圆的一般方程点在圆外
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
圆的一般方程ppt课件

x2 + 3y2 − 2x + 4y + 5 = 0不是圆的一般方程;
对于D,因为方程x2 + y2 − 3xy − 12 = 0中存在xy项,所以方程
x2 + y2 − 3xy − 12 = 0不是圆的一般方程.故选BCD.
课中探究
探究点二 求圆的一般方程
例2(1) 已知△ ABC的三个顶点为A 4,3 ,B 5,2 ,C 1,0 ,求△ ABC外接
又圆心在第二象限,所以D
= 2,E =
−4,
故圆C的一般方程为x2 + y2 + 2x − 4y + 3 = 0.
课中探究 (2)圆C关于直线x − y = 0对称的圆的一般方程. 解: 由(1)知圆C的圆心为C −1,2 ,设它关于直线x − y = 0对称的点为
C′ m, n ,则
m−1 − n+2 = 0,
半径的圆,我们把方程x2 + y2 + Dx + Ey + F = 0 D2 + E2 − 4F > 0 叫作圆的
一般方程.
课前预习
(1)圆的一般方程的特点是:①x2和y2的系数都是__1_;②没有__x_y_这样的二次
项;③D2 + E2 − 4F__>_0.
(2)方程x2 + y2 + Dx + Ey + F = 0并不一定表示圆,当其系数满足
解得m < 1.故选B.
课中探究
(2)(多选题)下列方程不是圆的一般方程的有( BCD )
A.x2 + y2 − 2x + 4y + 3 = 0
B.x2 + y2 − 2x + 2y + 7 = 0
数学:第2章2.2.1圆的方程 课件(苏教版必修2)

备选例题
1.求圆心在直线5x-3y-8=0上,且与两坐标
轴都相切的圆的标准方程.
解:法一:设所求圆的方程为(x-a)2+(y-b)2
=r2, ∵圆与坐标轴相切,∴a=±b,r=|a|.
又∵圆心(a,b)在直线5x-3y-8=0上,∴5a
-3b=8.
a=±b, a=4, a=1, 由5a-3b=8,得b=4,或b=-1, r=|a|, r=4, r=1. ∴所求圆的方程为(x-4)2+(y-4)2=16 或(x- 1)2+(y+1)2=1. 法二:圆与两坐标轴都相切,那么圆心必在直 线 y=±x 上.
3=0上,且过点A(2,-3),B(-2,-5)的圆 的标准方程.
【思路点拨】
解答本题可以先根据所给条
件确定圆心和半径,再写方程,也可以设出 方程用待定系数法求解.
【解】
法一:设点C为圆心.
∵点C在直线l:x-2y-3=0上, ∴可设点C的坐标为(2a+3,a).(2分)
名师微博
据定义,求圆心,定半径,方便快捷.
①当 D2+E2-4F>0 为圆心,
D E - ,- 2 2 时, 表示以____________
1 2 D +E2-4F 2 ____________为半径的圆; ②当 D2+E2-4F=0 时,方程只有实数解 x= D E D E - ,- - , y=- , 即只表示一个点____________; 2 2 2 2 ③当 D2+E2-4F<0 时,方程没有实数解,因 而它不表示任何图形.
名师微博
这里采用的是待定系数法,此法常用,勿必 掌握.
a=-1 解得b=-2,(10 分) 2 r =10 故所求圆的标准方程为(x+1)2+(y+2)2=10. (14 分)
(优质课)4.1.2 圆的一般方程

所求圆的方程为
所求圆的方程为
( x 2) ( y 3) 25
2 2
x2 y2 4x 6 y 12 0
牛刀小试:
2 2 2 x , y x y 2 mx 2 y m 5m 0 2.关于 的方程 表示圆
(1)求实数 m的取值范围
(2)圆心坐标和半径
1 m 5
- m,1
r 1 5m
典例分析:
例1:求过三点O(0,0),M1(1,1),M2(4,2)的圆的 方程,并指出这个圆的半径和圆心坐标.
方法一: 几何方法 方法二: 解:设所求圆的标准方程为:
0
y
M1(1,1) M (4,2) 2
x
方法三: 解:设所求圆的一般方程为:
22 22 x y D x E y F 0 ( D E 4 F 0 )
例1:求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并 指出这个圆的半径和圆心坐标.
B. k 1
C. k 1
2 2 a C.
D. k 1 D. 2a
A.2 2a
B. 2 2a
谢谢
延伸训练:
变式练习3:平面内四点O(0,0),M1(1,1),M2(4,2), D(0,-6)是否在同一个圆上? 若共圆求四边形OM1M2D的面积.
y
M1(1,1) M (4,2) 2
2 2
2
2
自主探究:
2 2
2 2
圆的一般方程
x y Dx Ey F 0 D2 E 2 4F 0
D E D2 E 2 4F x y 2 2 4
2 2 (1)当 D E 4F 0 时,表示圆,
圆的一般方程

r2=10,
∴圆的方程为(x+1)2+(y+2)2=10.
(2)解法1:设圆的方程为
x2+y2+Dx+Ey+F=0(*)
把A、B、C三点坐标代入方程(*)得
1-D+F=0 9+3D+F=0 1+E+F=0
D=-2 ∴E=2
F=-3
故所求圆的方程为 x2+y2-2x+2y-3=0
(2)设圆心为(x,y),则xy= =m2m-1 , ∴2x-y+2=0,∵0<m<2,∴-1<x<1. ∴圆心的轨迹方程为 2x-y+2=0 (-1<x<1)
[例2] (1)已知圆经过A(2,-3)和B(-2,-5),若圆 心在直线x-2y-3=0上,求圆的方程.
(2)求过点A(-1,0)、B(3,0)和C(0,1)的圆的方程. [分析] 由题设三个条件,可利用待定系数法求方程, 也可利用弦的中垂线过圆心,先确定圆心,再求圆的半 径. [解析] (1)解法1:设圆的方程为x2+y2+Dx+Ey+F =0,则
本节学习难点:据所给条件,求圆的方程.
任何一个圆的方程都可以写成一般方程:x2+y2+Dx +Ey+F=0.反之,这个方程并不一定表示圆,它可能只 表示一个点(D2+E2-4F=0 时),也可能不表示任何图形 (D2+E2-4F<0 时);只有当 D2+E2-4F>0 时,它才表示
一个圆.此时圆心为-D2 ,-E2,半径为12 D2+E2-4F. 圆的方程两种形式的选择:与圆心、半径有直接关系
[点评] 如果动点P与Q满足某种关系,P在已知曲线C 上运动,求Q点的轨迹方程,可设Q(x,y)结合所给条件, 将P点坐标(x′,y′)用x、y表示出来.利用P在C上,将P点坐 标代入C的方程,即得x、y满足的关系式.
(完整版)圆与方程知识点整理(最新整理)

关于圆与方程的知识点整理一、标准方程:()()222x a y b r-+-=二、一般方程:()2222040x y Dx Ey F D E F ++++=+->1.表示圆方程则220Ax By Cxy Dx Ey F +++++=22220004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩2.求圆的一般方程一般可采用待定系数法。
3.常可用来求有关参数的范围2240D E F +->三、点与圆的位置关系1.判断方法:点到圆心的距离与半径的大小:点在圆内;点在圆上;点在圆外d r d r <⇒d r =⇒d r >⇒2.涉及最值:(1)圆外一点,圆上一动点,讨论的最值B P PB min PB BN BC r ==-max PB BM BC r==+(2)圆内一点,圆上一动点,讨论的最值A P PA min PA AN r AC ==-max PA AM r AC==+四、直线与圆的位置关系1.判断方法(为圆心到直线的距离):(1)相离没有公共点;(2)相切只有一d ⇔⇔0d r ∆<⇔>⇔个公共点;(3)相交有两个公共点。
⇔0d r ∆=⇔=⇔⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围.2.直线与圆相切(1)知识要点:①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线与圆相切意味着什么?圆心到直线的距离恰好等于半径l C C l r (2)常见题型——求过定点的切线方程①切线条数:点在圆外——两条;点在圆上……一条;点在圆内……无②求切线方程的方法及注意点i )点在圆外:如定点,圆:,[]()00,P x y ()()222x a y b r -+-=()()22200x a y b r -+->第一步:设切线方程;第二步:通过,从而得到切线方程l ()00y y k x x -=-d r =k ⇒特别注意:以上解题步骤仅对存在有效,当不存在时,应补上……千万不要漏了!k k 如:过点作圆的切线,求切线方程.()1,1P 2246120x y x y +--+=ii )点在圆上:(1)若点在圆上,则切线方程为()00x y ,222x y r +=200x x y y r+=(2)若点在圆上,则切线方程为()00x y ,()()222x a y b r -+-=()()()()200x a x a y b y b r --+--= 由上述分析:过一定点求某圆的切线方程,非常重要的第一步——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC AP AC rk k ⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题:垂径定理及勾股定理——常用弦长公式:2l x =-=(2)判断直线与圆相交的一种特殊方法:直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆上有且仅有两个点到直线的距离为1,则半径的取值范围是()()22235x y r -++=4320x y --=r _________________.答案:()4,64.直线与圆相离:会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆,关于直线,则实数的值为____.()222120x y m x my m ++-+-=10x y -+=m 答案:3(注意:时,,故舍去)1m =-2240D E F +-<变式:已知点是圆:上任意一点,点关于直线的对称点在圆A C 22450x y ax y +++-=A 210x y +-=C 上,则实数_________.a =2.圆关于直线对称的曲线方程是________________.()()22131x y -+-=0x y +=变式:已知圆:与圆:关于直线对称,则直线的方程为1C ()()22421x y -+-=2C ()()22241x y -+-=l l _______________.3.圆关于点对称的曲线方程是__________________.()()22311x y -++=()2,34.已知直线:与圆:,问:是否存在实数使自发出的光线被直线反射后与l y x b =+C 221x y +=b ()3,3A l圆相切于点?若存在,求出的值;若不存在,试说明理由.C 247,2525B ⎛⎫⎪⎝⎭b 六、最值问题方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数,满足方程,求:x y 22410x y x +-+=(1)的最大值和最小值;——看作斜率 (2)的最小值;——截距(线性规划)5yx -y x -(3)的最大值和最小值.——两点间的距离的平方22x y +2.已知中,,,,点是内切圆上一点,求以,,为AOB ∆3OB =4OA =5AB =P AOB ∆PA PB PO 直径的三个圆面积之和的最大值和最小值.数形结合和参数方程两种方法均可!3.设为圆上的任一点,欲使不等式恒成立,则的取值范围是(),P x y ()2211x y +-=0x y c ++≥c____________. 答案:(数形结合和参数方程两种方法均可!)1c ≥-七、圆的参数方程,为参数 ;,为参()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩θ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩θ数八、相关应用1.若直线(,),始终平分圆的周长,则的取值范围是240mx ny +-=m n R ∈224240x y x y +---=m n ⋅______________.2.已知圆:,问:是否存在斜率为1的直线,使被圆截得的弦为,以C 222440x y x y +-+-=l l C AB AB 为直径的圆经过原点,若存在,写出直线的方程,若不存在,说明理由. l提示:或弦长公式. 答案:或12120x x y y +=2d x =-10x y -+=40x y --=3.已知圆:,点,,设点是圆上的动点,,求C ()()22341x y -+-=()0,1A ()0,1B P C 22d PA PB =+d 的最值及对应的点坐标.P 4.已知圆:,直线:()C ()()221225x y -+-=l ()()211740m x m y m +++--=m R ∈(1)证明:不论取什么值,直线与圆均有两个交点;m l C (2)求其中弦长最短的直线方程.5.若直线与曲线的取值范围.y x k =-+x =k 6.已知圆与直线交于,两点,为坐标原点,问:是否存在实数2260x y x y m ++-+=230x y +-=P Q O m ,使,若存在,求出的值;若不存在,说明理由.OP OQ ⊥m九、圆与圆的位置关系1.判断方法:几何法(为圆心距):(1)外离 (2)外切 d 12d r r >+⇔12d r r =+⇔(3)相交 (4)内切 (5)内含1212r r d r r -<<+⇔12d r r =-⇔12d r r <-⇔2.两圆公共弦所在直线方程圆:,圆:,1C 221110x y D x E y F ++++=2C 222220x y D x E y F ++++=则为两相交圆公共弦方程.()()()1212120D D x E E y F F -+-+-=补充说明:若与相切,则表示其中一条公切线方程;若与相离,则表示连心线的中垂线方程.1C 2C 1C 2C 3圆系问题(1)过两圆:和:交点的圆系方程为1C 221110x y D x E y F ++++=2C 222220x y D x E y F ++++=()()22221112220x y D x E y F x y D x E y F λ+++++++++=1λ≠-说明:1)上述圆系不包括;2)当时,表示过两圆交点的直线方程(公共弦)2C 1λ=-(2)过直线与圆交点的圆系方程0Ax By C ++=220x y Dx Ey F ++++=()22x y Dx Ey F Ax By C λ+++++++=(3)两圆公切线的条数问题:①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义)(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式…轨迹方程.例:过圆外一点作圆的割线,求割线被圆截得的弦的中点的轨迹方程.221x y +=()2,0A 分析:222OP AP OA+=(3)相关点法(平移转换法):一点随另一点的变动而变动特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点,点是圆上的动点,的平分线交于,当点在圆上()2,0A Q 221x y +=AOQ ∠AQ M Q移动时,求动点的轨迹方程.M 分析:角平分线定理和定比分点公式.例2.已知圆:,点,、是圆上的两个动点,、、呈逆时针方向排列,且O 229x y +=()3,0A B C O A B C,求的重心的轨迹方程.3BAC π∠=ABC ∆G 法1:,为定长且等于3BAC π∠=BC ∴设,则(),G x y 33333A B C B C A B C B C x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取的中点为,BC 33,24E x ⎡⎫∈-⎪⎢⎣⎭32E y ⎛⎤∈ ⎥ ⎝⎦, (1)222OE CE OC += 2294E E x y ∴+=,2222B C E B C E B C E B C Ex x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩3233322323E E E E x x x x y y yy +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()222233393110,,12242x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈ ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设,由,则()3cos ,3sin B θθ223BOC BAC π∠=∠=223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭设,则(),G x y ()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩,由得:4,33ππθ⎛⎫∈ ⎪⎝⎭()()()22112-+()223110,,12x y x y ⎛⎤⎡⎫-+=∈∈ ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标中的和都用第三个变量(即参数)表示,通过消参得到动点轨迹方程,(),x y x y 通过参数的范围得出,的范围.x y(4)求轨迹方程常用到得知识①重心,②中点,(),G x y 33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩(),P x y 121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD ABCD AC=④定比分点公式:,则,AMMB λ=1A B M x x x λλ+=+1AB M y y y λλ+=+⑤韦达定理.高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.圆的方程为20)1(22=++y x ;点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t ∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222br =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225ba d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b 当且仅当b a =时取“=”号,此时55min =d .这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b .又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据rd =∴21422=++-kk 解得 43=k 所以 ()4243+-=x y 即1043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ①0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆外一点,作这个圆的两条切线、,切点分别是、,求直线的122=+y x )3,2(M MA MB A B AB 方程。
圆方程的各种形式

圆方程的各种形式圆是一个平面上所有点到圆心的距离都相等的几何图形。
圆方程描述了圆的性质和特征。
在本文中,我们将讨论圆方程的各种形式。
1.标准方程:圆的标准方程是最基本的形式,它使用圆心的坐标和半径来定义圆。
如果圆的圆心是(h,k),半径为r,则圆的标准方程为:(x-h)²+(y-k)²=r²其中(x,y)是圆上的任意一点。
2.一般方程:圆的一般方程是另一种形式,它可以将圆的方程转换为一个二次方程。
一般方程的一般形式为:Ax²+Ay²+Dx+Ey+F=0其中A、D、E和F是常数。
要将标准方程转换为一般方程,你可以进行平方展开并将所有项相加。
3.参数方程:圆的参数方程使用参数t来表示圆上的点。
该方程的一般形式为:x = h + r * cos(t)y = k + r * sin(t)其中(h,k)是圆心的坐标,r是半径。
参数t的范围通常是[0,2π]。
4.极坐标方程:圆的极坐标方程使用极坐标来描述圆。
该方程的一般形式为:r = a + b * cos(θ)其中a和b是常数,θ是角度。
通常情况下,θ的范围是[0,2π]。
5.中心半径形式:中心半径形式是另一种表达圆的方式。
它使用圆心的坐标和半径来定义圆。
该形式的一般形式为:(h,k)±r其中(h,k)是圆心的坐标,±表示圆的内外部,r是半径。
该形式更加简洁,适用于描述圆的位置关系。
6.过三点圆方程:如果给出了圆上的三个点的坐标,我们可以使用过三点圆方程来定义圆。
给定三个不共线的点(x1,y1)、(x2,y2)和(x3,y3),过三点圆方程的一般形式为:(x-a)²+(y-b)²=r²其中a和b是圆心的坐标,r是半径。
7.方程组形式:方程组形式是将两个方程组合在一起来描述圆的方式。
一般形式为:f(x,y)=0g(x,y)=0其中f(x,y)和g(x,y)分别表示两个方程。
高中数学 4.14.1.2圆的一般方程课件 新人教A版必修2

种形式的方程中的一种;②根据所给条件,列出关于 D, 栏
目
E,F 或 a,b,r 的方程组;③解方程组.求出 D,E,
链 接
F 或 a,b,r 的值,并把它们代入所设的方程中,得到
所求的圆的方程.
第二十七页,共39页。
跟踪 训练
2.(1)已知圆经过 A(2,-3)和 B(-2,-5),若圆心 在直线 x-2y-3=0 上,求圆的方程.
第十九页,共39页。
跟踪 训练
1.求出下列各圆的圆心坐标和半径:
(1)x2+y2-6x=0;
(2)x2+y2+2by=0(b≠0);
栏
目
(3)x2+y2-2ax-2
3y+3a2=0-
6 2 <a<
26.
链 接
解析:(1)原方程化为(x-3)2+y2=32,因此该圆的圆 心为(3,0),半径为 3.
第十四页,共39页。
栏 目 链 接
第十五页,共39页。
题型一 圆的一般方程的概念(gàiniàn)
例1 下列方程能否表示圆?若能表示圆,求出圆心(yuánxīn)和
半径.
栏
(1)2x2+y2-7y+5=0;
目 链
接
(2)x2-xy+y2+6x+7y=0;
(3)x2+y2-2x-4y+10=0;
(4)2x2+2y2-5x=0.
第二十页,共39页。
跟踪 训练
(2)原方程化为 x2+(y+b)2=b2(b≠0),因此该
圆的圆心为(0,-b),半径为|b|.
栏
目
(3)原方程化为(x-a)2+(y- 3)2=3-2a2.因为
链 接
表示圆,所以 3-2a2>0,从而该圆的圆心为(a, 3),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的一般方程点在圆外
当点在圆外时,其到圆心的距离会大于圆的半径。
通过解圆的一般方程来求得点与圆心的距离,并与半径进行比较,可以判断点是否在圆外。
首先,我们知道圆的一般方程为 (x^2 + y^2 + Dx + Ey + F = 0),其中 (D) 和 (E) 是圆心坐标,(F) 是半径的平方。
假设点 (P(x_0, y_0)) 在圆外,那么它到圆心的距离 (d) 应该大于半径(r)。
根据点到圆心距离的公式,我们有
(d = \sqrt{(x_0 - D)^2 + (y_0 - E)^2})同时,根据圆的一般方程,我们有
(r^2 = D^2 + E^2 - F)由于点 (P) 在圆外,所以 (d > r),即
(\sqrt{(x_0 - D)^2 + (y_0 - E)^2} > \sqrt{D^2 + E^2 - F})两边平方后化简,得到
(x_0^2 - 2x_0D + D^2 + y_0^2 - 2y_0E + E^2 > D^2 + E^2 - F)整理后得到
(x_0^2 + y_0^2 - 2x_0D - 2y_0E + F > 0)这正是圆的一般方程的形式。
因此,如果一个点满足圆的一般方程,那么它一定在圆内;如果一个点不满足圆的一般方程,那么它一定在圆外。
需要注意的是,这里的判断是基于点到圆心距离和半径的比较。
如果一个点在圆上或者与圆心的距离正好等于半径,那么它既不在圆内也不在圆外。