心一说了)形心:物体的几何中心只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。
三者的关系:1:一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。
2:质心就是物体质量集中的假想点(对于规则形状物体就是它的几何中心),重心就是重力的作用点,通常情况下,由于普通物体的体积比之于地球十分微小,所以物体所处的重力场可看作是均匀的,此时质心与重心重合;如果该物体的体积比之于地球不可忽略(例如一个放在地面上半径为3000km的球体),则该球体所处的重力场就不均匀了,具体说是由下自上重力场逐渐减小,此时重力的作用点靠下,也就是重心低于质心.如果物体所处的位置不存在重力场(如外太空),则物体就无所谓重心了,但由于质量仍然存在,所以质心仍然存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲重心和形心
目的要求:掌握平面组合图形形心的计算。
教学重点:分割法和负面积法计算形心。
教学难点:对计算形心公式的理解。
教学内容:
§3-4 重心和形心
一、重心的概念:
1、重心的有关知识,在工程实践中是很有用的,必须要加以掌握。
2、重力的概念:重力就是地球对物体的吸引力。
3、物体的重心:物体的重力的合力作用点称为物体的重心。
无论物体怎样放置,重心总是一个确定点,重心的位置保持不变。
二、重心座标的公式:
(1)、重心座标的公式
三、物体质心的坐标公式
在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下:四、均质物体的形心坐标公式
若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下:
式中V=∑Vi。
在均质重力场中,均质物体的重心、质心和形心的位置重合。
五、均质等厚薄板的重心(平面组合图形形心)公式:
令式中的∑A i.x i=A.x c=S y;
∑A i.y i=A.y c=S x
则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。
六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:
1、对称法
凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。
对称法求重心的应用见下图。
2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。
(1)、悬挂法
利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。
悬挂法确定物体的重心方法见图
(2)、称重法
对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。
例如,用称重法来测定连杆重心位置。
如图。
设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B 端的约束力F B,
则由∑M A(F)=0 F B.L-G.x c=0
x c=F B.L/G
(3)、分割法:
工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
此法称为分割法。
下面是平面图形的形心坐标公式:
(4)、负面积法:
仍然用分割法的公式,只不过去掉部分的面积用负值。
3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。
下面列出了几个常用的图形的形心位置计算公式和面积公式。
四、求平面图形的形心举例
例1 热轧不等边角钢的横截面近似简化图形如图所示,求该截面形心的位置。
解:
方法一(分割法):
根据图形的组合情况,可将该截面分割成
两个矩形Ⅰ,Ⅱ,C1和C2分别为两个矩形
的形心。
取坐标系Oxy如图所示,则矩形Ⅰ,
Ⅱ的面积和形心坐标分别为
A1=120mm×12mm=1440mm2
x1=6mm
y1=60mm
A2=(80-12)mm×12mm=816mm2
x2=12mm+(80-12)/20=46mm
y2=6mm
即所求截面形心C点的坐标为(20.5mm,40.5mm)
方法二(负面积法):
用负面积法求形心。
计算简图如图。
A1=80mm×120mm=9600mm2
x1=40mm y1=60mm
A2=-108mm×68mm=-7344mm2
x1=12mm+(80-12)mm/2=46mm
y1=12mm+(120-12)mm/2=66mm
由于将去掉部分的面积作为负值,方法二又称为负面积法。
例2 试求如图所示图形的形心。
已知R=100mm,r2=30mm,r3=17mm。
解:由于图形有对称轴,形心必在对称轴上,建立坐标系Oxy如图所示,只须求出x c,将图形看成由三部分组成,各自的面积及形心坐标分别为
(1)、半径为R的半圆面:
A1=πR2/2=π×(100mm)2/2=15700mm2
y1=4R/(3π)=4×100mm/(3π)=42.4mm
(2)、半径为r2的半圆面
A2=π(r2)2/2=π×(30mm)2/2=1400mm2
y2=-4r2/(3π)=-4×30mm/(3π)=-
12.7mm
(3)、被挖掉的半径为r3的圆面:
A3=-π(r3)2=-π(17mm)2=910mm2
y3=0
(4)、求图形的形心坐标。
由式形心公式可求得即所求截面形心C点的坐标为(0mm,40mm)。